
Your UNIX/Linux: The Ultimate Guide, Third Edition, is written with both users 
and programmers in mind and is the ultimate UNIX/Linux text. Both pedagogical 
tool and exhaustive reference, it is well suited to any course that includes UNIX 
or Linux. A strong pedagogical framework sets it apart from similar texts and 
allows beginning students to gain a fi rm grasp of fundamental concepts, while 
chapters on advanced topics inspire the more experienced reader to move 
beyond the basics. Nearly a thousand exercises and self-test questions provide 
a way for students to test and reinforce their understanding of the material.

The new edition of Your UNIX/Linux includes:
  A separate chapter on the essentials of C programming.

  Coverage of the GNU debugger (gdb), which is a more eff ective, powerful 
debugger than dbx, the original UNIX debugger.

  The popular Concurrent Version System (CVS), which is found on all 
Linux systems.

  The bc calculator utility, an effi  cient computing tool for shell programmers.

  Coverage of the pico editor and relocates the chapter on emacs to an appendix.

  The popular Red Hat Package manager (RPM).

  A wealth of real-life examples.

  Numerous learning aids such as Notes, Tips, Caution boxes, and a separate 
icon that highlights Linux references.

Visit the Your UNIX/Linux website at www.mhhe.com/das for solutions, slides, 
source code, links, and more.

Your

Sumitabha Das

Third Edition

The Ultimate Guide

UNIX/Linux

You
r

D
a
s

Third Edition

The U
ltim

ate G
uide

U
N
IX

/L
in
u
xM

D
 D

A
L

IM
 #1173349 12/18/11 C

Y
A

N
 M

A
G

 Y
E

L
O

 B
L

K
 



Your UNIX/
Linux

The Ultimate Guide
Third Edition

Sumitabha Das

das76205_fm_i-xI.indd   idas76205_fm_i-xI.indd   i 12/14/11   4:36 PM12/14/11   4:36 PM



YOUR UNIX/LINUX: THE ULTIMATE GUIDE, THIRD EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, 

New York, NY 10020. Copyright © 2013 by the McGraw-Hill Companies, Inc. All rights reserved. Previous 

editions © 2006 and 2001. Printed in the United States of America. No part of this publication may be reproduced 

or distributed in any form or by any means, or stored in a database or retrieval system, without the prior 

written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other 

electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the 

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 3 2

ISBN 978–0–07–337620–2

MHID 0–07–337620–5

Vice President & Editor-in-Chief: Marty Lange
Vice President of Specialized Production: Janice M. Roerig-Blong
Editorial Director: Michael Lange
Publisher: Raghothaman Srinivasan
Marketing Manager: Curt Reynolds
Project Manager: Melissa M. Leick
Design Coordinator: Brenda A. Rolwes
Cover Design: Studio Montage, St. Louis, Missouri
Cover Image: © Creatas/PunchStock RF
Buyer: Sherry L. Kane
Media Project Manager: Balaji Sundararaman
Compositor: Cenveo Publisher Services
Typeface: 10/12 Times Roman
Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

                 Library of Congress Cataloging-in-Publication Data

Das, Sumitabha.

    Your UNIX/LINUX : the ultimate guide / Sumitabha Das. — 3rd ed.

        p.   cm.

    Rev. ed. of: Your UNIX : the ultimate guide / Sumitabha Das. 2006.

    ISBN-13: 978-0-07-337620-2 (alk. paper)

    ISBN-10: 0-07-337620-5 (alk. paper)

    1. UNIX (Computer fi le) 2.  Linux. 3. Operating systems (Computers) I.

Das, Sumitabha. Your UNIX. II. Title.

  QA76.76.O63D3495      2013

  005.4’32—dc23                                                            2011042979

www.mhhe.com

das76205_fm_i-xI.indd   iidas76205_fm_i-xI.indd   ii 12/14/11   4:36 PM12/14/11   4:36 PM



To my wife Julie and daughter Sohini, whose 
contribution can no longer be ignored.

das76205_fm_i-xI.indd   iiidas76205_fm_i-xI.indd   iii 12/14/11   4:36 PM12/14/11   4:36 PM



iv

das76205_fm_i-xI.indd   ivdas76205_fm_i-xI.indd   iv 12/14/11   4:36 PM12/14/11   4:36 PM



v

Contents in Brief

 PART I UNIX for the User ...........................................................................................1

 1 Introducing UNIX ...........................................................................................3

 2 Becoming Familiar with UNIX Commands ....................................................25

 3 The File System .............................................................................................56

 4 File Attributes ...............................................................................................92

 5 The vi/vim Editor .......................................................................................122

 6 The Shell ....................................................................................................156

 7 The Process ................................................................................................188

 8 The Shell—Customizing the Environment ...................................................213

 9 Simple Filters ..............................................................................................241

 10 Filters Using Regular Expressions—grep and sed .........................................265

 11 Networking Tools .......................................................................................296

 PART II UNIX for the Programmer ...........................................................................329

 12 Filtering and Programming with awk ...........................................................331

 13 Shell Programming .....................................................................................359

 14 perl—The Master Manipulator ...................................................................404

 15 Introducing C .............................................................................................440

 16 Program Development Tools.......................................................................485

 17 Systems Programming I—Files ....................................................................535

 18 Systems Programming II—Process Control ..................................................570

 PART III System Administration ................................................................................607

 19 System Administration ................................................................................609

das76205_fm_i-xI.indd   vdas76205_fm_i-xI.indd   v 12/14/11   4:36 PM12/14/11   4:36 PM



vi Your UNIX/Linux: The Ultimate Guide

  Appendixes
 A The C Shell—Programming Constructs .......................................................643

 B The Korn and Bash Shells—Exclusive Programming Constructs ...................650

 C The GNU emacs Editor ................................................................................657

 D vi/vim Command Reference .......................................................................686

 E The Regular Expression Superset .................................................................693

 F The HOWTO ...............................................................................................696

 G The ASCII Character Set ..............................................................................701

 H Glossary ......................................................................................................705

 I Solutions to Self-Test Questions ..................................................................728

 

das76205_fm_i-xI.indd   vidas76205_fm_i-xI.indd   vi 12/14/11   4:36 PM12/14/11   4:36 PM



vii

Contents 

  List of Tables  .................................................................................. xxix

  Preface  ..........................................................................................xxxiii

 PART I UNIX for the User .......................................................................................1

 Chapter 1 Introducing UNIX .......................................................................................3

 1.1 The Operating System ..............................................................................3

 1.2 The UNIX Operating System .....................................................................5

 1.3 Knowing Your Machine ............................................................................6

 1.4 The System Administrator .........................................................................7

 1.5 Logging In and Out ..................................................................................7

 1.5.1 Logging In ......................................................................................7

 1.5.2 Logging Out ...................................................................................8

 1.6 A Hands-On Session..................................................................................9

 1.6.1 System Information with date and who ..........................................10

 1.6.2 Viewing Processes with ps .............................................................10

 1.6.3 Handling Files ...............................................................................11

 1.6.4 Handling Directories .....................................................................12

 1.7 How It All Clicked ...................................................................................14

 1.7.1 Berkeley: The Second School ..........................................................15

 1.7.2 UNIX Gets Fragmented .................................................................15

 1.7.3 The Internet .................................................................................16

 1.7.4 The Windows Threat .....................................................................16

 1.8 POSIX and the Single UNIX Specifi cation ................................................16

 1.9 Linux and GNU .......................................................................................17

 1.10 The UNIX Architecture ..........................................................................17

 1.10.1 Division of Labor: Kernel and Shell ...............................................18

das76205_fm_i-xI.indd   viidas76205_fm_i-xI.indd   vii 12/14/11   4:36 PM12/14/11   4:36 PM



viii Your UNIX/Linux: The Ultimate Guide

 1.10.2 The File and Process ....................................................................19

 1.10.3 The System Calls.........................................................................19

 1.11 Features of UNIX ..................................................................................20

 1.11.1 A Multiuser System .....................................................................20

 1.11.2 A Multitasking System Too ..........................................................20

 1.11.3 A Repository of Applications .........................................................21

 1.11.4 The Building-Block Approach .......................................................21

 1.11.5 Pattern Matching .......................................................................21

 1.11.6 Programming Facility ..................................................................21

 1.11.7 Documentation ..........................................................................22

 Summary ......................................................................................................22

 Self-Test ........................................................................................................23

 Exercises .......................................................................................................24

 Chapter 2 Becoming Familiar with UNIX Commands ...........................................25

 2.1 Command Basics ....................................................................................26

 2.1.1 The PATH: Locating Commands ......................................................26

 2.1.2 Where Is the Command? ...............................................................27

 2.2 Command Structure ...............................................................................28

 2.3 Flexibility of Command Usage ................................................................30

 2.4 man: On-Line Help ...................................................................................31

 2.4.1 Navigation and Search .................................................................33

 2.4.2 Further Help with man -k and man -f ............................................33

 2.5 The man Documentation .........................................................................34

 2.5.1 Understanding a man Page ...........................................................35

 2.5.2 Using man to Understand man ........................................................35

 2.6 echo: Displaying Messages ......................................................................38

 2.7 printf: Alternative to echo .....................................................................39

 2.8 script: Recording Your Session ..............................................................40

 2.9 Using Email with mailx ...........................................................................40

 2.9.1 Sending Mail ................................................................................41

 2.9.2 Receiving Mail ..............................................................................41

 2.9.3 mailx Internal Commands ............................................................42

 2.10 passwd: Changing Your Password ..........................................................44

 2.11 uname: Your Machine’s Name and Operating System ............................44

 2.12 who: Know the Users .............................................................................45

das76205_fm_i-xI.indd   viiidas76205_fm_i-xI.indd   viii 12/14/11   4:36 PM12/14/11   4:36 PM



Contents ix

 2.13 date: Displaying the System Date .........................................................46

 2.14 stty: When Things Go Wrong ..............................................................47

 2.14.1 Changing the Settings .................................................................48

 2.15 The X Window System ..........................................................................49

 2.15.1 The Terminal Emulator ................................................................50

 2.15.2 The File Manager ........................................................................51

 Summary ......................................................................................................52

 Self-Test ........................................................................................................53

 Exercises .......................................................................................................54

 Chapter 3 The File System .........................................................................................56

 3.1 The File ...................................................................................................57

 3.1.1 Ordinary (Regular) File ..................................................................57

 3.1.2 Directory File ................................................................................58

 3.1.3 Device File ....................................................................................58

 3.2 What’s in a (File)name? ...........................................................................58

 3.3 The File System Hierarchy  ......................................................................59

 3.4 The UNIX File System .............................................................................60

 3.5 Using Absolute Pathnames with Commands ...........................................61

 3.6 The HOME Variable and ~: The Home Directory .........................................62

 3.7 pwd and cd: Navigating the File System ...................................................62

 3.8 Relative Pathnames (. and ..) ................................................................64

 3.9 mkdir: Making Directories .......................................................................66

 3.10 rmdir: Removing Directories .................................................................67

 3.11 ls: Listing Files......................................................................................68

 3.11.1 ls Options .................................................................................69

 3.12 cp: Copying Files ..................................................................................71

 3.12.1 cp Options .................................................................................72

 3.13 mv: Renaming Files ................................................................................73

 3.14 rm: Deleting Files ..................................................................................73

 3.14.1 rm Options .................................................................................74

 3.15 cat: Displaying and Concatenating Files ...............................................76

 3.16 more: The UNIX Pager ...........................................................................76

 3.17 pico: Rudimentary Text Editing .............................................................78

 3.17.1 Navigation .................................................................................79

 3.17.2 Text Editing ................................................................................80

das76205_fm_i-xI.indd   ixdas76205_fm_i-xI.indd   ix 12/14/11   4:36 PM12/14/11   4:36 PM



x Your UNIX/Linux: The Ultimate Guide

 3.18 wc: Counting Lines, Words and Characters ............................................80

 3.19 lp: Printing a File ..................................................................................81

 3.19.1 Other Commands in the lp Subsystem ..........................................81

 3.20 od: Viewing Nonprintable Characters ....................................................82

 3.21 dos2unix, unix2dos, and Tofrodos: 
 Converting Between DOS and UNIX .................................................83

 3.22 tar: The Archival Program ....................................................................84

 3.23 gzip: The Compression Program ..........................................................85

 3.24 zip: The Compression and Archival Program ........................................87

 3.25 Other Ways of Using These Commands ................................................88

 Summary ......................................................................................................88

 Self-Test ........................................................................................................89

 Exercises .......................................................................................................90

 Chapter 4 File Attributes ...........................................................................................92

 4.1 ls Revisited (-l): Listing File Attributes ...................................................92

 4.1.1 Listing Directory Attributes (-ld) ....................................................94

 4.2 File Permissions .......................................................................................94

 4.3 chmod: Changing File Permissions ............................................................96

 4.3.1 Relative Permissions ......................................................................96

 4.3.2 Absolute Assignment .....................................................................98

 4.3.3 Recursive Operation (-R) ...............................................................99

 4.4 The Directory .......................................................................................100

 4.4.1 Read Permission .........................................................................100

 4.4.2 Write Permission .........................................................................100

 4.4.3 Execute Permission ......................................................................102

 4.5 umask: Default File and Directory Permissions ........................................102

 4.6 File Systems and Inodes ........................................................................103

 4.7 ln: Creating Hard Links .........................................................................105

 4.7.1 Where to Use Hard Links .............................................................107

 4.8 ln Again: Creating Symbolic Links ........................................................107

 4.9 File Ownership ......................................................................................109

 4.9.1 chown: Changing File Ownership ..................................................110

 4.9.2 chgrp: Changing Group Owner...................................................111

 4.9.3 How to Handle Intruders .............................................................112

 4.10 Modifi cation and Access Times ...........................................................112

das76205_fm_i-xI.indd   xdas76205_fm_i-xI.indd   x 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xi

 4.11 fi nd: Locating Files...............................................................................113

 4.11.1 Selection Criteria .......................................................................114

 4.11.2 The fi nd Operators (!, -o, and -a) .............................................116

 4.11.3 Operators of the Action Component ...........................................117

 Summary ....................................................................................................118

 Self-Test ......................................................................................................118

 Exercises .....................................................................................................119

 Chapter 5 The vi/vim Editor ....................................................................................122

 5.1 vi Basics ...............................................................................................123

 5.1.1 The File .exrc ............................................................................124

 5.2 A Few Tips First .....................................................................................125

 5.3 Input Mode—Entering and Replacing Text ...........................................126

 5.3.1 Inserting and Appending Text (i and a) .......................................127

 5.3.2 Inserting and Appending Text at Line Extremes (I and A) ..............127

 5.3.3 Opening a New Line (o and O) ....................................................128

 5.3.4 Replacing Text (r, s, R, and S) ....................................................129

 5.3.5 Entering Control Characters ([Ctrl-v]) ...........................................130

 5.4 Saving Text and Quitting—The ex Mode ..............................................131

 5.4.1 Saving Your Work (:w) ................................................................132

 5.4.2 Saving and Quitting (:x and :wq) ................................................132

 5.4.3 Aborting Editing (:q) ...................................................................132

 5.4.4 Writing Selected Lines .................................................................133

 5.4.5 Escape to the Shell (:sh and [Ctrl-z]) ...........................................134

 5.5 Recovering from a Crash (:recover and -r) ..........................................134

 5.6 Navigation ............................................................................................134

 5.6.1 Relative Movement in the Four Directions (h, j, k, and l) .............135

 5.6.2 Scrolling ([Ctrl-f], [Ctrl-b], [Ctrl-d] and [Ctrl-u]) ............................136

 5.6.3 Word Navigation (b, e, and w) ....................................................136

 5.6.4 Moving to Line Extremes (0, |, and $) ..........................................137

 5.6.5 Absolute Movement (G) ...............................................................137

 5.7 Editing Text without Operators .............................................................138

 5.7.1 Deleting Text (x, X, and dd) ........................................................138

 5.7.2 Moving Text (p) ..........................................................................139

 5.7.3 Joining Lines (J) ..........................................................................139

 5.7.4 Changing Case (~) ......................................................................140

das76205_fm_i-xI.indd   xidas76205_fm_i-xI.indd   xi 12/14/11   4:36 PM12/14/11   4:36 PM



xii Your UNIX/Linux: The Ultimate Guide

 5.8 Correcting a C Program ........................................................................140

 5.9 Editing Text with Operators ..................................................................141

 5.9.1 Deleting and Moving Text (d, p, and P)........................................142

 5.9.2 Yanking Text (y, p and P) ............................................................143

 5.9.3 Changing Text (c) .......................................................................144

 5.10 Copying and Moving Text from One File to Another...........................144

 5.11 Undoing Last Editing Instructions (u and U) .........................................145

 5.12 Searching for a Pattern (/ and ?).........................................................146

 5.12.1 Repeating the Last Pattern Search (n and N) ...............................146

 5.13 Repeating the Last Command (.) .......................................................147

 5.14 Substitution—Search and Replace (:s) ................................................148

 5.15 set: Customizing vi ...........................................................................149

  Going Further .....................................................................................151

 5.16 map: Mapping Keys of Keyboard ..........................................................151

 5.17 abbr: Abbreviating Text Input .............................................................152

 Summary ....................................................................................................152

 Self-Test ......................................................................................................153

 Exercises .....................................................................................................154

 Chapter 6 The Shell ..................................................................................................156

 6.1 The Shell as Command Processor .........................................................157

 6.2 Shell Offerings ......................................................................................158

 6.3 Pattern Matching—The Wild Cards .......................................................158

 6.3.1 The * and ? ................................................................................158

 6.3.2 The Character Class ....................................................................160

 6.3.3 Matching the Dot .......................................................................162

 6.3.4 Rounding Up ..............................................................................162

 6.4 Escaping and Quoting ..........................................................................163

 6.4.1 Escaping ....................................................................................163

 6.4.2 Quoting .....................................................................................164

 6.4.3 Escaping in echo .........................................................................165

 6.5 Redirection ...........................................................................................165

 6.5.1 Standard Input ...........................................................................166

 6.5.2 Standard Output ........................................................................168

 6.5.3 The File Descriptor ......................................................................169

 6.5.4 Standard Error ............................................................................170

 6.5.5 Filters—Using Both Standard Input and Standard Output..............171

das76205_fm_i-xI.indd   xiidas76205_fm_i-xI.indd   xii 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xiii

 6.6 Collective Manipulation ........................................................................172

 6.6.1 Replicating Descriptors ................................................................172

 6.6.2 Command Grouping ...................................................................172

 6.7 /dev/null and /dev/tty: Two Special Files ...........................................173

 6.8 Pipes .....................................................................................................174

 6.8.1 When a Command Needs to Be Ignorant of Its Source ...................175

 6.9 tee: Creating a Tee ...............................................................................176

 6.10 Command Substitution ......................................................................177

 6.11 Shell Variables .....................................................................................178

 6.11.1 Effects of Quoting and Escaping .................................................180

 6.11.2 Where to Use Shell Variables ......................................................180

 6.12 Shell Scripts ........................................................................................181

 6.13 The Shell’s Treatment of the Command Line .......................................182

  Going Further .....................................................................................183

 6.14 More Wild Cards .................................................................................183

 6.15 xargs: Building a Dynamic Command Line .........................................183

 Summary ....................................................................................................184

 Self-Test ......................................................................................................185

 Exercises .....................................................................................................186

 Chapter 7 The Process ..............................................................................................188

 7.1 Process Basics .......................................................................................188

 7.2 The Shell and init ................................................................................189

 7.3 ps: Displaying Process Attributes ...........................................................190

 7.5 The Process Creation Mechanism..........................................................194

 7.6 Inherited Process Attributes ..................................................................195

 7.6.1 When Variables Are Inherited and When They Are Not ..................196

 7.7 When You Can’t Use a Separate Process ................................................197

 7.8 Process States and Zombies ..................................................................198

 7.8.1 ps -l: Detailed Process Listing ....................................................198

 7.9 Signal Handling ....................................................................................199

 7.10 Running Jobs in Background ...............................................................201

 7.10.1 &: No Logging Out ....................................................................201

 7.10.2 nohup: Log Out Safely ...............................................................202

 7.11 Job Control .........................................................................................202

 7.11.1 Handling Standard Input and Standard Output ..........................205

 7.12 at and batch: Execute Later ................................................................206

 7.12.1 at: One-Time Execution .............................................................206

das76205_fm_i-xI.indd   xiiidas76205_fm_i-xI.indd   xiii 12/14/11   4:36 PM12/14/11   4:36 PM



xiv Your UNIX/Linux: The Ultimate Guide

 7.12.2 batch: Execute in Batch Queue ..................................................206

 7.12.3 Restricting Use of at and batch .................................................207

 7.13 cron and crontab: Running Jobs Periodically .......................................207

 7.13.1 Controlling Access to cron .........................................................210

 Summary ....................................................................................................210

 Self-Test ......................................................................................................210

 Exercises .....................................................................................................211

 Chapter 8 The Shell—Customizing the Environment ..........................................213

 8.1 The Shells .............................................................................................213

 8.1.1 Setting Your Shell ........................................................................214

 8.2 Environment Variables ..........................................................................215

 8.2.1 export: Creating Environment Variables .......................................216

 8.3 The Common Environment Variables ....................................................216

 8.4 Aliases ..................................................................................................220

 8.5 Command History ................................................................................222

 8.5.1 Accessing Previous Commands .....................................................223

 8.5.2 Substitution in Previous Commands .............................................223

 8.5.3 Using Arguments to Previous Command ($_) ................................224

 8.5.4 The History Variables ..................................................................224

 8.6 In-line Command Editing ......................................................................225

 8.7 Tilde Substitution ..................................................................................226

 8.8 Using set Options ................................................................................227

 8.9 The Initialization Scripts ........................................................................229

 8.9.1 The Login Script ..........................................................................229

 8.9.2 The rc File ...................................................................................230

 8.10 The C Shell .........................................................................................231

 8.10.1 Local and Environment Variables ...............................................231

 8.10.2 Aliases .....................................................................................233

 8.10.3 History .....................................................................................234

 8.10.4 Other Shell Variables .................................................................234

 8.10.5 The Initialization Scripts ............................................................235

  Going Further .....................................................................................235

 8.11 Directory Stack Manipulation ..............................................................235

 Summary ....................................................................................................237

 Self-Test ......................................................................................................238

 Exercises .....................................................................................................239

das76205_fm_i-xI.indd   xivdas76205_fm_i-xI.indd   xiv 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xv

 Chapter 9 Simple Filters ...........................................................................................241

 9.1 pr: Paginating Files ...............................................................................242

 9.1.1 pr Options .................................................................................242

 9.2 Comparing Files....................................................................................243

 9.3 cmp: Byte-by-Byte Comparison ..............................................................244

 9.4 comm: What Is Common? .......................................................................245

 9.5 diff: Converting One File to Another ...................................................246

 9.6 head: Displaying the Beginning of a File ................................................247

 9.7 tail: Displaying the End of a File ..........................................................248

 9.7.1 tail Options ..............................................................................248

 9.8 cut: Slitting a File Vertically ...................................................................249

 9.9 paste: Pasting Files ...............................................................................250

 9.10 sort: Ordering a File ...........................................................................251

 9.10.1 sort Options ............................................................................252

 9.11 uniq: Locate Repeated and Nonrepeated Lines ...................................255

 9.11.1 uniq Options ............................................................................255

 9.12 tr: Translating Characters ...................................................................257

 9.12.1 tr Options ...............................................................................258

 9.13 Applying the Filters .............................................................................259

 9.13.1 Listing the Five Largest Files in the Current Directory ...................259

 9.13.2 Creating a Word-Usage List .......................................................260

 9.13.3 Finding Out the Difference between Two Password Files ...............261

 Summary ....................................................................................................262

 Self-Test ......................................................................................................263

 Exercises .....................................................................................................263

Chapter 10 Filters Using Regular Expressions—grep and sed ................................265

 10.1 The Sample Database .........................................................................266

 10.2 grep: Searching for a Pattern ..............................................................266

 10.2.1 Quoting in grep ........................................................................267

 10.2.2 When grep Fails .......................................................................268

 10.3 grep Options ......................................................................................268

 10.4 Basic Regular Expressions (BRE)—An Introduction ...............................271

 10.4.1 The Character Class ..................................................................271

 10.4.2 The * .......................................................................................273

 10.4.3 The Dot ...................................................................................274

das76205_fm_i-xI.indd   xvdas76205_fm_i-xI.indd   xv 12/14/11   4:36 PM12/14/11   4:36 PM



xvi Your UNIX/Linux: The Ultimate Guide

 10.4.4 Specifying Pattern Locations (^ and $) ........................................274

 10.4.5 When Metacharacters Lose Their Meaning .................................. 275

 10.5 Extended Regular Expressions (ERE) and egrep ...................................276

 10.5.1 The + and ? ..............................................................................276

 10.5.2 Matching Multiple Patterns (|, ( and )) .....................................277

 10.6 sed:The Stream Editor .........................................................................277

 10.7 Line Addressing ..................................................................................279

 10.8 sed Options ........................................................................................280

 10.9 Context Addressing ............................................................................281

 10.10 Writing Selected Lines to a File (w) ....................................................282

 10.11 Text Editing ......................................................................................283

 10.11.1 Inserting and Changing Lines (i, a, c) ......................................283

 10.11.2 Deleting Lines (d) ....................................................................284

 10.12 Substitution (s) .................................................................................284

 10.12.1 Using Regular Expressions in Substitution .................................285

 10.12.2 The Remembered Pattern (//) .................................................286

 10.13 Basic Regular Expressions Revisited ...................................................287

 10.13.1 The Repeated Pattern (&) ........................................................287

 10.13.2 Interval Regular Expression (IRE) ..............................................288

 10.13.3 The Tagged Regular Expression (TRE) .......................................288

 10.14 Applying the IRE and TRE ..................................................................289

 10.14.1 Handling a Telephone Directory ...............................................289

 10.14.2 Replacing an Obsolescent Function 
     with a POSIX-Compliant One ...................................................290

 10.14.3 Converting Pathnames in URLs ................................................291

 Summary ....................................................................................................292

 Self-Test ......................................................................................................292

 Exercises .....................................................................................................293

Chapter 11 Networking Tools ...................................................................................296

 11.1 TCP/IP Basics ......................................................................................297

 11.1.1 Hostnames and IP Addresses .....................................................297

 11.2 Resolving Hostnames and IP Addresses ...............................................298

 11.2.1 /etc/hosts: The Hosts File ........................................................298

 11.2.2 The Domain Name System (DNS) ..............................................299

das76205_fm_i-xI.indd   xvidas76205_fm_i-xI.indd   xvi 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xvii

 11.3 Client-Server: How Networked Applications Communicate .................301

 11.4 ping: Checking the Network ...............................................................303

 11.5 telnet: Remote Login .........................................................................303

 11.6 ftp: File Transfer Protocol ...................................................................304

 11.6.1 Basic File and Directory Handling ...............................................305

 11.6.2 Transferring Files .......................................................................305

 11.6.3 Anonymous FTP ........................................................................306

 11.7 Cryptography Basics ...........................................................................307

 11.7.1 Symmetric Key Algorithms .........................................................308

 11.7.2 Asymmetric Key Algorithms .......................................................308

 11.8 SSH: The Secure Shell .........................................................................309

 11.8.1 Host Authentication ..................................................................309

 11.8.2 The rhosts/shosts Authentication Scheme ................................310

 11.8.3 User Authentication with Symmetric Algorithms ..........................310

 11.8.4 Using the SSH Agent for Noninteractive Logins ...........................312

 11.9 The SSH Tools .....................................................................................313

 11.9.1 Remote Login and Command Execution (ssh and slogin) ...........314

 11.9.2 File Transfer with sftp and scp ..................................................314

 11.10 Internet Mail .....................................................................................315

 11.10.1 ~/.signature and ~/.forward: Two Important Files ................317

 11.11 MIME: Handling Binary Attachments in Mail .....................................317

 11.12 Using X Window on a TCP/IP Network .............................................318

 11.12.1 The Display ............................................................................319

 11.12.2 Using the DISPLAY variable .....................................................319

 11.12.3 Using the -display Option .....................................................320

 11.13 HTTP and the World Wide Web ........................................................320

 11.13.1 The Uniform Resource Locator (URL) ........................................321

 11.13.2 HTTP: The Protocol of the Web ................................................322

 11.13.3 Running External Programs .....................................................322

 11.13.4 HTML: The Language of Web Pages .........................................323

 11.13.5 The Web Browser ....................................................................323

 11.14 Multimedia on the Web: MIME Revisited ..........................................324

 Summary ....................................................................................................325

 Self-Test ......................................................................................................326

 Exercises .....................................................................................................327

das76205_fm_i-xI.indd   xviidas76205_fm_i-xI.indd   xvii 12/14/11   4:36 PM12/14/11   4:36 PM



xviii Your UNIX/Linux: The Ultimate Guide

 PART II UNIX for the Programmer.....................................................................329

Chapter 12 Filtering and Programming with awk ..................................................331

 12.1 awk Preliminaries .................................................................................332

 12.2 Using print and printf ......................................................................334

 12.2.1 Redirecting Standard Output .....................................................335

 12.3 Number Processing ............................................................................335

 12.4 Variables and Expressions ....................................................................337

 12.5 The Comparison and Logical Operators ..............................................338

 12.5.1 String and Numeric Comparison ................................................338

 12.5.2 ~ and !~: The Regular Expression Operators ...............................340

 12.5.3 The Logical Operators ...............................................................340

 12.6 The -f Option: Storing awk Programs in a File .....................................342

 12.7 The BEGIN and END Sections ................................................................342

 12.8 Positional Parameters ..........................................................................343

 12.9 Arrays .................................................................................................344

 12.9.1 Associative (Hash) Arrays ..........................................................345

 12.9.2 ENVIRON[ ]: The Environment Array ..........................................345

 12.10 Built-In Variables ...............................................................................346

 12.10.1 Applying the Built-in Variables .................................................347

 12.11 Functions ..........................................................................................348

 12.12 Control Flow—The if Statement ......................................................350

 12.13 Looping with for ..............................................................................351

 12.13.1 Using for with an Associative Array .........................................352

 12.14 Looping with while ..........................................................................353

 12.15 Conclusion .......................................................................................354

 Summary ....................................................................................................355

 Self-Test ......................................................................................................355

 Exercises .....................................................................................................356

Chapter 13 Shell Programming ................................................................................359

 13.1 Shell Scripts ........................................................................................360

 13.1.1 script.sh: A Simple Script .......................................................360

 13.1.2 The She-Bang Line ....................................................................361

 13.2 read: Making Scripts Interactive ..........................................................361

 13.3 Using Command-Line Arguments .......................................................362

 13.4 exit and $?: Exit Status of a Command ..............................................364

das76205_fm_i-xI.indd   xviiidas76205_fm_i-xI.indd   xviii 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xix

 13.5 The Logical Operators && and ||—Conditional Execution ...................365

 13.6 The if Conditional .............................................................................366

 13.7 Using test and [ ] to Evaluate Expressions ........................................367

 13.7.1 Numeric Comparison ................................................................367

 13.7.2 [ ]: Shorthand for test ...........................................................369

 13.7.3 String Comparison ....................................................................369

 13.7.4 File Attribute Tests .....................................................................370

 13.7.5 Using Compound Conditions .....................................................371

 13.8 Two Important Programming Idioms ..................................................372

 13.8.1 Running a Task Both Interactively and Noninteractively ...............372

 13.8.2 Calling a Script by Different Names ($0) ....................................373

 13.9 The case Conditional ..........................................................................374

 13.9.1 Using Wild Cards and the | .......................................................375

 13.10 expr, bc and basename: Computation and String Handling................376

 13.10.1 Computation with expr ...........................................................376

 13.10.2 Floating-Point Computation with bc .........................................377

 13.10.3 String Handling with expr .......................................................378

 13.10.4 basename: Changing Filename Extensions .................................379

 13.11 Sample Program 1: Automatically Selects Last C Program .................379

 13.12 for: Looping with a List ....................................................................380

 13.12.1 Sources of the List ...................................................................381

 13.12.2 Important Applications Using for ............................................382

 13.13 while: Looping .................................................................................382

 13.13.1 Handling Redirection in a Loop ................................................383

 13.13.2 Using while to Wait for a File ..................................................384

 13.13.3 Finding Out Users’ Space Consumption ....................................385

 13.13.4 break and continue ...............................................................386

 13.14 Sample Script 2: Providing Numeric Extensions to Backup Files ........387

 13.15 Manipulating Positional Parameters with set and shift ....................389

 13.15.1 Killing a Process by Name ........................................................390

 13.15.2 shift: Shifting Positional Parameters Left .................................391

 13.15.3 The IFS Variable: set’s Default Delimiter .................................392

 13.16 Sample Script 3: A Table of Contents for Downloaded Files ...............392

  Going Further .....................................................................................394

 13.17 The Here Document (<<) ..................................................................394

 13.18 Shell Functions .................................................................................395

 13.19 trap: How a Script Handles Signals ...................................................397

das76205_fm_i-xI.indd   xixdas76205_fm_i-xI.indd   xix 12/14/11   4:36 PM12/14/11   4:36 PM



xx Your UNIX/Linux: The Ultimate Guide

 13.20 eval: Evaluating Twice ......................................................................398

 13.21 The exec Statement ..........................................................................399

 Summary ....................................................................................................399

 Self-Test ......................................................................................................400

 Exercises .....................................................................................................401

Chapter 14 perl—The Master Manipulator .............................................................404

 14.1 perl Preliminaries ...............................................................................405

 14.2 Variables and Constants ......................................................................406

 14.2.1 Using a Pragma ........................................................................407

 14.3 Operators ...........................................................................................408

 14.3.1 The Comparison and Logical Operators ......................................408

 14.3.2 The Concatenation and Repetition Operators (. and x) ...............409

 14.4 The Standard Conditionals and Loops .................................................410

 14.4.1 The if Conditional ...................................................................410

 14.4.2 The while, do-while, and for Loops ..........................................410

 14.5 Reading Files from Command-Line Arguments ...................................412

 14.5.1 Reading Files with One-Liners ....................................................412

 14.5.2 Reading Files in a Script .............................................................413

 14.6 The Current Line Number ($.) and the Range Operator (..) ..............414

 14.7 $_: The Default Variable ......................................................................414

 14.8 String-Handling Functions ..................................................................415

 14.9 Lists and Arrays ...................................................................................416

 14.9.1 Array-Handling Functions ..........................................................419

 14.10 foreach: Looping Through a List ......................................................420

 14.11 Two Important List Functions ............................................................421

 14.11.1 split: Splitting into a List or Array ..........................................421

 14.11.2 join: Joining a List ..................................................................422

 14.12 dec2bin.pl: Converting a Decimal Number to Binary .......................423

 14.13 Associative Arrays .............................................................................424

 14.13.1 Counting Number of Occurrences ............................................425

 14.14 Using Regular Expressions .................................................................426

 14.14.1 Identifying Whitespace, Digits, and Words ................................426

 14.14.2 The IRE and TRE Features ........................................................427

 14.15 Substitution with the s and tr Functions ..........................................428

 14.15.1 Editing Files In-Place ................................................................429

 14.16 File Handling ....................................................................................430

das76205_fm_i-xI.indd   xxdas76205_fm_i-xI.indd   xx 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xxi

 14.17 File Tests ...........................................................................................431

 14.18 Subroutines ......................................................................................432

  Going Further .....................................................................................434

 14.19 CGI Programming with perl—An Overview .....................................434

 14.19.1 The Query String ....................................................................434

 14.19.2 GET and POST: The Request Method ........................................434

 Summary ....................................................................................................435

 Self-Test ......................................................................................................436

 Exercises .....................................................................................................437

Chapter 15 Introducing C ..........................................................................................440

 15.1 The C Language .................................................................................440

 15.2 fi rst_prog.c: Understanding Our First C Program ...............................441

 15.2.1 The Preprocessor Section ...........................................................443

 15.2.2 The Body ..................................................................................443

 15.2.3 main: A Unique Function ...........................................................444

 15.3 printf and scanf: Two Important Functions .......................................445

 15.3.1 printf: Printing to the Terminal ................................................445

 15.3.2 scanf: Input from the Keyboard .................................................446

 15.4 Variables and Constants ......................................................................446

 15.5 The Fundamental Data Types..............................................................447

 15.5.1 The Integer Types .....................................................................448

 15.5.2 The Floating-Point Types ...........................................................449

 15.5.3 The Character Type ...................................................................449

 15.6 sizeof.c: Determining the Size of the Fundamental Data Types .........450

 15.7 Symbolic Constants: Constants with Names .......................................451

 15.8 Arrays .................................................................................................452

 15.9 arrays.c: Printing Array Elements .......................................................452

 15.10 Structures .........................................................................................454

 15.11 Operators and Expressions ................................................................455

 15.11.1 The Bitwise Operators .............................................................456

 15.11.2 Automatic Conversion .............................................................456

 15.11.3 Explicit Conversion ..................................................................457

 15.12 type_conversion.c: Demonstrates Type Conversion .........................458

 15.13 Order of Evaluation ...........................................................................460

 15.13.1 Operator Precedence ...............................................................460

 15.13.2 Operator Associativity .............................................................461

das76205_fm_i-xI.indd   xxidas76205_fm_i-xI.indd   xxi 12/14/11   4:36 PM12/14/11   4:36 PM



xxii Your UNIX/Linux: The Ultimate Guide

 15.14 Control Flow Revisited ......................................................................462

 15.14.1 Decision Making with switch ..................................................462

 15.14.2 Repetition with do-while .........................................................463

 15.14.3 break and continue ...............................................................464

 15.15 Functions ..........................................................................................465

 15.16 fi rst_func.c: Two Arguments and Return Value ................................466

 15.17 Function Arguments, Parameters, and Local Variables .......................467

 15.17.1 Passing by Value .....................................................................468

 15.17.2 swap_failure.c: Visibility of Parameters and Local Variables ....469

 15.17.3 Using Arrays as Function Arguments ........................................470

 15.17.4 Using Structures as Function Arguments ...................................471

 15.18 Pointers ............................................................................................472

 15.19 pointers.c: Basic Features of a Pointer .............................................474

 15.20 Pointer Attributes ..............................................................................475

 15.20.1 Pointer Arithmetic ...................................................................475

 15.20.2 Other Attributes ......................................................................476

 15.21 Pointers and Functions......................................................................477

 15.21.1 Solving the Swapping Problem .................................................477

 15.21.2 Using Pointers to Return Multiple Values ...................................478

 15.22 Pointers and Other Data Types .........................................................478

 15.22.1 Pointers and Arrays .................................................................478

 15.22.2 Pointers and Strings ................................................................479

 15.22.3 Array of Strings .......................................................................480

 15.22.4 Pointers and Structures ...........................................................480

 Summary ....................................................................................................481

 Self-Test ......................................................................................................482

 Exercises .....................................................................................................483

Chapter 16 Program Development Tools ................................................................485

 16.1 Handling Multisource C Applications ..................................................485

 16.1.1 A Multisource Application ..........................................................486

 16.1.2 Compiling and Linking the Application .......................................489

 16.1.3 Why We Need the .o Files .........................................................490

 16.2 make: Keeping Programs Up to Date ...................................................490

 16.2.1 Removing Redundancies ............................................................493

 16.2.2 Other Functions of make: Cleaning Up and Backup ......................493

 16.2.3 Macros ....................................................................................494

das76205_fm_i-xI.indd   xxiidas76205_fm_i-xI.indd   xxii 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xxiii

 16.3 ar: Building a Library (Archive) ...........................................................495

 16.3.1 Using the Library ......................................................................496

 16.3.2 Maintaining an Archive with make ..............................................496

 16.4 Static and Shared Libraries ..................................................................497

 16.5 Version Control with SCCS, RCS, and CVS ..........................................498

 16.6 An SCCS Session .................................................................................499

 16.6.1 admin: Creating an SCCS File .....................................................500

 16.6.2 get: Checking Out ....................................................................501

 16.6.3 delta: Checking In ...................................................................502

 16.6.4 unget: When You Change Your Mind .........................................504

 16.7 Activity and History Information .........................................................504

 16.7.1 sact: Displaying Activity Status .................................................504

 16.7.2 prs: Displaying the SCCS History ...............................................505

 16.8 Continuing Editing with SCCS ............................................................506

 16.8.1 get -r: Changing the Default Numbering Sequence ...................506

 16.8.2 Working with Multiple Versions ..................................................507

 16.8.3 rmdel and comb: Removing and Combining Versions ...................509

 16.8.4 Using Identifi cation Keywords ....................................................509

 16.9 Controlling Access to SCCS ................................................................510

 16.9.1 Controlling User Access .............................................................510

 16.9.2 Controlling Releases ..................................................................511

 16.10 The Revision Control System (RCS) ...................................................511

 16.10.1 Creating an RCS File with ci ....................................................511

 16.10.2 co and ci: Checking Out and In ..............................................512

 16.10.3 Specifying Revisions ................................................................513

 16.10.4 rlog and rcs: Other RCS Functions .........................................514

 16.11 The Concurrent Version System (CVS) ..............................................517

 16.11.1 Setting Up the Repository ........................................................518

 16.11.2 Importing Files ........................................................................518

 16.11.3 Checking Out .........................................................................519

 16.11.4 Editing and Checking In ..........................................................519

 16.11.5 Merging and Resolving Confl icts ..............................................520

 16.11.6 Setting Tags and Exporting the Repository ................................521

 16.11.7 Other Features ........................................................................521

 16.12 Debugging Programs with gdb .........................................................522

 16.12.1 Starting gdb ...........................................................................525

 16.12.2 Using a Breakpoint .................................................................526

das76205_fm_i-xI.indd   xxiiidas76205_fm_i-xI.indd   xxiii 12/14/11   4:36 PM12/14/11   4:36 PM



xxiv Your UNIX/Linux: The Ultimate Guide

 16.12.3 Stepping Through the Program ................................................528

 16.12.4 Making a Reassignment ..........................................................528

 16.12.5 Setting a Watchpoint ..............................................................529

 16.12.6 Other Features of gdb ..............................................................531

 Summary ....................................................................................................531

 Self-Test ......................................................................................................532

 Exercises .....................................................................................................533

Chapter 17 Systems Programming I—Files .............................................................535

 17.1 System Call Basics ...............................................................................536

 17.1.1 Anatomy of a System Call .........................................................536

 17.1.2 System Calls vs. Library Functions ..............................................537

 17.2 errno and perror: Handling Errors ......................................................537

 17.3 open: Opening and Creating a File ......................................................539

 17.4 close: Closing a File ...........................................................................541

 17.5 read: Reading a File ............................................................................542

 17.6 write: Writing a File ............................................................................543

 17.7 ccp.c: Copying a File ..........................................................................543

 17.8 lseek: Positioning the Offset Pointer ...................................................545

 17.8.1 reverse_read.c: Reading a File in Reverse .................................547

 17.9 truncate and ftruncate: Truncating a File ..........................................548

 17.10 umask: Modifying File Permissions During Creation ...........................549

 17.11 Directory Navigation ........................................................................550

 17.12 Reading a Directory ..........................................................................552

 17.12.1 lls.c: Listing Filenames in a Directory .....................................553

 17.13 Modifying Entries in Directory ..........................................................554

 17.13.1 mkdir and rmdir: Creating and Removing Directories ...............554

 17.13.2 link and symlink: Creating a Hard and Symbolic Link .............554

 17.13.3 unlink: Removing a Link .........................................................555

 17.13.4 rename: Renaming a File, Directory, or Symbolic Link .................555

 17.14 Reading the Inode: struct stat and stat ........................................556

 17.14.1 attributes.c: Displaying Some File Attributes .........................557

 17.14.2 S_IFMT: Manipulating the st_mode Member .............................558

 17.14.3 Using the S_ISxxx Macros to Determine File Type .....................559

 17.14.4 Accessing the Permission Bits ...................................................559

 17.14.5 lsdir.c: Listing Only Directories .............................................560

das76205_fm_i-xI.indd   xxivdas76205_fm_i-xI.indd   xxiv 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xxv

 17.15 access: Checking the Real User’s Permissions ....................................560

 17.16 Modifying File Attributes ...................................................................563

 17.16.1 chmod and fchmod: Changing File Permissions ...........................563

 17.16.2 chown: Changing Ownership ...................................................564

 17.16.3 utime: Changing the Time Stamps ...........................................564

 17.16.4 atimemtime.c: Creating a File with Identical Time Stamps .........565

 Summary ....................................................................................................566

 Self-Test ......................................................................................................567

 Exercises .....................................................................................................568

Chapter 18 Systems Programming II—Process Control ........................................570

 18.1 The Process Revisited ..........................................................................571

 18.1.1 The Virtual Address Space .........................................................571

 18.1.2 The Process Table .....................................................................573

 18.2 The Process Environment ....................................................................573

 18.2.1 process.c: Looking Up Some Process Credentials .......................574

 18.3 fork: Replicating the Current Process .................................................575

 18.3.1 fork.c: A Simple Child Creation Program ...................................575

 18.4 exec: The Final Step in Process Creation .............................................577

 18.4.1 execl and execv: The Key Members ..........................................578

 18.4.2 The Other exec Members...........................................................579

 18.5 Gathering the Exit Status ....................................................................580

 18.5.1 wait: When the Parent Waits ....................................................580

 18.5.2 waitpid: A More Powerful Waiting Mechanism ...........................581

 18.6 fork_exec_wait.c: Using All Three Calls .............................................582

 18.7 File Sharing .........................................................................................584

 18.7.1 The File Descriptor Table ............................................................584

 18.7.2 The File Table ...........................................................................585

 18.7.3 The Vnode Table .......................................................................585

 18.7.4 When the Linkage Changes .......................................................585

 18.8 File Descriptor Manipulation ...............................................................587

 18.8.1 dup and dup2: Duplicating a File Descriptor ................................587

 18.8.2 redirection.c: Redirection at Last ............................................588

 18.8.3 fcntl: Recommended over dup and dup2 ...................................590

 18.9 Signal Handling ..................................................................................590

 18.9.1 The System Calls.......................................................................592

das76205_fm_i-xI.indd   xxvdas76205_fm_i-xI.indd   xxv 12/14/11   4:36 PM12/14/11   4:36 PM



xxvi Your UNIX/Linux: The Ultimate Guide

 18.10 sigaction: Installing a Signal Handler ...............................................592

 18.10.1 signal.c: Catching the SIGALRM Signal ...................................594

 18.10.2 Catching Terminal-Generated Signals .......................................595

 18.11 killprocess.c: Using fork-exec-wait and SIGCHLD ............................597

 18.12 IPC with Unnamed Pipes ..................................................................599

 18.12.1 Using pipe with fork ..............................................................600

 18.12.2 pipe2.c: Running UNIX Commands in a Pipe ...........................600

 Summary ....................................................................................................602

 Self-Test ......................................................................................................603

 Exercises .....................................................................................................604

PART III System Administration ..........................................................................607

Chapter 19 System Administration ..........................................................................609

 19.1 root: The System Administrator’s Login ...............................................610

 19.1.1 su: Acquiring Superuser Status ...................................................610

 19.2 The Administrator’s Privileges .............................................................611

 19.3 User Management ..............................................................................612

 19.3.1 Understanding /etc/group .......................................................612

 19.3.2 Understanding /etc/passwd .....................................................613

 19.3.3 Adding and Modifying a User Profi le ..........................................614

 19.4 Maintaining Security ...........................................................................615

 19.4.1 Restricted Shell .........................................................................615

 19.4.2 Set-User-Id (SUID): Power for a Moment ....................................616

 19.4.3 The Sticky Bit ............................................................................617

 19.5 Booting and Shutdown .......................................................................618

 19.5.1 Booting ....................................................................................618

 19.5.2 Shutdown ................................................................................619

 19.6 How init Controls the System ...........................................................619

 19.6.1 How init Creates the Shell .......................................................620

 19.6.2 The rc Scripts ............................................................................621

 19.7 Device Files .........................................................................................622

 19.7.1 Block and Character Devices ......................................................623

 19.7.2 Major and Minor Numbers ........................................................623

 19.8 File Systems ........................................................................................624

 19.8.1 File System Components ............................................................624

 19.8.2 The Standard File Systems and Their Types .................................625

das76205_fm_i-xI.indd   xxvidas76205_fm_i-xI.indd   xxvi 12/14/11   4:36 PM12/14/11   4:36 PM



Contents xxvii

 19.9 Mounting and Unmounting File Systems ............................................626

 19.9.1 mount: Mounting File Systems ....................................................626

 19.9.2 umount: Unmounting File Systems ..............................................627

 19.10 fsck: File System Checking ...............................................................627

 19.11 Managing Disk Space .......................................................................628

 19.11.1 df: Reporting Free Space .........................................................629

 19.11.2 du: Disk Usage ........................................................................629

 19.11.3 fi nd Revisited: The Administrator’s Tool .....................................630

 19.12 Handling Floppy Diskettes ................................................................630

 19.12.1 format and fdformat: Formatting Diskettes .............................631

 19.12.2 dd: Copying Diskettes ..............................................................631

 19.12.3 Handling DOS Diskettes ..........................................................631

 19.13 tar: Backing Up Files ........................................................................633

 19.13.1 Backing Up Files (-c) ...............................................................633

 19.13.2 Restoring Files (-x) ..................................................................634

 19.13.3 Displaying the Archive (-t) ......................................................635

 19.13.4 Other Options ........................................................................635

 19.14 Installing Programs with rpm .............................................................636

 19.14.1 Installing and Upgrading Packages ..........................................636

 19.14.2 Removing Packages ................................................................637

 19.14.3 Querying Packages .................................................................638

 Summary ....................................................................................................639

 Self-Test ......................................................................................................640

 Exercises .....................................................................................................641

Appendix A The C Shell—Programming Constructs ...............................................643

Appendix B The Korn and Bash Shells—Exclusive Programming Constructs .....650

Appendix C The GNU emacs Editor .............................................................................657

Appendix D vi/vim Command Reference ..................................................................686

Appendix E The Regular Expression Superset .........................................................693

Appendix F The HOWTO .............................................................................................696

Appendix G The ASCII Character Set .........................................................................701

Appendix H Glossary ....................................................................................................705

Appendix I Solutions to Self-Test Questions ...........................................................728

  Index .........................................................................................................752

das76205_fm_i-xI.indd   xxviidas76205_fm_i-xI.indd   xxvii 12/14/11   4:36 PM12/14/11   4:36 PM



das76205_fm_i-xI.indd   xxviiidas76205_fm_i-xI.indd   xxviii 12/14/11   4:36 PM12/14/11   4:36 PM



xxix

List of Tables

2.1 Organization of the man Documentation ...............................................34

2.2 Escape Sequences Used by echo and printf ...........................................38

2.3 Internal Commands Used by mailx .........................................................43

2.4 stty Settings and Keyboard Commands to Try When Things Go Wrong ......49

3.1 Options to ls .........................................................................................70

3.2 Usage of cp, rm, and mv Commands ........................................................74

3.3 Internal Commands of more and less .....................................................77

4.1 Abbreviations Used by chmod ..................................................................97

4.2 chmod Usage ...........................................................................................99

4.3 Effect of umask Settings on Default Permissions .....................................103

4.4 Major Expressions Used by fi nd (Meaning gets reversed when 
   – is replaced by +, and vice versa) .........................................................115

5.1 Input Mode Commands .......................................................................124

5.2 Save and Exit Commands of the ex Mode ............................................131

5.3 Navigation and Scrolling Commands ....................................................135

5.4 vi Commands Required to Correct Program in Fig. 5.17 ......................141

5.5 A Few Specimen Operator-Command Combinations ............................142

5.6 Search and Replace Commands ............................................................147

5.7 set Options ..........................................................................................150

6.1 The Shell’s Wild Cards and Application .................................................159

7.1 Options to ps .......................................................................................191

7.2 List of Commonly Used Signals .............................................................199

7.3 Job Control Commands ........................................................................203

7.4 Sample crontab Entries (First fi ve fi elds only) ........................................209

das76205_fm_i-xI.indd   xxixdas76205_fm_i-xI.indd   xxix 12/14/11   4:36 PM12/14/11   4:36 PM



xxx Your UNIX: The Ultimate Guide

8.1 Common Environment Variables ...........................................................217

8.2 Useful Aliases ........................................................................................221

8.3 The History Functions ...........................................................................222

8.4 Shell Settings with set -o .....................................................................228

8.5 Comparative Features of the Shells .......................................................237

9.1 Options to the pr Command ................................................................243

9.2 sort Options ........................................................................................252

10.1 grep Options ......................................................................................268

10.2 The Basic Regular Expression (BRE) Character Set Used by 
   grep, sed, and awk ..............................................................................272

10.3 The Extended Regular Expression (ERE) Set Used by 
   grep, egrep and awk ....................................................................................276

10.4 Internal Commands Used by sed ........................................................278

10.5 sed Options ........................................................................................280

10.6 Other Basic Regular Expressions (BREs) Used by grep and sed .............287

11.1 The Internet Domains (TLDs and ccTLDs) ...........................................300

11.2 Server and Client Programs ................................................................302

12.1 Arithmetic Operators Used by awk and perl ........................................335

12.2 Assignment Operators (i = 5 initially; result used as 
   initial value by next line) ....................................................................... 336

12.3 The Comparison and Logical Operators ..............................................338

12.4 Matching Regular Expressions.............................................................341

12.5 Built-In Variables .................................................................................346

12.6 Built-in Functions ................................................................................348

13.1 Special Parameters Used by the Shell ..................................................364

13.2 Numerical Comparison Operators Used with test ..............................367

13.3 String Tests with test .........................................................................369

13.4 File Attribute Testing with test ...........................................................370

14.1 Special Escape Sequences Used in Double-Quoted Strings 
   (See also Table 2.2) .............................................................................407

14.2 The Comparison and Concatenation Operators ..................................408

14.3 Additional Regular Expression Sequences Used by perl ......................413

15.1 Essential Format Specifi ers Used by printf and scanf .........................445

15.2 Operator Precedence and Associativity ...............................................461

16.1 SCCS and RCS: Command Usage (File: foo.c) ....................................512

16.2 CVS Keywords (Used with the cvs command) ....................................517

16.3 gdb Commands ..................................................................................523

das76205_fm_i-xI.indd   xxxdas76205_fm_i-xI.indd   xxx 12/14/11   4:36 PM12/14/11   4:36 PM



List of Tables xxxi

17.1 Signifi cance of Symbolic Constants Associated with errno ..................539

17.2 The S_ISxxx Macros ............................................................................559

18.1 Signals and Default Disposition ...........................................................591

19.1 The Family of DOS Commands (Linux command name 
    in parentheses) ...................................................................................632

19.2 tar Options ........................................................................................634

das76205_fm_i-xI.indd   xxxidas76205_fm_i-xI.indd   xxxi 12/14/11   4:36 PM12/14/11   4:36 PM



das76205_fm_i-xI.indd   xxxiidas76205_fm_i-xI.indd   xxxii 12/14/11   4:36 PM12/14/11   4:36 PM



xxxiii

Preface

A language is not worth knowing unless it teaches you to think differently.
                                      —Larry Wall (the creator of Perl) and Randal Schwartz

I decided to write a book on UNIX without having previously taught the sub-

ject. I didn’t like any of the books then available in the market, and there were 

hardly any experts whom I could turn to for help. Having learned the subject the hard 

way, I decided to present my experience in the form of a book, but without knowing 

its intended audience. When I taught the subject many years later, I found the answers 

to the questions posed by students to be already in the book. I discovered I was on the 

right track and that I had actually written a textbook.

UNIX has survived the test of time and is likely to do so for some time to come. Yet 

UNIX is still described by many as “unfriendly” and “unforgiving.” Beginners continue to 

feel overwhelmed by its apparent complexity. Even experienced computer professionals 

have been unable to embrace the paradigm of doing work using the command line and 

its myriad options and complex syntaxes. All UNIX and Linux systems today offer the 

graphical user interface (GUI), but the command line remains the backbone of the system.

The excitement that UNIX generates lies in the fact that many of its powers are 

hidden. UNIX doesn’t offer everything on a platter; it encourages you to create and in-

novate. Figuring out a command combination or designing a script that does a complex 

job is a real challenge to the UNIX enthusiast. This is what UNIX is, and it had better 

remain that way. If you appreciate that there is a method to this madness, then you are 

on the right track and this book is meant for you.

  How This Book Is Different

Facing a UNIX box was my first encounter with computers, and prolonged periods of 

struggle with the system have led me to believe that the stumbling blocks to understand-

ing UNIX are often different from what they are perceived to be. It’s not that UNIX is 

difficult, but that its authors have not been imaginative enough to make it appear other-

wise. Books often present, say, 20 options to a command even though only a couple of 

them could actually be useful. It’s frustration that led me to develop my version of the 

“true” UNIX book—a book that knows what users actually need and one they would 

like to have with them all the time.

das76205_fm_i-xI.indd   xxxiiidas76205_fm_i-xI.indd   xxxiii 12/14/11   4:36 PM12/14/11   4:36 PM



xxxiv Your UNIX/Linux: The Ultimate Guide

Real-Life Examples UNIX concepts are simple, but they are also abstract, and it’s 

often not obvious why a certain feature is handled in a particular way. The mastery of 

this operating system requires a clear understanding of these concepts. I have made sure 

that the key features are explained clearly to reveal both their design considerations and 

their relevance in the real world. You’ll fi nd that many examples of this text refer to 

real-life situations.

Both a User’s and Programmer’s Guide There are mainly two categories of UNIX 

users: those who use its native tools, and others who develop tools using shell scripts and 

the UNIX system call library. This book—probably the only one of its kind—adequately 

addresses both of these segments but has a size that is convenient to read and carry.

The “user” category is served by the first 11 chapters, which is adequate for an 

introductory UNIX course. The “developer” is a shell or systems programmer who also 

needs to know how things work, say, how a directory is affected when a file is created 

or linked. For their benefit, the initial chapters contain special boxes that probe key 

concepts. This arrangement shouldn’t affect the beginner, who may quietly ignore these 

portions. UNIX shines through Chapters 16, 17, and 18, so these chapters are compulsory 

reading for systems programmers.

Strong Learning Aids The pedagogical aids are a strong feature of this book. They 

have various names, for example, Note, Caution, and Tip. I consider Linux to be an 

important member of the UNIX family, so I have separately highlighted Linux features 

using the penguin as identifi er.

I don’t agree with the approach adopted by many authors of treating each shell in 

a separate chapter. Instead, I have discussed key concepts using mainly the Bash shell. 

Deviations are addressed by separate asides for the C shell, Korn, and Bourne shells. 

Numerous Questions and Exercises This book features an enormous number of 

questions that test the reader’s knowledge. More than a third of them are Self-Test ques-

tions, and their answers are provided in Appendix I. These questions are all targeted 

toward beginners who will do well to answer them before moving on to the next chapter.

More rigorous and extensive questioning is reserved for the Exercises sections. 

Some of them pose real challenges, and it may take you some time to solve them. These 

exercises reinforce and often add to your knowledge of UNIX, so don’t ignore them. 

The answers to these questions are available to adopters of the book at the book’s Web 

site, http://www.mhhe.com/das. 

  What’s New In This Edition

Some of the reviewers seemed to be quite comfortable with the second edition as it is, 

and had warned that the improvement may not be “very productive.” Keeping this view 

in mind, I have made the following changes in this edition:

 • While the chapter on vi/vim has been retained, the one on emacs has been 

condensed and relegated to an appendix. To make the transition to vi easier for 

beginners, Chapter 3 features the pico editor.

das76205_fm_i-xI.indd   xxxivdas76205_fm_i-xI.indd   xxxiv 12/14/11   4:36 PM12/14/11   4:36 PM



Preface xxxv

 • The bc calculator utility makes a return in this edition, but only as an efficient 

computing tool for shell programmers.

 • A separate chapter on the essentials of C programming has been added. The treat-

ment, though brief, is just adequate to understand the two chapters on systems 

programming that follow.

 • Chapter 15 now includes the popular Concurrent Version System (CVS), which is 

found on all Linux systems. SCCS and RCS continue to find place in this edition, 

but at least one of them might be removed in the next edition.

 • The GNU debugger (gdb) has been included in this edition since it is superior to 

dbx, even though the latter has been retained.

These changes have resulted in a nominal increase in the size of the book. In spite of 

increased coverage on Linux and GNU tools, the generic character of the book has 

been retained; it doesn’t focus on any particular flavor of UNIX, but variations found 

in Solaris and Linux have been highlighted.

  Understanding the Organization

This edition is logically divided into user and programming sections. Essential UNIX is 

confined to the first 11 chapters, which culminate with a discussion on networking tools. 

Programming material comprising awk, shell programming, systems programming, and 

perl are covered in the the next seven chapters. The final chapter presents the essentials 

of system administration.

Introducing UNIX Chapter 1 reveals the key UNIX concepts through a simple hands-on 

session. This is followed by a brief history and presentation of the features of UNIX. You 

are introduced to the kernel and shell, who between them, handle the system’s workload. 

You will also understand the role played by standards bodies like POSIX and The Open 

Group in building the framework for developing portable applications.

Chapter 2 presents the structure of the UNIX command line. It also discusses the 

techniques of using the man command to look up the online documentation. You learn 

to use an email program, change your password and see what’s going on in the system. 

Things can and will go wrong, so you also need to know how to use the keyboard for 

corrective action.

Files The fi le is one of the two pillars that support UNIX, and the next three chapters 

discuss fi les. Chapter 3 discusses the various types of fi les you’ll fi nd on your system 

and the commands that handle them. You’ll learn to create directories, navigate a direc-

tory structure, and copy and delete fi les in a directory. You’ll also learn to edit a fi le 

with the pico editor. UNIX also offers a host of compression utilities that you need to 

use to conserve disk space. 

Files have attributes (properties), and Chapter 4 presents the major attributes, espe-

cially the ones displayed by the ls -l command. Be aware that your files and directories 

are open to attack, so learn to protect them by manipulating their permissions. Use links 

to access a file by multiple names. You’ll also forget where you have kept your files, so 

you need to be familiar with the find command.

das76205_fm_i-xI.indd   xxxvdas76205_fm_i-xI.indd   xxxv 12/14/11   4:36 PM12/14/11   4:36 PM



xxxvi Your UNIX/Linux: The Ultimate Guide

How productive you eventually are also depends on how well you exploit the 

features of your editor. Chapter 5 presents vi, one of the most powerful text editors 

found in any operating environment. A programmer probably uses the editor more 

than anyone else, so most examples in this chapter use snippets of program code. 

Appendix D presents a summary of the features of vi.

The Shell and Process You now need to understand a very important program that is 

constantly interacting with you—the shell. Chapter 6 presents the interpretive features 

of the shell, including many of its metacharacters. Learn to use wild cards to match 

a group of similar fi lenames with a single pattern. Manipulate the input and output of 

commands using redirection and pipes. The shell is also a programming language, so 

you have to wait until Chapter 13 to understand it completely.

Chapter 7 introduces the process as the other pillar of the UNIX system. Processes 

are similar to files, and processes also have attributes. Understand how the fork-exec 

mechanism is used to create a process. Learn to control processes, move them between 

foreground and background, and also kill them by sending signals.

The UNIX shell provides excellent opportunities to customize your environment 

(Chapter 8). Understand and manipulate shell variables, create command aliases and 

use the history mechanism to recall, edit and re-execute previous commands. Choose a 

suitable shell that offers all of these features and learn to use the initialization scripts to 

save the changes you’ve made to the environment.

Filters The next two chapters deal with fi lters—those special commands in the UNIX 

tool kit that handle all text manipulation tasks. Chapter 9 presents the simple ones and 

shows how they are most effective when they are connected to one another. A special 

examples section features three real-life applications that are handled by these fi lters 

working in pipelines.

Chapter 10 discusses two powerful filters—grep and sed—that, between them, 

handle all pattern search, edit, and replace operations. At this stage, you’ll be introduced 

to regular expressions, an elaborate pattern-matching mechanism that often makes 

searching and replacement a lot easier. Filters are followed by a chapter on networking 

tools (Chapter 11), which concludes the first part of this book.

Programming The next seven chapters handle most of the programming features of 

UNIX. The awk command makes its appearance as a fi lter and a programming language 

in Chapter 12. Knowing awk and its standard programming constructs (like the if, 

for, and while constructs) should prepare you well for shell programming, perl, and 

C programming.

Eventually, you’ll place all of your commands and pipelines in shell scripts. Use 

the programming features of the shell discussed in Chapter 13 to develop both interactive 

and noninteractive scripts. Learn to design a script whose behavior depends on the name 

by which it is invoked. The three sample scripts featured in the chapter are compulsory 

reading for a shell programmer.

The next four chapters are directly or indirectly related to C programming. 

Chapter 14 presents a primer on C programming, the only new chapter in this edition. 

das76205_fm_i-xI.indd   xxxvidas76205_fm_i-xI.indd   xxxvi 12/14/11   4:36 PM12/14/11   4:36 PM



Preface xxxvii

This is followed by the program development tools (Chapter 15). Use the make utility 

and a powerful debugger (gdb) for managing and debugging programs. Also, learn to 

maintain multiple versions of a program using SCCS, RCS, and CVS.

Chapter 16 is the first of two chapters that feature the use of system calls in the C 

programming environment. This chapter discusses the system calls related to files and 

I/O. Write programs that perform directory-oriented functions like listing files. Also 

learn to fetch and manipulate file attributes stored in the inode.

Chapter 17 discusses the system calls related to processes. Learn to create processes 

using the fork and exec family of system calls. Once you’ve understood how the kernel 

maintains the metadata of an open file in memory, you’ll be able to implement both 

redirection and pipelines and to handle signals in your programs.

We encounter perl in Chapter 18 as the most powerful filter and scripting lan-

guage in the UNIX world. Most UNIX concepts are embedded in the design of perl, 

the reason why many UNIX users can’t do without it. Even though we can’t do justice 

to perl in a single chapter, Chapter 18 represents a useful beginning.

Finally, every user must know the routine tasks related to system administration, and 

Chapter 19 addresses the basic issues in this domain. Understand the important security 

features provided by the system. Be familiar with the activities associated with system 

startup and shutdown, and how file systems are mounted and checked for consistency. 

Also learn to do some elementary backups.

  Acknowledgments

Every edition of this book has provided me with an opportunity to work with a new team. 

The prime mover for this project is Raghu Srinivasan, the global publisher, and it was a 

delight to work with him and Melissa Leick, the project manager. I am impressed with 

the way they have guided the team at McGraw-Hill. I must also thank Brenda Rolwes, 

the design coordinator, and Curt Reynolds for the marketing arrangements that he was 

responsible for. Special mention must be made of Melinda Bilecki, the developmental 

editor, who remains as agile as ever. She is the only person associated with the book 

since its conception, and this continuity has benefitted me immensely.

Credit must also go to the reviewers who have played a significant role in shaping 

the form and content of this edition:

 Ivan Bajic, Sas Diego State University

 Bruce Elenbogen, University of Michigan–Dearborn

 Ziad Kobti, University of Windsor

 Galina Piatnitskaia, University of Missouri–St. Louis

 Paul Piwowarski, University of Kentucky

 Darren Provine, Rowan University

 Quazi M. Rahman, The University of Western Ontario

I am thankful to Deepti Narwat, the project manager at Cenveo Publisher Services, 

who handled the entire production process with confidence and the utmost sincerity. 

There have been many others who couldn’t be mentioned by name, but have contributed 

just the same.

das76205_fm_i-xI.indd   xxxviidas76205_fm_i-xI.indd   xxxvii 12/14/11   4:36 PM12/14/11   4:36 PM



xxxviii Your UNIX/Linux: The Ultimate Guide

  Final Words of “Wisdom”

Most of the examples have been tested on Solaris and Linux, but I can’t guarantee that 

they will run error-free on every system. UNIX fragmentation makes sweeping gener-

alizations virtually impossible. If some commands don’t work in the way specified in 

this text, don’t conclude that the system has bugs. Nevertheless, bugs in these examples 

are still possible, and I welcome ones that you may hit upon.

Before I take leave, a note of caution would be in order. Many people missed the 

UNIX bus through confused and misguided thinking and are now regretting it. Let this 

not happen to you. Once you have decided to exploit UNIX, you’ll learn to build on 

what’s already provided without reinventing the wheel. Sooner rather than later, you’ll 

find a world of opportunity and excitement opening up. Approach the subject with zeal 

and confidence; I am with you.

Sumitabha Das

das76205_fm_i-xI.indd   xxxviiidas76205_fm_i-xI.indd   xxxviii 12/14/11   4:36 PM12/14/11   4:36 PM



  Conventions Used in This Book 

The key terms used in the book (like regular expression) are shown in a bold font. Apart 

from this, the following conventions have been used in this book:

• Commands, internal commands and user input in examples are shown in bold 

constant width font:

     Many commands in more including f and b use a repeat factor. 

     The shell features three types of loops—while, until, and for. 

     Enter your name: henry

• Apart from command output, fi lenames, strings, symbols, expressions, options, 

and keywords are shown in constant width font. For example:

     Most commands are located in /bin and /usr/bin.

     Try doing that with the name gordon lightfoot.

     Use the expression wilco[cx]k*s* with the -l option.

     The shell looks for the characters >, < and << in the command line.

     The -mtime keyword looks for the modifi cation time of a fi le.

• Machine and domain names, email addresses, newsgroups, and URLs are displayed 

in italics:

     When henry logs on to the machine uranus ......

     User henry on this host can be addressed as henry@calcs.planets.com.

     The newsgroup comp.lang.perl discusses problems related to perl.

     Executables for all UNIX fl avors are available at http://www.perl.com.

• Place-holders for fi lenames, terms, and explanatory comments within examples 

are displayed in italics:

     Use the -f fi lename option if this doesn’t work.

     This process has a controlling terminal.
     $ cd ../..                                                                     Moves two levels up

The following abbreviations, shortcuts and symbols have been used:

• SVR4—System V Release 4

• sh—Bourne shell

• csh—C shell

• ksh—Korn shell

• $HOME/fl name—The fi le fl name in the home directory

• ~/fl name—The fi le fl name in the home directory

• foo, bar, and foobar—Generic fi le and directory names as used on Usenet

• ....    for lines that are not shown

• This box  indicates the space character.

• This  pair of arrows  indicates the tab character.

das76205_fm_i-xI.indd   xxxixdas76205_fm_i-xI.indd   xxxix 12/14/11   4:36 PM12/14/11   4:36 PM



das76205_fm_i-xI.indd   xldas76205_fm_i-xI.indd   xl 12/14/11   4:36 PM12/14/11   4:36 PM



P A R T  I
UNIX for the User

das76205_Ch01_001-024.indd   1das76205_Ch01_001-024.indd   1 12/13/11   10:19 AM12/13/11   10:19 AM



das76205_Ch01_001-024.indd   2das76205_Ch01_001-024.indd   2 12/13/11   10:19 AM12/13/11   10:19 AM



3

1 
C H A P T E R  1

Introducing UNIX

In this opening chapter, we commence our journey into the world of UNIX. We’ll 

discover why a computer needs an operating system and how UNIX more than 

fulfills that requirement. Through a hands-on session, we’ll learn to play with the UNIX 

system. We’ll use the tools UNIX provides to perform the basic file and directory handling 

operations. We’ll also have a glimpse of the process that makes a program run on UNIX.

As we absorb this knowledge, we’ll place it against the rather turbulent back-

ground that UNIX had to grow through. We’ll learn how contributions from different 

sources led to both the enrichment and fragmentation of UNIX. Knowledge of the design 

considerations will also help us understand why UNIX sometimes behaves in a seem-

ingly awkward manner. We’ll examine the UNIX architecture and understand how two 

agencies (the kernel and shell) between themselves handle all the work of the system.

  Objectives
 • Learn what an operating system is and how UNIX is different from other systems.

 • Understand the role of the system administrator.

 • Log in and out of a UNIX system.

 • Run a few commands that report on the system.

 • Use more commands to view processes and handle files and directories.

 • Find out how UNIX got steadily fragmented by the emergence of other flavors.

 • Understand the merging of POSIX and the Single UNIX Specification into a single 

UNIX standard.

 • Learn about the emergence of Linux as a strong, viable and free alternative.

 • Discover the UNIX architecture that includes the kernel and shell.
 • Discover the two key features—the file and process—that UNIX rests on.

 • Know the role of system calls in making programs work.

 • Learn the “do-one-thing-well” philosophy that UNIX uses to solve complex problems.

 1.1 The Operating System

Computers are designed to run programs. But a program can run only if the computer 

it is running on has some basic intelligence to begin with. This intelligence allocates 

memory for the program, runs each program instruction on the CPU,  and accesses the 

das76205_Ch01_001-024.indd   3das76205_Ch01_001-024.indd   3 12/13/11   10:19 AM12/13/11   10:19 AM



4 Your UNIX/Linux: The Ultimate Guide

hardware on behalf of the program. A special piece of preinstalled software performs 

this job. This software is known as the computer’s operating system.

An operating system is the software that manages the computer’s hardware and 

provides a convenient and safe environment for running programs. It acts as an interface 

between programs and the hardware resources that these programs access (like memory, 

hard disk and printer). It is loaded into memory when a computer is booted and remains 

active as long as the machine is up.

To grasp the key features of an operating system, let’s consider the management 

tasks it has to perform when we run a program. These operations also depend on the 

operating system we are using, but the following actions are common to most systems:

 • The operating system allocates memory for the program and loads the program to 

the allocated memory.

 • It also loads the CPU registers with control information related to the program. The 

registers maintain the memory locations where each segment of a program is stored.

 • The instructions provided in the program are executed by the CPU. The operating 

system keeps track of the instruction that was last executed. This enables it to re-

sume a program if it had to be taken out of the CPU before it completed execution.

 • If the program needs to access the hardware, it makes a call to the operating system 

rather than attempting to do the job itself. For instance, if the program needs to 

read a file on disk, the operating system directs the disk controller to open the file 

and make the data available to the program.

 • After the program has completed execution, the operating system cleans up the 

memory and registers and makes them available for the next program.

Modern operating systems are multiprogramming, i.e., they allow multiple pro-

grams to reside in memory. However, on computers with a single CPU, only one program 

can run at one time. Rather than allow a single program to run to completion without 

interruption, an operating system generally allows a program to run for an instant, saves 

its current state and then loads the next program in the queue. The operating system 

creates a process for each program and then controls the switching of these processes.

Most programs often access the disk or the terminal to read or write data. These 

I/O operations keep the CPU idle, so the operating system takes the program out of the 

CPU while the I/O operation is in progress. It then schedules another program to run. 

The previous program can resume execution only after the I/O operation completes. This 

ensures maximum utilization of the CPU.

In addition to these basic services, operating systems provide a wide range of 

services—from creating files and directories to copying files across a network and per-

forming backups. These tools are often standalone programs that don’t form the core 

of the operating system, but they may be considered as additional services that benefit 

both users, programmers, and system administrators.

Knowing the functions performed by an operating system and the way they are 

implemented on your computer often helps you write better programs. True, a lot can 

be done without knowing the operating system, but a UNIX professional needs to look 

beyond the big picture to discover how things actually work.

das76205_Ch01_001-024.indd   4das76205_Ch01_001-024.indd   4 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 5

In a multiprogramming environment, the operating system has to ensure that a process per-
forming an I/O operation doesn’t hold up the CPU. It must schedule another process while 
the I/O operation is in progress. The previous process is said to block, i.e., wait for the event to 
complete. We’ll often use this term in this text to refer to this state of a process.

 1.2 The UNIX Operating System

There have been many operating systems in the past, one at least from each hardware 

vendor. They were written in a near-machine language known as assembler. The operating 

systems were proprietary because assembler code developed on one machine wouldn’t 

run on another. Vendors required consumers to purchase expensive proprietary hardware 

and software if two dissimilar machines needed to talk to each other. Ken Thompson 

and Dennis Ritchie changed all that forever. They created UNIX.

The UNIX operating system marks a strong departure from tradition. It has prac-

tically everything an operating system should have, but it also introduces a number of 

concepts previously unknown to the computing community. Beginners with some experi-

ence in Windows think of UNIX in terms of Windows, quite oblivious to the fact that 

the similarities are only superficial. UNIX is way ahead of other systems in sheer power.

UNIX is not written in assembler but in C. C is a high-level language that was 

designed with portability considerations in mind, which explains why UNIX systems are 

available on practically every hardware platform. Apart from handling the basic operating 

system functions, UNIX offers a host of applications that benefit users, programmers, 

and system administrators. It encourages users to combine multiple programs to solve 

a complex problem. For programmers, UNIX offers a rich set of programming tools 

that aid in developing, debugging, and maintaining programs. UNIX is also more easily 

maintained than most systems.

One of these programs is the system’s command interpreter, called the shell. You 

interact with a UNIX system through the shell. Key in a word, and the shell interprets 

it as a command to be executed. A command may already exist on the system as one of 

several hundred native tools, or it could be one written by you. However, as mentioned, 

the power of UNIX lies in combining these commands in the same way the English 

language lets you combine words to generate a meaningful idea. As you walk through 

the chapters of the text, you’ll soon discover that this is a major strength of the system.

UNIX was written by programmers for their own use, so things that appear obvi-

ous to them don’t always appear obvious to us. However, that doesn’t imply that UNIX 

is unconquerable; in fact, it’s great fun. If you are willing to put in some guided effort, 

you’ll gradually see the UNIX story unfold with clarity and simplicity. Focus your 

attention on the essentials, and try to understand the designers’ minds and objectives. 

Even though UNIX sometimes appears unfriendly, it in fact challenges you to unravel 

its mysteries. In this book, we take up the challenge.

The UNIX system doesn’t offer a fixed set of services. In fact, you have to use your imagination 
in devising improvised tools from the existing ones. This is what makes UNIX so challenging 
and exciting.

Note

Note

das76205_Ch01_001-024.indd   5das76205_Ch01_001-024.indd   5 12/13/11   10:19 AM12/13/11   10:19 AM



6 Your UNIX/Linux: The Ultimate Guide

 1.3 Knowing Your Machine

Unlike Windows, UNIX can be used by several users concurrently. In other words, a 

single copy of the operating system software installed on just one machine can serve the 

needs of hundreds of users. These users could use dumb terminals or their own desktop 

PCs to access a central UNIX computer. This computer will probably be located in a 

separate room with restricted access. If you are using a PC, then it must be configured 

properly before it can be used to connect to a UNIX system.

Things are quite different, however, when you are using a workstation. This is a 

computer capable of producing high-quality graphics but meant to be used by a single 

user. Unlike the dumb terminal, a workstation has its own CPU, memory (the RAM—

random access memory), hard disk, DVD-ROM, mouse as a pointing device, and printer. 

Since it has all the things that UNIX needs, a workstation can run its own UNIX. Desktop 

PCs are also often referred to as workstations because there are versions of UNIX (like 

Linux) that can run on them.

Even though workstations and PCs run UNIX and can be used in standalone mode, 

they are often connected to a larger, more powerful computer in the same way terminals 

are. There are a number of reasons you might want such an arrangement:

 • The central computer is administered properly, and you might want to keep all of 

your valuable files there so they are backed up regularly.

 • You might want to use a powerful program that your workstation doesn’t have but 

the central computer does.

 • All of your incoming and outgoing mail is handled by the central machine, which 

may be your only link with the outside world, i.e., the Internet.

Every workstation and PC provides a terminal emulation facility that makes it 

abandon its normal mode and behave like a simple dumb terminal instead. The work-

station then doesn’t use its own hard disk, CPU, or memory for doing any work except 

providing the minimal resources required by the terminal emulation software. The ter-

minal emulation facility enables you to run a program on a remote machine using the 

remote machine’s memory and CPU, and not your own. Create a file in this mode, and 

the file is saved on the remote machine’s hard disk.

When you press a key, the computer generates a character which represents the 

smallest piece of information that you can deal with. It could be a letter, number, symbol, 

or control sequence (like [Ctrl-f]). The string 10:20 pm contains eight characters (one for 

the space). Every character is associated with a unique ASCII value (ASCII—American 

Standard Code for Information Interchange). The letter A has the ASCII value of 65; the 

bang (!) has the value of 33. Both take up one byte (eight bits) each on your computer. 

Many UNIX programs make use of these ASCII values.

Even though you may be completely familiar with the keyboard of your Windows 

PC, note that the functions of many of the keys change when the same PC doubles as a 

UNIX or Linux box. The [F1] key doesn’t invoke help, and the [Delete] key may not 

always delete characters. Moreover, every key has some use in UNIX. When you see 

a symbol like ` (backquote) used in this book, you must be able to locate it easily on 

your keyboard (on the top-left), and not confuse it with the ‘ (single quote), because 

they have totally different functions.

das76205_Ch01_001-024.indd   6das76205_Ch01_001-024.indd   6 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 7

Using a combination of [Alt] and a function key, you can have multiple virtual console 

or terminal sessions on a single PC. You can log in several times to the same computer, 

with a separate “terminal” for each session. A single screen is shared by all sessions, 

which are accessed by using [Alt][F1], [Alt][F2], and so on.

 1.4 The System Administrator

On a large system serving hundreds of users, someone has to be in charge of administra-

tion of the system. This person is known as the system administrator. The administra-

tor is responsible for the management of the entire setup. She allocates user accounts, 

maintains file systems, takes backups, manages disk space, and performs several other 

important functions. She is the person to be contacted in case of a genuine problem.

If you own a workstation or PC that runs some flavor of UNIX, then you are 

probably its administrator. You are then directly responsible for its startup, shutdown, 

and maintenance. If you lose a file, it’s your job to get it from a backup. If things don’t 

work properly, you have to try all possible means to set them right before you decide 

to call a maintenance person.

If you are not the administrator, you can use a UNIX machine only after she 

has opened an account with a user-id and password for your use. These authentication 

parameters are maintained in two separate files on your system. You can’t simply sit 

down at any terminal and start banging away unless you first log on to the system using 

a valid user-id–password combination.

The administrator uses a special user-id to log on to the system: it is called root. 
The root user has near-absolute powers. Some programs can only be run from this 

account—for instance, the program that creates the user account itself.

 1.5 Logging In and Out

Let’s get down to business and see for ourselves what a UNIX session is really like. A 

personal interaction with the system often drives home a point better than the preaching 

of textbooks (including this one). In this section, we’ll quickly walk through the proce-

dure of logging in and out of a UNIX box, but first let’s consider the possible options 

we have today to connect to a UNIX machine.

The good old dumb terminal connected to the computer’s serial port was once 

the only means of connecting to a UNIX system. Later, the TELNET program became 

popular for connecting in a network. For security reasons (explained in Chapter 11), the 

TELNET facility could be disabled on your system, and the secure shell (SSH) could 

be the only means of connecting to a remote UNIX box. In that case, UNIX and Linux 

users can use the ssh command, if available. Windows users may use Putty or any of 

the free SSH programs available on the Net. 

 1.5.1 Logging In
We’ll ignore the password-free access that is permitted by the secure shell programs and 

consider the situation where the system authenticates you by your response to the login 

Linux

das76205_Ch01_001-024.indd   7das76205_Ch01_001-024.indd   7 12/13/11   10:19 AM12/13/11   10:19 AM



8 Your UNIX/Linux: The Ultimate Guide

Linux

and password prompts. Each response should be followed by the [Enter] key. This is 

how user romeo gains access to the system:

SunOS 5.8                                   A Sun machine running Solaris 8

  
login: romeo[Enter]
Password: *********[Enter]                Password not shown

Note that the password is not shown on the screen for security reasons. The ap-

pearance of the login prompt signifies that the system is available for someone to log 

in and the previous user has logged out (i.e., finished her work and disconnected). The 

prompt here is preceded by SunOS 5.8, the version of the operating system in Solaris 

8, the flavor of UNIX offered by Sun. Your system could show a different string here 

(if at all). If you make a mistake, this is what you could be seeing:

Login incorrect
login:

This simply tells us that either the user-id or password (or both) is incorrect. When 

you get both of these parameters correct, the system lets you in:

Last login: Thu May  8 06:48:39 from saturn.heavens.com
$ _                              The cursor shown by the _ character 

The system here displays a message showing the last time you logged in. This is 

followed by the prompt string, which here is a $. Your prompt string could be a %, which 

is quite popular in the academic world. The system administrator, who uses the root 

account to log in, uses # as the prompt. Prompt strings can also be customized. Here’s 

one that shows the current directory:

[/home/romeo]

Before we move on, be aware that a program, known as the shell, is now running 

at this terminal, waiting to take your input. Whatever we key in now goes as input to 

this program. UNIX offers a variety of such programs for you to choose from. The shell 

is the command interpreter that interacts both with the user and the operating system. 

When the administrator opens a user account, she also sets a specific shell for the user.

Linux systems come preconfigured with informative prompts like this one, which shows 

the machine (saturn), username (romeo) and the current directory (/home/romeo):

romeo@saturn:/home/romeo >

We’ll learn to customize our prompt string in Chapter 8.

 1.5.2 Logging Out
Before you try out some of the programs available on the system, you must first know 

how to log out. That also depends on the shell you use, so first try

  [Ctrl-d]                   Keep [Ctrl] pressed and then press d

das76205_Ch01_001-024.indd   8das76205_Ch01_001-024.indd   8 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 9

If this key sequence doesn’t work but instead shows you the message 

Use “logout” to log out, then do as directed:

logout

The shell that we would be mostly using in this book is Bash, and this shell uses 

both of the preceding techniques. But there’s a C shell also, which accepts only logout, 

and yet another shell named Bourne which works only with [Ctrl-d]. In case neither 

technique works, use exit, which works in most cases:

$ exit
login:                                   System now available for next user

The appearance of the login prompt makes the system available for the next user. 

Now log in again so you can try out all the commands featured in the hands-on session 

that follows.

Henceforth, we’ll use the terms privileged user, superuser and system administrator to refer to the 
root user account that is used by the administrator for logging in, and we’ll use nonprivileged 
user and ordinary user to mean all other users. It’s often important to make this distinction 
because the root user enjoys certain privileges that are denied others.

 1.6 A Hands-On Session

After you have successfully made your entry by providing the user-id and password at 

the two prompts, you have free access to the UNIX command set reserved for general 

use. When you key in a word, the system interprets it as a command to do something. 

In most cases, the command signifies the execution of a program on disk that has the 

name you keyed in.

Unlike in DOS, where a command can be run in both lower- and uppercase, 

UNIX commands are generally in lowercase. Try using the date command, but use 

DATE instead of date:

$ DATE
ksh: DATE:  not found

In DOS, both date and DATE would display the same output. In UNIX, however, 

there’s no command named DATE (no file named DATE), but there’s one named date. In 

UNIX, lowercase is typically used more than uppercase.

We’ll now acquaint ourselves with a few of these commands, which we categorize 

into three groups—system information, processes, and files. In this session, we’ll use 

them only to get a feel for the system. The commands will be examined in more detail 

later in separate chapters.

Make sure the [CapsLock] key is not permanently set on your machine. When inserting a block 
of text in uppercase in editors like pico (3.17) and vi (Chapter 5), we often set this key. When 
working at the prompt, however, nothing will work if the terminal is not set to lowercase.Caution

Note

das76205_Ch01_001-024.indd   9das76205_Ch01_001-024.indd   9 12/13/11   10:19 AM12/13/11   10:19 AM



10 Your UNIX/Linux: The Ultimate Guide

 1.6.1 System Information with date and who
Using date Every UNIX system maintains an internal clock that you can access to print 

the current system date and time. UNIX does it with a single command named date:

$ date
Fri Nov 13 09:32:16 GMT 2009
$ _                               Prompt returns; you can now enter next command

DATE didn’t work, but date did and returned the prompt. This format is seen in email 

messages except that the time zone (here, GMT) could differ on your system. It’s worth 

noting that a nonprivileged user runs date with a limited scope; she can’t change the 

system date, while the privileged user (i.e. root) can.

Using who to View the List of Current Users UNIX can be used concurrently by 

multiple users, and you might be interested in knowing who is using the system when 

you are. Use the who command:

$ who
romeo console Nov 13 9 09:31 (:0)
henry pts/4 Nov 13 09:31 (:0.0)
steve pts/5 Nov 13 09:32 (saturn.heavens.com)
$ _

There are currently three users—romeo, henry, and steve—sharing the CPU. These 

names are actually the user-ids they used to log in. The output also includes your own 

user-id, romeo, which you entered at the login prompt to gain entry to the system. The 

date and time of login are shown in three columns.

Observe that when a command has completed its run, the prompt is returned. The 

return of the prompt indicates that all work relating to the previous command has been 

completed, and the system is ready to accept the next command. Henceforth, we’ll not 

indicate this return except in those situations where the return is significant.

You logged in with the name romeo, so the system addresses you by this name 

and associates romeo with whatever work you do. Create a file, and the system will 

make romeo the owner of the file. Execute a program, and romeo will be owner of the 

process associated with your program. Send mail to another user, and the system will 

inform the recipient that mail has arrived from romeo.

UNIX isn’t just a repository of commands producing informative output. You can extract use-
ful information from command output to use with other commands. For instance, you can 
extract the day of the week (here, Fri.) from the date output and then devise a program that 
does different things depending on the day the program is invoked. You can also “cut” the 
user-ids from the who output and use the list with the mailx command to send mail to all us-
ers currently logged in. The facility to perform these useful tasks with one or two lines of code 
makes UNIX truly different from other operating systems.

 1.6.2 Viewing Processes with ps
The process is a key component of any operating system, so let’s run a command that 

displays the processes running at our terminal. The ps command does this job, and the 

following command shows that currently only one is running:

Note

das76205_Ch01_001-024.indd   10das76205_Ch01_001-024.indd   10 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 11

$ ps
  PID TTY TIME CMD
 4249 pts/3 00:00:00 bash
 4281 pts/3 00:00:00 ps  Shell running all the time!

We observed that the shell program is always running at your terminal, and the 

ps output bears testimony to the fact. When you run several programs, there will be 

multiple lines in the ps output. The last column shows a process named bash, which 

represents the Bash shell (an advanced shell that is standard on Linux). This process has 

a unique number (4249, called the PID, the process-id) and is killed when you log out. 

In fact, the three commands and key sequences recommended for use in logging out in 

Section 1.5.2 kill this process.

Even though we are using the Bash shell here, you could be using another shell. 

Instead of bash, you could see sh (the primitive Bourne shell), csh (C shell—still 

popular today) or ksh (Korn shell). To know the one that is running for you, use the 

echo command like this:

$ echo $SHELL
/bin/bash                                    The Bash shell

$SHELL is one of the several shell variables available on your system. Throughout this 

book, we’ll compare the features of these shells and discover features available in one 

shell but not in another. If a command doesn’t produce output as explained in this text, 

the problem can often be attributed to the shell.

 1.6.3 Handling Files
UNIX maintains all data in containers called files. These files are assigned names, and 

a group of filenames are held together in another separate file known as a directory. In 

this section and in Section 1.6.4, we take a look at some of the basic commands offered 

by UNIX to handle files and directories.

Creating a File with echo There are several ways to create a file. Here we use the 

echo command with a special symbol (the >):

$ echo date > foo
$ _                                 No display; prompt returns

The echo command is meant to display a message on the terminal, but here the message 

(date) goes to the file foo instead. We’ll not concern ourselves with the role played 

by the shell here but simply note that the > is a convenient mechanism of redirecting 

command output.

Displaying a File with cat The cat command displays the contents of files, so let’s 

use it to view the file that we just created:

$ cat foo
date

Observe that we used both the echo and cat commands with an additional word 

(date and foo). They are known as arguments. UNIX commands are often used 

das76205_Ch01_001-024.indd   11das76205_Ch01_001-024.indd   11 12/13/11   10:19 AM12/13/11   10:19 AM



12 Your UNIX/Linux: The Ultimate Guide

with arguments, and the variety of these arguments make these commands behave in 

numerous ways.

Copying a File with cp We now use the cp command to copy the file foo that we 

just created:

$ cp foo foo.sh
$ _                                    No message; prompt returns

Note that cp needs two arguments and operates silently. If you run cat foo.sh now, 

cat will also display the string date.

Displaying List of Filenames with ls Now that we have two identical files, we can 

produce a list of their names with the ls command:

$ ls
foo     foo.sh

In Chapters 3 and 4, we’ll use the ls command to display the attributes of files and 

directories.

Renaming a File with mv The mv command renames a file, and the following sequence 

renames foo.sh to foo.shell. We also confirm the action by running ls:

$ mv foo.sh foo.shell
$ ls
foo     foo.shell

Removing a File with rm The rm command deletes files, and this one removes the 

file foo.shell:

$ rm foo.shell
$ ls
foo                                       Only foo is left 

ls confirms our action yet again. Observe that cp, rm, and mv behave silently and return 

the prompt; they don’t clutter the screen with verbose output. Silence here implies suc-

cess; the commands worked in the way they were expected to.

 1.6.4 Handling Directories
The files foo and foo.sh are ordinary files. Every file has an association with a directory, 

and we often describe this association (somewhat loosely) by saying that a file resides in 

a directory. A user too is associated with a directory, and this is conveniently expressed 

by saying that a user is placed in a directory called the current directory. UNIX considers 

a directory as a file, and some commands work with both ordinary files and directories.

The file foo can be considered to reside in the current directory. This directory 

was not created by us but by the system administrator when opening an account for 

das76205_Ch01_001-024.indd   12das76205_Ch01_001-024.indd   12 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 13

user romeo. But we can also create a directory, copy a file to it, navigate to that direc-

tory, and remove it.

Creating a Directory with mkdir The mkdir command creates a directory. Here the 

command creates one named scripts:

$ mkdir scripts
$ _

We now have one file and one directory, both in the current directory. ls will now display 

both filenames, but if you follow it with -F (with a space between ls and -F), then you 

can identify a directory easily:

$ ls -F
foo       scripts/             -F marks directory with a /

ls here uses an argument that begins with a hyphen, but this argument is appropriately 

called an option. Options change the default behavior of a command, and the -F option 

modifies the ls output by using the / to mark a directory name.

Copying a File to a Directory The same command in UNIX often works with both 

a file and a directory. For instance, the cp command can be used to copy a file to a 

directory. Here, cp copies foo to the scripts directory:

$ cp foo scripts                      scripts here is a directory 

$ _

Directory Navigation with pwd and cd We can know what the current directory is  

by using the pwd command and change it by using cd. Before we change our location, 

however, let’s use pwd to find out how the command describes the current directory:

$ pwd
/home/romeo

The output shows a pathname, which represents a hierarchy of three directory names. 

We are currently stationed in the directory romeo which in turn is below home. The first 

/ indicates the top-most directory called root, so home is below the root directory. Don’t 

confuse this directory with the root user account.

Since our current directory contains a directory named scripts, we can now use 

the cd command to change our location to that directory:

$ cd scripts
$ pwd
/home/romeo/scripts

We have descended one level in this file system hierarchy. This directory should now 

contain the file foo that we copied earlier. List this directory with ls, and then remove 

foo with rm:

das76205_Ch01_001-024.indd   13das76205_Ch01_001-024.indd   13 12/13/11   10:19 AM12/13/11   10:19 AM



14 Your UNIX/Linux: The Ultimate Guide

$ ls
foo
$ rm foo
$ _

The file is gone and the directory is now empty. The directory can now be removed 

with rmdir but only after we have moved away from this directory. Let’s return to the 

directory we came from before we use rmdir:

$ cd /home/romeo
$ pwd
/home/romeo
$ rmdir scripts
$ ls
foo

We now have a single file left in the current directory. You’ll recall that we had used the 

echo command to create this file containing the string date:

$ cat foo
date

We can remove foo with rm, but why not run it like this?

$ sh foo
Fri  Nov 13 19:24:26 GMT 2009

This runs the sh command and instructs it to run with foo. Since sh represents the shell, 

and it interprets any argument as a file to take its input from, it runs the date command. 

The file foo is known as a shell script. If we place some more command strings in this 

file, then they will all be executed in a batch. Chapter 13 discusses shell scripting in detail.

All of these commands will be examined in some detail in the forthcoming chapters, 

so let’s log out of the system. You know the technique of doing that by now. Generally, 

exit terminates most sessions:

$ exit
login:

Make sure that you log out after your work is complete. If you don’t, anybody can get a hold 
of your terminal and continue working using your user-id. She may even remove your files! 
The login: prompt signifies a terminated session, so don’t leave your place of work until you 
see this prompt.

 1.7 How It All Clicked

Until UNIX came on the scene, operating systems were designed with a particular 

machine in mind. They were invariably written in a low-level language (like assembler, 

which uses humanly unreadable code). The systems were fast but were restricted to the 

Caution

das76205_Ch01_001-024.indd   14das76205_Ch01_001-024.indd   14 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 15

hardware they were designed for. Programs designed for one system simply wouldn’t 

run on another. That was the status of the computer industry when Ken Thompson and 

Dennis Ritchie, of AT&T fame, authored the UNIX system for their own use.

In 1969, AT&T withdrew its team from the MULTICS project, which was engaged 

in the development of a flexible operating system that would run continuously and be 

used remotely. Thompson and Ritchie then designed and built a small system with an 

elegant file system, a command interpreter (the shell), and a set of utilities. To make 

UNIX portable, they rewrote the entire system in the C language that was invented by 

Ritchie himself. C is a high-level language, and programs coded in C run on all hardware. 

For some time, portability remained one of the strong features of UNIX.

 1.7.1 Berkeley: The Second School
A U.S. government law (subsequently revoked) prevented AT&T from selling computer 

software. The company had no option but to distribute the product to academic and 

research institutions at a nominal fee, but it came without any support. From the AT&T 

product, the University of California, Berkeley (UCB), created a UNIX of its own. They 

called it BSD UNIX (BSD—Berkeley Software Distribution). Both of these versions 

became quite popular worldwide, especially in universities and engineering circles. 

Later, UCB gave up all development work on UNIX.

Berkeley filled in the gaps left behind by AT&T, and then later decided to rewrite 

the whole operating system in the way they wanted. They created the standard editor of 

the UNIX system (vi) and a popular shell (C shell). Berkeley also created a better file 

system, a more versatile mail feature, and a better method of linking files (symbolic 

links). Later, they also offered with their standard distribution a networking protocol 

software (TCP/IP) that powered the Internet. Like AT&T, they also offered it practically 

free to many companies.

 1.7.2 UNIX Gets Fragmented
Even though UNIX was written by programmers for programmers, its inherent strengths 

found favor within business circles. Sun used the BSD System as a foundation for devel-

oping their own brand of UNIX (then SunOS). Today, their version of UNIX is known as 

Solaris. Others had their own brands: IBM had AIX, HP offered HP-UX, while DEC pro-

duced Digital UNIX—and now Tru64 UNIX. Not to be left out, Apple offers Mac OS X, its 

own open-source version of UNIX. The Linux wave arrived in the 90s, and most of these 

vendors began to offer Linux too. Today, most supercomputers run UNIX, and handheld 

devices increasingly use Linux, Google’s Android operating system being a case in point.

As each vendor modified and enhanced UNIX to create its own version, the original 

UNIX lost its identity as a separate product. The BSD releases were much different from 

the AT&T System V releases, and the incompatibilities steadily mounted. Finally, AT&T 

took it upon themselves to unify many of these flavors into its last release—System V 
Release 4 (SVR4). Shortly thereafter, AT&T sold its UNIX business to Novell, who 

later turned over the UNIX trademark to a standards body called X/OPEN, now merged 

with The Open Group.

The UNIX trademark is currently owned by The Open Group.
Note

das76205_Ch01_001-024.indd   15das76205_Ch01_001-024.indd   15 12/13/11   10:19 AM12/13/11   10:19 AM



16 Your UNIX/Linux: The Ultimate Guide

 1.7.3 The Internet
Even before the advent of SVR4, big things were happening in the U.S. Defense 

Department. DARPA, a wing of the department, engaged several vendors to develop a 

reliable communication system using computer technology. Through some brilliant work 

done by Vinton Cerf and Robert Kahn, DARPA’s ARPANET network was made to work 

using packet-switching technology. In this technology, data is split into packets, which 

can take different routes and yet be reassembled in the right order. This was the birth of 

TCP/IP—a set of protocols (rules) used by the Internet for communication.

DARPA commissioned UCB to implement TCP/IP on BSD UNIX. ARPANET 

converted to TCP/IP in 1983, and in the same year, Berkeley released the first version 

of UNIX that had TCP/IP built-in. The computer science research community were all 

using BSD UNIX, and the network expanded like wildfire. The incorporation of TCP/IP 

into UNIX and its use as the basis of development were two key factors in the rapid 

growth of the Internet (and UNIX).

 1.7.4 The Windows Threat
In the meantime, however, Microsoft was doing great things with Windows—a graphical 
user interface (GUI) that uses the mouse rather than arcane and complex command 

options to execute a job. Options could be selected from drop-down menu boxes and 

radio buttons, which made handling some of the basic operating system functions easier. 

Windows first swept the desktop market (with Windows 3.1/95/98) and then made sig-

nificant inroads into the server market (with Windows NT/2000) which had been long 

dominated by UNIX.

When UNIX badly needed a Windows-type interface for its survival, the 

Massachusetts Institute of Technology (MIT) introduced the X Window System—the 

first windowing system for UNIX. X Window has many of the important features of 

Microsoft Windows plus a lot more. Every flavor of UNIX now has X along with a host 

of other tools that can not only handle files and directories but also update the system’s 

configuration files.

When all is said and done, the power of UNIX derives from its commands and their multiple 
options. No GUI tool can ever replace the find command that uses elaborate file-attribute 
matching schemes to locate files.

 1.8 POSIX and the Single UNIX Specification

Even though Dennis Ritchie rewrote UNIX in C to make it portable, that didn’t quite 

happen. UNIX fragmentation and the absence of a single conforming standard adversely 

affected the development of portable applications. To address the issue, AT&T created 

the System V Interface Definition (SVID). Later, X/Open (now The Open Group), a 

consortium of vendors and users, created the X/Open Portability Guide (XPG). Products 

conforming to this specification were branded UNIX95, UNIX98, or UNIX03 depending 

on the version of the specification.

Still another group of standards, the Portable Operating System Interface for 
Computer Environments (POSIX), was developed at the behest of the Institution of 

Note

das76205_Ch01_001-024.indd   16das76205_Ch01_001-024.indd   16 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 17

Electrical and Electronics Engineers (IEEE). POSIX refers to operating systems in 

general, but was based on UNIX. Two of the most-cited standards from the POSIX fam-

ily are known as POSIX.1 and POSIX.2. POSIX.1 specifies the C application program 

interface—the system calls. POSIX.2 deals with the shell and utilities.

In 2001, a joint initiative of X/Open and IEEE resulted in the unification of the two 

standards. This is the Single UNIX Specification, Version 3 (SUSV3) that is also known 

as IEEE 1003.1:2001 (POSIX.1). The “write once, adopt everywhere” approach to this 

development means that once software has been developed on any POSIX-compliant 

UNIX system, it can be easily ported to another POSIX-compliant UNIX machine with 

minimum modifications. We make references to POSIX throughout this text, but these 

references should be interpreted to mean the SUSV3 as well.

The Single UNIX Specification, Version 3 is available at http://www.unix.org/unix03.html. You 
must frequently consult this document when you use a command, an option, or a system call 
to confirm whether the usage is mandated by the specification.

 1.9 Linux and GNU

Although UNIX finally turned commercial, Richard Stallman and Linus Torvalds had 

different ideas. Torvalds is the father of Linux, the free UNIX that has taken the com-

puter world by storm. Stallman runs the Free Software Foundation (formerly known as 

GNU—a recursive acronym that stands for “GNU’s Not Unix!”). Many of the important 

Linux tools were written and supplied free by GNU.

Linux is distributed under the GNU General Public License, which makes it man-

datory for developers and sellers to make the source code public. Linux is particularly 

strong in networking and Internet features, and is an extremely cost-effective solution in 

setting up an Internet server or a local internet. Today, development on Linux is carried 

out at several locations across the globe at the behest of the Free Software Foundation.

The most popular GNU/Linux flavors include Ubuntu, Fedora (formerly Red Hat), 

SuSE, Debian, and Mandriva. These distributions include a plethora of software—from 

C and C++ compilers to Java, interpreters like perl, php, python and tcl; browsers like 

Firefox, Internet servers, and multimedia software. Much of the software can also be 

downloaded free from the Internet. All the major computer vendors (barring Microsoft) 

have committed to support Linux, and many of them have ported their software to this 

platform. This book also discusses Linux.

 1.10 The UNIX Architecture

The entire UNIX system is supported by a handful of essentially simple, though somewhat 

abstract concepts. The success of UNIX, according to Thompson and Ritchie, “lies not 

so much in new inventions but rather in the full exploitation of a carefully selected set 

of fertile ideas, and especially in showing that they can be keys to the implementation 

of a small and yet powerful operating system.” UNIX is no longer a small system, but 

it certainly is a powerful one. Before we examine the features of UNIX, we need to 

understand its architecture—its foundation.

Tip

das76205_Ch01_001-024.indd   17das76205_Ch01_001-024.indd   17 12/13/11   10:19 AM12/13/11   10:19 AM



18 Your UNIX/Linux: The Ultimate Guide

 1.10.1 Division of Labor: Kernel and Shell
Foremost among these “fertile ideas” is the division of labor between two agencies—the 

kernel and the shell. The kernel interacts with the machine’s hardware, and the shell 

with the user. You have seen both of them in action in the hands-on session, though the 

kernel wasn’t mentioned by name. Their relationship is depicted in Fig. 1.1.

The kernel is the core of the operating system. The system’s bootstrap program 

(a small piece of program code) loads the kernel into memory at startup. The kernel 

comprises a set of routines mostly written in C that communicate with the hardware 

directly. User programs (the applications) that need to access the hardware (like the hard 

disk or the terminal) communicate with the kernel using a set of functions called system 
calls, which we discuss shortly.

Apart from providing support to user programs, the kernel has a great deal of 

housekeeping to do. It manages the system’s memory, schedules processes, decides 

their priorities, and performs other tasks which you wouldn’t want to bother about. The 

kernel has work to do even if no user program is running. It is often called the operating 

system—a program’s gateway to the computer’s resources.

Computers don’t have any inherent ability to translate user commands into action. 

That requires an interpreter, and that job in UNIX is handled by the “outer part” of the 

F I G U R E  1 . 1  The Kernel-Shell Relationship

Hardware

Kernel

ShellShell Shell

cp

grep

tar

ps who

sed

sort

ls

cc

O
ther C

om
p

ilers

Databases Text Processors

Spreadsheets Br
ow

se
rs

User UserUser

X
 W

in
do

w
O

th
er

 S
of

tw
ar

e

das76205_Ch01_001-024.indd   18das76205_Ch01_001-024.indd   18 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 19

Linux

operating system—the shell. It is actually the interface between the user and the kernel. 

Even though there’s only one kernel running on the system, there could be several shells 

in action—one for each user who is logged in.

When you enter a command through the keyboard, the shell thoroughly examines 

the keyboard input for special characters. If it finds any, it rebuilds a simplified command 

line, and finally communicates with the kernel to see that the command is executed. This 

interpretive action of the shell is examined in detail in Chapter 6.

UNIX fragmentation becomes quite evident when you attempt to locate the kernel on your 
system. It is often named unix (genunix on Solaris) and could be located in directories /unix 
or /kernel. The shells are all available in /bin or /usr/bin.

The kernel is represented by the file /boot/vmlinuz. The shells are in /bin and 

/usr/bin.

 1.10.2 The File and Process
Two simple entities support the UNIX system—the file and process—and Kaare Christian 

(The UNIX Operating System, John Wiley) makes two powerful abstractions about 

them: “Files have places and processes have life.” Files are containers for storing static 

information. Even directories and devices are considered files. A file is related to another 

file by being part of a single hierarchical structure called the file system. Further, using 

the cd and pwd (1.6.4) commands, you can “place” yourself at a specific location in this 

hierarchy. Chapters 3 and 4 discuss file and directory handling.

The second entity is the process, which represents a program in execution. Like 

files, processes also form a hierarchy, and are best understood when we consider one 

process as the child of another. Unlike files, which are static entities, processes resemble 

living organisms that are born and die. UNIX provides the tools that allow us to control 

processes, move them between foreground and background, and even kill them. The 

basics of the process management system are discussed in Chapter 7.

 1.10.3 The System Calls
The UNIX system—comprising the kernel, shell, and applications—is written in C. 

Though there are over a thousand different commands in the system, they often need 

to carry out certain common tasks—like reading from or writing to disk. The code for 

performing disk I/O operations is not built into the programs but is available in the ker-

nel. Programs access these kernel services by invoking special functions called system 
calls. Often the same system call can access both a file and a device; the open system 

call opens both.

C programmers on a Windows system use the standard library functions for ev-

erything. You can’t use the write system call on a Windows system; you need to use 

a library function like fprintf for that purpose. In contrast, the C programmer in the 

UNIX environment has complete access to the entire system call library as well as the 

standard library functions. You can use both write and fprintf in a C program meant 

for running on a UNIX system.

Note

das76205_Ch01_001-024.indd   19das76205_Ch01_001-024.indd   19 12/13/11   10:19 AM12/13/11   10:19 AM



20 Your UNIX/Linux: The Ultimate Guide

POSIX specifies the system calls that all UNIX systems must implement. Once 

software has been developed on one UNIX system using the calls mandated by POSIX, 

it can be easily moved to another UNIX machine. Chapters 17 and 18 deal with the basic 

system calls that you need to know to program in the UNIX environment.

 1.11 Features of UNIX

UNIX is an operating system, so it has all of the features an operating system is expected 

to have. However, UNIX also looks at a few things differently and possesses features 

unique to itself. The following sections present the major features of this operating system.

 1.11.1 A Multiuser System
From a fundamental point of view, UNIX is a multiprogramming system. It permits 

multiple programs to remain in memory and compete for the attention of the CPU. These 

programs can be run by different users; UNIX is also a multiuser system. This feature 

often baffles Windows users as Windows is essentially a single-user system where the 

CPU, memory, and hard disk are all dedicated to a single user. The who output (1.6.1) 
showed three users working on the system.

For cycling through multiple jobs, the kernel uses the principle of time-sharing. 

It breaks up a unit of time into several slices, and a user’s job runs for the duration of a 

slice. The moment the allocated time expires, the previous job is kept in abeyance and 

the next job is taken up. This process goes on until the clock has turned full circle and 

the first job is taken up once again. This switching happens several times in one second, 

so every user has the feeling that the machine is completely dedicated to her.

A program can leave the CPU before its time quantum expires if it performs an operation that 
keeps the CPU idle. This has already been discussed in Section 1.1.

 1.11.2 A Multitasking System Too
A single user can also run multiple tasks concurrently; UNIX is a multitasking system. 

It is common for a user to edit a file, print another one on the printer, send email to a 

friend, and browse the World Wide Web—all without leaving any of the applications. 

The X Window system exploits the multitasking feature by allowing you to open multiple 

windows on your desktop.

In a multitasking environment, a user sees one job running in the foreground; the 

rest run in the background. You can switch jobs between background and foreground, 

suspend, or even terminate them. As a programmer you can use this feature in a very 

productive way. You can edit a C program with the vi editor and then suspend the vi 

process to run the gcc compiler. You don’t need to quit vi to do that. This feature is 

provided by most shells.

Today, we have machines with multiple CPUs that make it possible to actually earmark an entire 
processor for a single program (in a single-user and single-tasking situation).

Note

Note

das76205_Ch01_001-024.indd   20das76205_Ch01_001-024.indd   20 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 21

 1.11.3 A Repository of Applications
By one definition, UNIX represents the kernel, but the kernel by itself can’t do anything 

that can benefit the user. To exploit the power of UNIX, you need to use the host of 

applications that are shipped with every UNIX system. These applications are quite 

diverse in scope. There are general-purpose tools, text manipulation utilities (called 

filters), compilers and interpreters, networked applications, and system administration 

tools. You’ll also have a choice of shells.

This is one area that’s constantly changing with every UNIX release. New tools 

are being added, and the older ones are being removed or modified. The shell and an 

essential subset of these applications form part of the POSIX specification. There are 

open-source versions for most of these utilities, and after you have read Chapter 16, 

you should be able to download these tools and configure them to run on your machine.

 1.11.4 The Building-Block Approach
One of the strengths of UNIX emerges from the designers’ belief that “small is beautiful.” 

A complex task can be broken into a finite number of simple ones. The shell offers a 

mechanism called the pipe that allows the output of one command to serve as input to 

another. To take advantage of this feature a special set of commands (called filters) were 

designed where each command did “one thing well.” By interconnecting these tools 

using the piping mechanism, you can solve very complex text manipulation problems.

You can now understand why the who output (1.6.1) doesn’t display a header. If we 

wanted to count the number of users by connecting the who output to a word-counting 

program (like wc), a header line would have resulted in an erroneous count. This approach 

also explains why most commands are not interactive. If a command had to pause to 

take user input then it can’t be scheduled to run at a certain time of the day. Its output 

can’t be used by another program without user intervention.

 1.11.5 Pattern Matching
UNIX features very sophisticated pattern matching features. Many commands use file-

names as arguments, and these filenames often have a common string. For instance, all 

C programs have the .c extension, and to back them up to tape with the tar command, 

we need not specify all of their filenames to tar. Instead, we can simply use a pattern 

*.c. The * is a special character (known as a metacharacter) that is used by the shell 

to match a number of characters. If you choose your filenames carefully, you can use a 

simple expression to access a whole lot of them.

Pattern matching isn’t confined to filenames only. Some advanced tools (like grep, 

sed and awk) also use a different metacharacter set for matching strings contained in files. 

In this scheme, a pattern represented by printf.*name matches all lines that contain 

both printf and name. This pattern is called a regular expression. This book heavily 

emphasizes the importance of regular expressions and shows how you can perform 

complex pattern matching tasks using them.

 1.11.6 Programming Facility
The UNIX shell is also a programming language; it was designed for a programmer, not 

a casual end user. It has all the necessary ingredients, like control structures, loops, and 

das76205_Ch01_001-024.indd   21das76205_Ch01_001-024.indd   21 12/13/11   10:19 AM12/13/11   10:19 AM



22 Your UNIX/Linux: The Ultimate Guide

variables, that establish it as a powerful programming language in its own right. These 

features are used to design shell scripts—programs that run UNIX commands in a batch.

Many of the system’s functions can be controlled and automated by using these 

shell scripts. If you intend to take up system administration as a career, then you’ll have 

to know the shell’s programming features very well. Proficient UNIX programmers sel-

dom refer to any other language (except Perl and PHP) for text manipulation problems. 

Shell programming is taken up in Chapter 13.

 1.11.7 Documentation
UNIX documentation is no longer the sore point it once was. Even though it’s sometimes 

uneven, usually the treatment is quite lucid. The principal online help facility available 

is the man command, which remains the most important reference for commands and 

their configuration files. Today there’s no feature of UNIX on which a separate textbook 

is not available. UNIX documentation and the man facility are discussed in Chapter 2.

Apart from the online documentation, there’s a vast ocean of UNIX resources 

available on the Internet. There are several newsgroups on UNIX where you can post 

your queries in case you are stranded with a problem. The FAQ (Frequently Asked 

Questions)—a document that addresses common problems—is also widely available 

on the Net. Then there are numerous articles published in magazines and journals and 

lecture notes made available by universities on their Web sites.

With the goal of building a comfortable relationship with the machine, Thomson 

and Ritchie designed a system for their own use rather than for others. They could af-

ford to do this because UNIX wasn’t initially developed as a commercial product, and 

the project didn’t have any predefined objective. They acknowledge this fact too: “We 

have not been faced with the need to satisfy someone else’s requirements, and for this 

freedom we are grateful.”

S U M M A R Y

A computer needs an operating system (OS) to allocate memory, schedule programs, 

and control devices. The UNIX system also provides a host of applications for the use 

of programmers and users.

Multiprogramming systems like UNIX allow multiple programs to reside in 

memory. Even though a program may run for the duration of the time slice allocated 

for it, it may prematurely leave the CPU during a blocking operation (like reading a 

file) that keeps the CPU idle.

You enter a UNIX system by entering a user-id and a password. You can terminate 

a session by using the exit or logout command or pressing [Ctrl-d].

UNIX commands are generally in lowercase. date displays the system date and 

time. who displays the list of users logged on to the system. ps lists all processes running 

at a terminal. It always shows the shell process running.

You can display a file with cat, copy it with cp, rename it with mv, and remove 

it with rm.

mkdir creates a directory, pwd displays the pathname of the current directory, and 

cd changes the current directory. rmdir removes an empty directory.

das76205_Ch01_001-024.indd   22das76205_Ch01_001-024.indd   22 12/13/11   10:19 AM12/13/11   10:19 AM



Chapter 1: Introducing UNIX 23

UNIX was developed at AT&T Bell Laboratories by Ken Thompson and Dennis 

Ritchie. It was finally written in C. Notable work was also done at Berkeley. AT&T 

introduced System V Release 4 (SVR4) to merge their own version, Berkeley, and other 

variants.

Linux is a UNIX implementation that is constantly growing with contributions 

from the Free Software Foundation (formerly GNU).

Modifications to the system made by vendors led to both enhancement and frag-

mentation of UNIX. Two merged standards, POSIX and the Single UNIX Specification, 

are today used as guidance for development work on UNIX.

All work is shared by the kernel and shell. The kernel manages the hardware, and 

the shell interacts with the user. The shell and applications communicate with the kernel 

using system calls, which are special routines built into the kernel.

The file and process are the two basic entities that support the UNIX system. UNIX 

considers everything to be a file. A process represents a program (a file) in execution.

UNIX is a multiuser and multitasking system. Several users can use the system 

together, and a single user can also run multiple jobs concurrently. 

UNIX uses a building-block approach in the design of some of its tools and lets 

you develop complex command routines by connecting these tools.

The UNIX man command is the primary online help facility available.

S E L F - T E S T

1.1 The ________ interacts with the hardware and the _________ interacts with the 

user.

1.2 A program is synonymous with a process. True or false?

1.3 Every character has a number associated with it. What is it called?

1.4 If you see a prompt like mailhost login:, what do you think mailhost 

represents?

1.5 If the system echoes Login incorrect, does it mean that your user-id is 

incorrect?

1.6 Name the commands you used in this chapter to display (i) filenames, 

(ii) processes, (iii) users.

1.7 Run ps and note the PID of your shell. Log out and log in again and run ps 

again. What do you observe?

1.8 Create two files, foo1 and foo2, with the echo command, and then use 

cat foo1 foo2. What do you observe?

1.9 Now run the command cat foo[12], and note your observations.

1.10 Enter the command echo SHELL. What mistake did you make?

1.11 Create a file foo containing the words hello dolly. Now create a directory bar, 

and then run mv foo bar. What do you observe when you run both ls and ls bar?

1.12 Who are the principal architects of the UNIX operating system?

1.13 Why did AT&T virtually give away UNIX to the world?

1.14 Where did BSD UNIX originate? Name some features of UNIX that were first 

found in BSD UNIX.

1.15 Which flavor of UNIX is available for free and runs on the PC?

das76205_Ch01_001-024.indd   23das76205_Ch01_001-024.indd   23 12/13/11   10:19 AM12/13/11   10:19 AM



24 Your UNIX/Linux: The Ultimate Guide

1.16 Identify the companies associated with the following brands: (i) Solaris, (ii) AIX, 

(iii) Tru64 UNIX.

1.17 What does X/OPEN represent? Who owns the UNIX trademark today?

1.18 Who are the two brains behind Linux?

1.19 What is the distinctive characteristic about the GNU General Public License?

1.20 Why is UNIX more portable than other operating systems?

1.21 Can you divide UNIX into two major schools? To which school does Sun’s UNIX 

belong?

1.22 Why do UNIX tools perform simple jobs rather than complex ones?

1.23 What is the windowing system of UNIX known as?

1.24 Name some interpretive languages available on UNIX systems.

1.25 Name three notable Linux flavors.

E X E R C I S E S

1.1 Operating systems like UNIX provide services both for programs and users. Explain.

1.2 What does a program do when it needs to read a file?

1.3 Does a program always complete its time quantum before it makes way for 

another program?

1.4 Explain the significance of the terms multiprogramming, multiuser, and 

multitasking.

1.5 Why are UNIX commands noninteractive, and why is their output not usually 

preceded by header information?

1.6 What are system calls, and what role do they play in the system? How is C program-

ming so different and powerful in the UNIX environment compared to Windows?

1.7 Two UNIX systems may not use the same system calls. True or false?

1.8 Name the three commands that you would try in sequence to log yourself out of 

the system. Which one of them will always work?

1.9 Run the following commands, and then invoke ls. What do you conclude?

    echo > README [Enter]
    echo > readme [Enter]

1.10 Enter the following commands, and note your observations: (i) who and tty, 

(ii) tput clear, (iii) id, (iv) ps and echo $$.

1.11 When you log in, a program starts executing at your terminal. What is this pro-

gram known as? Name four types of this program that are available on a system.

1.12 What is the significance of your user-id? Where in the system is the name used?

1.13 What are the two schools of UNIX that initially guided its development? Mention 

the outcome of the standardization efforts that are currently in force today.

1.14 Create a directory, and change to that directory. Next, create another directory 

in the new directory, and then change to that directory too. Now, run cd without 

any arguments followed by pwd. What do you conclude?

1.15  Why is the shell called a command interpreter?

1.16 What is the one thing that is common to directories, devices, terminals, and 

printers?

das76205_Ch01_001-024.indd   24das76205_Ch01_001-024.indd   24 12/13/11   10:19 AM12/13/11   10:19 AM



25

2 
C H A P T E R  2

Becoming Familiar 
with UNIX Commands

A major part of the job of learning UNIX is to master the essential command set. 

UNIX has a vast repertoire of commands that can solve many tasks either by 

working singly or in combination. In this chapter, we’ll examine the generalized UNIX 

command syntax and come to understand the significance of its options and arguments. 

The complete picture of command usage is available in the man pages, and we’ll learn 

to look up this documentation with the man command.

We’ll next try out some of the general-purpose utilities of the system. We’ll change 

the password and get comfortable with email using a command-line tool. We’ll learn 

about other tools that tell us the date, the users of the system, and some specifics of 

the operating system. At times we need to consider situations where the output of these 

commands can be processed further. Finally, we take a look at the common traps that 

befall the user and how the stty command can change many keyboard settings.

  Objectives
 • Understand the breakup of the command line into arguments and options.

 • Learn how the shell uses the PATH variable to locate commands.

 • Learn how commands can be used singly or in combination.

 • Use the man command to browse the UNIX documentation.

 • Understand the organization of the documentation.

 • Display messages with echo, and understand why printf is superior.

 • Save all keystrokes and command output in a file with script.

 • Understand email basics and why you need a command-line email program like mailx.

 • Use passwd to change your own password.

 • Know your machine’s name and operating system with uname.

 • Find out the users of the system with who.

 • Display the system date in various formats with date.

 • Know what can go wrong, and use stty to change keyboard settings.

 • Get introduced to the X Window system.

das76205_Ch02_025-055.indd   25das76205_Ch02_025-055.indd   25 12/13/11   10:43 AM12/13/11   10:43 AM



26 Your UNIX/Linux: The Ultimate Guide

 2.1 Command Basics

UNIX commands are generally implemented as disk files representing executable 

programs. They are mainly written in C, but UNIX supports programs written in any 

language. When you run a command, the program is loaded into memory, and the CPU 

starts executing the instructions contained in the program.

UNIX is sensitive to the case of filenames, though command names are generally in 

lowercase. These names are seldom more than four characters long. You can sometimes 

deduce the function from the name (like cp for copy) but sometimes not (like grep for 

searching for a pattern).

Unlike Windows, UNIX doesn’t require command names to have an extension 

(like .exe, .com, etc.). Extensions are used either for convenience or for conforming to 

a requirement imposed by the application. For instance, C and Java programs need to 

have the .c and .java extensions, respectively, because their respective compilers won’t 

work otherwise. However, shell and Perl scripts don’t need the .sh or .pl extensions, 

though we often provide them for easier identification.

There’s one command that’s special—the shell. Unlike other commands, the 

shell is invoked the moment you log in and continues to run until you log out. We’ll be 

constantly making references to the shell’s behavior in these initial chapters before we 

embark on a detailed examination in Chapter 6.

In case you begin to feel that all commands are loaded from disk, we need to make the distinc-
tion between external and internal commands. External commands exist on disk as separate files. 
But there’s also a separate set of commands that are built into the shell executable. You have 
used one of them already—the cd command (1.6.4). There’s no file in the system named cd.

 2.1.1 The PATH: Locating Commands
How does the shell know whether a command can be executed or not? The shell main-

tains a variable named PATH in its own environment (thus also known as an environment 
variable). PATH is set to a list of colon-delimited directories. You can display this list by 

simply evaluating the $-prefixed variable with the echo command:

$ echo $PATH Output in the C shell

/bin:/usr/bin:/usr/ucb:/usr/xpg4/bin:. is a little different

There are five directories in this list separated by a delimiter, the colon. A delimiter 

separates one piece of information from another, a feature exploited by many UNIX 

files (like the one that stores your password). The fifth directory is signified by a dot 

that represents the current directory. When you enter a command, the shell looks in each 

of these directories to locate the file with that name. The following message shows that 

the netscape command is not available in any of these directories:

$ netscape
bash: netscape:  not found

Note

das76205_Ch02_025-055.indd   26das76205_Ch02_025-055.indd   26 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  27

The Bash shell is running here, and it prints the message after failing to locate the file. 

This doesn’t in any way confirm that netscape doesn’t exist on this system; it could 

reside in a different directory. In that case we can still run it by

 • changing the value of PATH to include that directory.

 • using a pathname (like /usr/local/bin/netscape if the command is located in 

/usr/local/bin).

 • switching to the directory where the executable is located and executing it from 

there.

Windows users also use the same PATH variable to specify the search path, except 

that Windows uses the ; as the delimiter instead of the colon. Windows also uses the 

dot to signify the current directory. We have more to say about pathnames in Chapter 3 

and we’ll learn to change PATH in Chapter 8.

Is it a good idea to have the current directory at the end of PATH? Yes, this loca-

tion provides a safeguard against inadvertent execution of programs that have the same 

name as the ones resident in /bin and /usr/bin. This means that if you have mistakenly 

provided the name cat to one of your programs, invoking cat won’t execute the one you 

have created and placed in the current directory. But what if you still want to execute your 

own cat program? Simply invoke it as ./cat, in which case, PATH would be ignored.

The essential UNIX commands for general use are located in the directories /bin and /usr/bin. 
The commands showing graphical output are usually found in /usr/X11R6/bin or /usr/dt/bin. 
The commands used by the system administrator are found in /sbin and /usr/sbin.

 2.1.2 Where Is the Command?
There are three commands that provide clues to the location of another command—which, 

whereis and type. Sometimes you’ll want to know whether a command is available in 

PATH before you decide to execute it. The which command tells you the directory that 

contains the command:

$ which grep
/usr/bin/grep

After searching the directories of PATH in sequence, which abandons its search the mo-

ment it locates a file named grep. This is the global regular expression printer—a 

command that searches for patterns in a file. You may not have which on your system, and 

POSIX doesn’t require UNIX systems to offer this utility. If you are using a BSD-based 

UNIX system, then you can try the whereis command. This time let’s try to locate ls:

$ whereis ls
ls: /usr/bin/ls /usr/ucb/ls Berkeley version also shown

Unlike which, which confines its search to the directories in PATH, whereis looks up a 

larger list. It finds two versions of ls on this Solaris system. Note that whereis is not 

also supported by POSIX.

Note

das76205_Ch02_025-055.indd   27das76205_Ch02_025-055.indd   27 12/13/11   10:43 AM12/13/11   10:43 AM



28 Your UNIX/Linux: The Ultimate Guide

As noted in a previous aside, not all UNIX commands are files; some are built 

into the shell. which and whereis don’t consider this possibility, so if you look for the 

echo command, which says that it is in /usr/bin:

$ which echo
/usr/bin/echo

This is not the file that is executed when we run echo; modern shells have echo 

built in. The information output by which is only half true; a more authentic picture is 

presented by the type command:

$ type echo
echo is a shell builtin

So even if which shows the pathname of echo, type makes it clear that the shell will 

always run its own built-in command. DOS users are reminded that type doesn’t display 

files but only points to the version that will be executed.

which locates a command’s disk file, but ambiguity arises when the command is also a shell 
builtin. As a general rule, the shell will ignore the disk version in preference to its own builtin. 
(However, we can override this preferential behavior.) The type command provides a more 
reliable picture of the command that is actually executed when it exists in different forms. type 
itself is a shell builtin and is not available in some versions of the C shell.

 2.2 Command Structure

In Chapter 1, we used commands that had multiple words (like mkdir scripts) and 

one that had an embedded minus sign (ls -F). It’s time we subjected a typical UNIX 

command to a dissective study. The structure of such a command is shown in Fig. 2.1.

This command sequence has five words. The first word is the command itself 

and the remaining ones are its arguments. The ls command is specified here with four 

arguments. Two of the arguments begin with a hyphen (-l and -t) and are appropriately 

called options. The entire line is referred to as the command line. A command line is 

executed only after you hit [Enter].

Every command has a fixed set of options. An option changes a command’s default 

behavior, so if ls shows only the filenames, the -l and -t options show their attributes 

as well. Some commands use files (note1 and note2 here) and some don’t. If used at 

Note

F I G U R E  2 . 1  Structure of a UNIX Command

ls

Options

Command

note2note1-t-l

Arguments

das76205_Ch02_025-055.indd   28das76205_Ch02_025-055.indd   28 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  29

Linux

all, the filename will generally be a command’s last argument—and after all options. 

(This is not always true; some options use filenames as their own “arguments.”)

Beginners often forget to provide spaces between the command and the argument. You can 
get away with DIR/P instead of DIR /P in the DOS environment of Windows, but in UNIX you 
need to be careful:

$ ls-w
bash: ls-w:  command not found

The shell fails to recognize -w as an argument and treats ls-w as a single command. Obviously, 
this command doesn’t exist in PATH.

A command is separated from its options and arguments by whitespace. This is 

a collective term that comprises a contiguous string of spaces and tabs (and newlines). 

You can liberally provide a lot of whitespace in the command line, but the shell ensures 

that arguments are separated by a single space before the command is run.

Not all error messages are generated by the shell. When you use a command with 

an incorrect option, the shell locates the command all right, but the command this time 

finds the option to be wrong:

$ ls -z note
/bin/ls: invalid option -- z Error message from ls

usage: ls -1RaAdCxmnlogrtucpFbqisfL [files]

ls does have a large number of options (over 20), but it seems that -z is not one of 

them. Many commands also display the correct syntax and options when you use them 

incorrectly. 

Never create a filename that begins with a hyphen; many commands just won’t work! It’s 
common for a command to treat a filename beginning with a hyphen as one of its options. 
This often results in erroneous output. The previous ls command would have reacted no dif-
ferently even if there was a file named -z. If you create or find such a file in your work area, 
you can still list it with ls ./-z and remove it with rm ./-z. You’ll soon learn the convenience 
of the ./ prefix in explicitly specifying a file in the current directory. We don’t normally use 
cat ./foo (cat foo is good enough), but when handling filenames like -z, the ./ prefix can 
be of great help.

Linux offers all of the UNIX-type options, but it also offers options using two hyphens 

and a meaningful word. For instance, it offers the synonym ls --classify in addi-

tion to ls -F. The expanded options are easy to remember; for example, it’s easier to 

remember --classify than -F.

Options can often be combined with only one - sign. Take for instance this com-

mand line containing three options:

ls -l -a -t

Caution

Caution

das76205_Ch02_025-055.indd   29das76205_Ch02_025-055.indd   29 12/13/11   10:43 AM12/13/11   10:43 AM



30 Your UNIX/Linux: The Ultimate Guide

ls is taken up in detail in Chapter 4, so don’t bother about the significance of these 

three options. These are simple options, and UNIX lets you combine them in any order:

ls -lat Sequence of combination not always

ls -tal important, but sometimes is

Don’t interpret the preceding discussions as a general prescription. Some commands 

won’t let you combine options, as shown above, and some have options that begin with 

a +. Moreover, awk and perl use a programming script as an argument. But don’t let 

this deter you; you will have already built up a lot of muscle before you take on these 

commands.

C programmers and shell scripters need to count the number of arguments in their programs. 
It helps to be aware at this stage that there are some characters in the command line that 
are not really arguments—the |, > and <, for instance. In Chapter 6, we’ll make an amazing 
discovery that in the command line who > foo, foo is not an argument to who!

 2.3 Flexibility of Command Usage

So far we have executed commands in sequence—by waiting for the prompt to return 

before keying in the next command. UNIX provides a certain degree of flexibility in 

the usage of commands. We can enter multiple commands in one line, and their output 

need not always come to the terminal. The following discussions actually belong to the 

domain of the shell, but we need to be aware of them even if we don’t understand fully 

how they work:

You don’t have to wait for a command to complete before you type your next 
command. UNIX provides a full-duplex terminal, which provides separate channels for 

input and output. Just go on typing even if the output of the previous command clutters 

the display. All commands are stored in a keyboard buffer (a temporary form of storage) 

and will eventually be passed on to the shell.

You can specify multiple commands in one line. Using a ; as the delimiter of 

commands, you can specify more than one command before you hit [Enter]:

who ; ls note ls executed after who

Here we have two command lines on a single line. The ; is gobbled up by the shell and 

is not seen by the who command. The ; is a metacharacter, and the UNIX shell under-

stands a large number of metacharacters. You’ll encounter many of them in Chapter 6.

A command line can be split into multiple physical lines. Sometimes you’ll find it 

either convenient or necessary to spread out the command line into multiple lines. This 

is how the echo command works with most shells:

$ echo “This is[Enter] 
> a three-line[Enter] A second prompt (>) appears . . .

> text message”[Enter]
This is . . .  and disappears after quote is closed

a three-line
text message

Note

das76205_Ch02_025-055.indd   30das76205_Ch02_025-055.indd   30 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  31

C Shell

Here we hit [Enter] twice to see the secondary prompt (>) appear, which disappeared 

after we closed the quote. The appearance of the > (or ?) indicates that the command 

line isn’t complete.

The preceding echo command won’t work with the C shell. You’ll have to enter a 

\ (backslash) before you press [Enter]. Moreover, the C shell often throws out a 

different secondary prompt (?). Its primary prompt is also different (%):

% echo “This is\[Enter]
? a three-line\[Enter] Some C shells don’t show 

? text message” the ? at all.

Whenever you find the > or ? appearing after you have pressed [Enter], it will often be due to 
the absence of a matching quote or parenthesis. In case you find that the problem persists even 
after providing it, just interrupt the command line with [Ctrl-c] or [Ctrl-u]. The significance of 
these keys is taken up in Section 2.14.

Command output need not always be seen on the terminal. We often save output 

in files like this:

who > userlist.txt Output saved in userlist.txt

As discussed in Section 1.11.4, UNIX uses a modular approach to solving problems. 

The output of one command can be useful input for another:

who | wc -l who piped to wc -l

This sequence counts the number of users logged in. Chapter 6 discusses how the 

> and | direct the shell to make the necessary I/O connections that could be used 

by programs.

 2.4 man: On-Line Help

UNIX is ultimately mastered by looking up its documentation, which is available today 

in a number of forms of varying complexity. The earliest and most important is the one 

that is viewed with the man command—often called the man documentation. man remains 

the most complete and authoritative guide to the UNIX system. The documentation is 

also available in print and on the Internet.

To view the manual page of the wc command, use man with wc as argument:

man wc

The entire man page is dumped onto the screen (Fig. 2.2). man presents the first page 

and pauses. It does this by sending its output to a pager program, which displays the 

contents of a file one page (screen) at a time. The pager is actually a UNIX command, 

Tip

das76205_Ch02_025-055.indd   31das76205_Ch02_025-055.indd   31 12/13/11   10:43 AM12/13/11   10:43 AM



32 Your UNIX/Linux: The Ultimate Guide

User Commands                                           wc(1)

NAME
     wc - display a count of lines, words and characters in a file

SYNOPSIS
     wc [ -c | -m  | -C ]  [ -lw ]  [ file ... ]

DESCRIPTION
     The wc utility  reads  one   or  more  input  files and,  by default,
     writes the number of newline characters, words and bytes contained
     in  each input file to the standard output.
  
     The utility also writes a total count for all named  files, if more
     than one input file is specified.
  
     wc considers a word to be a non-zero-length string  of  characters
     delimited by white space (for example, SPACE, TAB ). See
     iswspace(3C) or isspace(3C).

OPTIONS
     The following options are supported:
     -c       Count bytes.
     -m       Count characters.
     -C       Same as -m.
     -l       Count lines.
     -w       Count words delimited by white space characters or new line
              characters.  Delimiting  characters are Extended Unix Code (EUC)
              characters from any code  set  defined by iswspace().

     If  no option is specified the default is -lwc (count  lines, words, 
     and  bytes.)

OPERANDS
     The following operand is supported:
     file  A path name of an input file. If no file operands  are
           specified, the standard input will be used.
USAGE
     See largefile(5) for the description of the behavior of wc when
     encountering files greater than or equal to 2 Gbyte (2 **31 bytes).

EXIT STATUS
     The following exit values are returned:
     0     Successful completion.
     >0    An error occurred.

SEE ALSO
     cksum(1), isspace(3C), iswalpha(3C), iswspace(3C),
     setlocale(3C), attributes(5), environ(5), largefile(5)

F I G U R E  2 . 2  The man page for wc (Solaris)

das76205_Ch02_025-055.indd   32das76205_Ch02_025-055.indd   32 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  33

and man is always preconfigured to be used with a specific pager. UNIX systems cur-

rently use these pager programs:

 • more, Berkeley’s pager, which is now available universally as a superior alterna-

tive to the original AT&T pg command (now obsolete). We’ll be considering more 

in this text.

 • less, the standard pager used on Linux systems, but also available for all UNIX 

platforms. less is modeled on the vi editor and is more powerful than more because 

it replicates many of vi’s navigational and search functions. The features of less 

are described briefly in Section 3.16.

On a man page that uses more as the pager, you’ll see a prompt at the bottom-left 

of the screen which looks something like this:

--More--(26%) less shows a : as the prompt

At this prompt you can press a key to perform navigation or search for a string. The 

key you press can be considered to be one of man’s (rather, the pager’s) internal com-
mands, and the character represented by the key often doesn’t show up on the screen. 

Many UNIX utilities like vi and mailx also have their own internal commands. A set 

of internal commands used by more is listed in Table 3.3. We’ll discuss only a few of 

them related to navigation and string search.

To quit the pager, and ultimately man, press q. You’ll be returned to the shell’s 

prompt.

 2.4.1 Navigation and Search
The navigation commands are numerous and often vary across UNIX implementations. 

For the time being, you should know these two commands, which should work on all 

systems:

  f or spacebar—Advances by one screen.

  b—Moves back one screen.

The man documentation is sometimes quite extensive, and the search facility lets you 

locate a page containing a keyword quite easily. For example, you can call up the page 

containing the word clobber by following the / (frontslash) with the term:

/clobber[Enter]

The / and search string show up on the screen this time, and when you press [Enter], 

you are taken to the page containing clobber. If that’s not the page you are looking 

for, you can repeat the search by pressing n. Some pager versions even highlight the 

search term in reverse video.

 2.4.2 Further Help with man -k and man -f
POSIX requires man to support only one option (-k). Most UNIX systems also offer the 

apropos command that emulates man -k. When used with this option, man searches 

das76205_Ch02_025-055.indd   33das76205_Ch02_025-055.indd   33 12/13/11   10:43 AM12/13/11   10:43 AM



34 Your UNIX/Linux: The Ultimate Guide

the NAME section of all man pages that contain the keyword. To know more about the 

cron facility, use

$ man -k cron
cron cron (1m) - clock daemon
crontab crontab (1) - user crontab file
queuedefs queuedefs (4) - queue description file for at, batch, and cron

cron is the UNIX scheduler that takes instructions from a crontab file, and to know 

more about it (Chapter 7), you need to look up the man pages of cron and crontab. 

Note that cron and crontab are documented in Sections 1m and 1, respectively, on 

this Solaris system.

The -f option simply displays a one-line header from the NAME section. The 

whatis command emulates man -f. This is what grep does:

$ man -f grep
grep            grep (1)        - search a file for a pattern

We use grep throughout this book for handling most pattern search issues. If this 

is the command you need, you can use man grep to learn that a pattern can match 

multiple strings.

 2.5 The man Documentation

Vendors organize the man documentation differently, but in general you could see eight 

sections of the UNIX manual (Table 2.1). Later enhancements have added subsections 

(like 1C, 1M, 3N, etc.), but we’ll ignore them in this text. You can see from the table 

that the documentation is not restricted to commands; important system files used by 

these commands and system calls also have separate man pages.

Most of the commands discussed in this text are available in Section 1, and man 

searches the manuals starting from Section 1. If it locates a command in one section, it 

won’t continue the search even if the command also occurs in another section. When a 

keyword is found in multiple sections, you should use the section number additionally 

1 User programs User programs

2 Kernel’s system calls Kernel’s system calls

3 Library functions Library functions

4 Administrative fi le formats Special fi les (in /dev)

5 Miscellaneous Administrative fi le formats

6 Games Games

7 Special fi les (in /dev) Macro packages and conventions

8 Administration commands Administration commands

T A B L E  2 . 1  Organization of the man Documentation

Section Subject (Solaris) Subject (Linux)

das76205_Ch02_025-055.indd   34das76205_Ch02_025-055.indd   34 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  35

as an argument. Depending on the UNIX flavor you are using, you may also need to 

prefix the -s option to the section number:

man 4 passwd passwd also occurs in Section 4

man -s4 passwd Solaris uses the -s option

This displays the documentation for a configuration file named /etc/passwd from 

Section 4. There’s also an entry for passwd in Section 1, but if we had used man passwd 

(without the section number), man would have looked up Section 1 only and wouldn’t 

have looked at Section 4 at all.

If you are using the X Window system, then you can use the xman graphic client 

to view man pages. Simply execute the command in any terminal window.

There are two chapters in this text that feature the important system calls and some standard 
library functions. Sections 2 and 3 of the man documentation provide detailed accounts of 
their usage. To look up the read system call, you’ll have to use man 2 read or man -s2 read.

 2.5.1 Understanding a man Page
A man page is divided into a number of compulsory and optional sections. Not every 

command has all sections, but the first three (NAME, SYNOPSIS and DESCRIPTION) 

are generally seen in all man pages. NAME presents a one-line introduction to the com-

mand. SYNOPSIS shows the syntax used by the command, and DESCRIPTION (often 

the largest section) provides a detailed description.

The SYNOPSIS section is the one that we need to examine closely, and we’ll do 

that with reference to the man page of the wc command shown in Fig. 2.2. Here you’ll 

find the syntax—the options and arguments used with the command. The SYNOPSIS 

follows certain conventions and rules which every user must understand:

 • If a command argument is enclosed in rectangular brackets, then it is optional; 

otherwise, the argument is required. The wc man page shows all its arguments 

enclosed in three such groups. This means that wc can be used without arguments.

 • The ellipsis (a set of three dots) implies that there can be more instances of the 

preceding word. The expression [ file ... ] signifies that wc can be used with 

more than one filename as argument.

 • If you find a | (pipe) character in any of these areas, it means that only one of the 

options shown on either side of the pipe can be used. Here, only one of the options, 

-c, -m and -C, can be used.

All options used by the command are listed in the OPTIONS section. Often, 

difficult options are supported by suitable examples. There’s a separate section named 

EXIT STATUS which lists possible error conditions and their numeric representation. 

You need to understand the significance of these numbers when writing shell scripts and 

C programs in order to determine the actual cause of termination of a program.

 2.5.2 Using man to Understand man
Since man is also a UNIX command like ls or cat, you’ll probably first like to know 

how man itself is used. Use the same command to view its own documentation:

man man Viewing man pages with man

Note

das76205_Ch02_025-055.indd   35das76205_Ch02_025-055.indd   35 12/13/11   10:43 AM12/13/11   10:43 AM



36 Your UNIX/Linux: The Ultimate Guide

Linux

From this man page you’ll know that you can choose your pager too. The variable, 

PAGER, controls the pager man uses, and if you set it to less, then man will use less as 

its pager. This is how you set PAGER at the command prompt before you invoke man:

PAGER=less ; export PAGER Set this shell variable and export it

man wc before you run man

To evaluate the value of PAGER, use the command echo $PAGER. This setting is valid 

only for the current session. In later chapters, you’ll understand the significance of the 

export statement and also learn to make this setting permanent so that its assigned value 

remains valid for all sessions.

On some systems, echo $PAGER may not show you any value at all, in which case man is using 
a default pager. Some systems set this variable in the file /etc/default/man instead.

There can be more headers, but we have covered the major ones. All said and done, 

commands having one or two man pages are generally easy to use, but not the ones that 

have tens of pages. man is more of a reference than a tutorial, and the manuals are good 

reading material only after you have sufficiently mastered the system.

info and --help: Two Important Help Resources

Man pages are read in a linear manner (from beginning to end) and have obvious 

limitations. Linux offers two additional help facilities—the info command and the 

--help option. Most commands support the --help option, though not all commands 

have info pages.

info info is GNU’s info reader for browsing Texinfo documentation. Invoke it with 

a command (say, info grep) to see the documentation organized in nodes (Fig. 2.3). 

Each node is marked with an asterisk at the beginning of the line. As in Web pages, 

there are multiple levels here, and the deeper you descend the more detailed the treat-

ment becomes.

Use the [Tab] key to move to a node and hit [Enter]. You’ll see the current page 

replaced with another. info is a little difficult to use at first, but if you remember these 

four navigation commands initially, you should feel fairly comfortable:

n Visits the next node

p Visits the previous node

u Returns to the previous level where [Enter] was pressed

l Moves to the previously visited node

Within a page, you can use the [PageUp] and [PageDown] (or spacebar) keys 

in the normal way for paging. You should be careful about using other keys because 

you may get stuck in the middle. In case that happens and these keys don’t take you 

to the desired point, just quit with q and reenter info. When in doubt, press h to see 

the complete list of key sequences.

Note

das76205_Ch02_025-055.indd   36das76205_Ch02_025-055.indd   36 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  37

--help Some commands have just too many options, and sometimes a quick lookup 

facility is what you need. The --help option displays a compact listing of all options. 

Here’s an extract from the find --help output that shows its options in a compact 

manner:

tests (N can be +N or -N or N): -amin N -anewer FILE -atime N -cmin N
      -cnewer FILE -ctime N -empty -false -fstype TYPE -gid N -group NAME
      -ilname PATTERN -iname PATTERN -inum N -ipath PATTERN -iregex PATTERN
      -links N -lname PATTERN -mmin N -mtime N -name PATTERN -newer FILE
      -nouser -nogroup -path PATTERN -perm [+-]MODE -regex PATTERN
      -size N[bckw] -true -type [bcdpfls] -uid N -used N -user NAME
actions: -exec COMMAND ; -fprint FILE -fprint0 FILE -fprintf FILE FORMAT
      -ok COMMAND ; -print -print0 -printf FORMAT -prune -ls

A Linux command invariably offers far more options than its UNIX counterpart. 

You’ll find this lookup facility quite useful when you know the usage of the options, 

but can’t recollect the one you require.

In the remainder of this chapter, we’ll examine a few general-purpose utilities that 

you need to be familiar with. Many of these utilities report on the state of the system 

and form important ingredients in shell programming.

F I G U R E  2 . 3  The info Page of grep

File: grep.info,  Node: Top,  Next: Introduction,  Up: (dir)
  
Grep
****
     ̀ grep’ searches for lines matching a pattern.
  
   This document was produced for version 2.5.1 of GNU ̀ grep’.
  
* Menu:
  
* Introduction:: Introduction.
* Invoking:: Invoking `grep’; description of options.
* Diagnostics:: Exit status returned by ̀ grep’.
* Grep Programs:: `grep’ programs.
* Regular Expressions:: Regular Expressions.
* Usage:: Examples.
* Reporting Bugs:: Reporting Bugs.
* Copying:: License terms.
* Concept Index:: A menu with all the topics in this manual.
* Index:: A menu with all ̀ grep’ commands
   and command-line options.
--zz-Info: (grep.info.gz)Top, 23 lines --Top-- Subfile: grep.info-1.gz----------
Welcome to Info version 4.2. Type C-h for help, m for menu item.

das76205_Ch02_025-055.indd   37das76205_Ch02_025-055.indd   37 12/13/11   10:43 AM12/13/11   10:43 AM



38 Your UNIX/Linux: The Ultimate Guide

 2.6 echo: Displaying Messages

We used the echo command in Section 1.6.3 to save some data in a file. The command 

is often used in shell scripts to display diagnostic messages on your terminal or to issue 

prompts for taking user input:

$ echo “Filename not entered” Shell version of echo used here

Filename not entered

echo is often used to evaluate shell variables. This is how you find out the shell you 

are using:

$ echo $SHELL Variables are evaluated with $

/bin/bash The Bash shell

UNIX fragmentation comes to light when you attempt to use echo with escape sequences. 

The AT&T version of echo supports escape sequences, but not BSD. An escape sequence 

begins with a \ and is followed by a single character or a zero-prefixed number. For 

instance, \c is an escape sequence. When it is placed at the end of a string that’s used 

with echo, the cursor is placed at the end of the output string rather than on the next line:

$ echo “Enter filename: \c”
Enter filename: $ _ Prompt and cursor in same line

This is how we use echo in a shell script to accept input from the terminal. Like \c, there 

are other escape sequences (Table 2.2). Here are two commonly used ones:

  \t—A tab which pushes text to the right by eight character positions.

  \n—A newline which creates the effect of pressing [Enter].

There’s another type of escape sequence that uses ASCII octal values (numbers that use 

the base 8 contrasted with the standard decimal system, which uses 10). echo interprets 

a number as octal when it is preceded by \0. For instance, [Ctrl-g] (the BELL character) 

has the octal value 07. This is how you can use echo to sound a beep:

$ echo “\07” \007 will also do

..... Beep heard .....

T A B L E  2 . 2  Escape Sequences Used by echo and printf

Escape Sequence Significance

\a Bell

\c No newline (cursor in same line)

\f Formfeed

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\0n ASCII character represented by the octal value n, where n can’t

 exceed 377 (decimal value 255)

das76205_Ch02_025-055.indd   38das76205_Ch02_025-055.indd   38 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  39

BASH

This is our first encounter with octal values as command arguments. Later, we’ll see 

that the tr, awk and perl commands also use octal values. For reasons that are covered 

later, it helps to enclose the arguments within quotes.

echo escape sequences are a feature of System V. BSD doesn’t recognize them, but it supports 
the -n option as an alternative to the \c sequence:

echo “Enter filename: \c” System V

echo -n “Enter filename: “ BSD

Even though we don’t use the disk version of echo nowadays, the bad news is that the shells 
also respond in different ways to these escape sequences. Rather than go into these details, a 
word of caution from POSIX would be appropriate: use printf.

Bash, the standard shell used in Linux, as well as Mac OS X, interprets the escape sequences 
properly only when echo is used with the -e option:

echo -e “Enter filename: \c”

We’ll be using these escape sequences extensively in this text, so if you are a Bash user (which 
most Linux users are), you must commit this option to memory.

 2.7 printf: Alternative to echo

Unless you have to maintain a lot of legacy code that uses echo, choose printf. Like 

echo, it exists as an external command, but it’s only Bash that has printf built in. 

printf also recognizes escape sequences, except that unlike echo, you must use \n to 

explicitly specify a newline:

$ printf “No filename entered\n” \n not required in echo

No filename entered

Like its namesake in the C language, printf also uses format specifiers. This is how 

you display the shell you are using:

$ printf “My current shell is %s\n” $SHELL
My current shell is /usr/bin/ksh

The %s format used for printing strings acts as a placeholder for the value of $SHELL. 

printf here replaces %s with the value of $SHELL. C language users should note the 

absence of the parentheses and the comma between the format specifier and its match-

ing arguments.

Caution

das76205_Ch02_025-055.indd   39das76205_Ch02_025-055.indd   39 12/13/11   10:43 AM12/13/11   10:43 AM



40 Your UNIX/Linux: The Ultimate Guide

 2.8 script: Recording Your Session

This command, virtually unknown to many UNIX users, lets you “record” your login 

session in a file. script is not included in POSIX, but you’ll find it useful to store in a 

file all commands that you invoke, their output and error messages. You can later view 

the file. If you are doing some important work and wish to keep a log of all of your 

activities, then you should invoke script immediately after you log in:

$ script
Script started, file is typescript
$ _ Another shell!

The prompt returns, and all of your keystrokes (including the one used to backspace) 

that you now enter here get recorded in the file typescript. After your recording is 

over, you can terminate the session with exit:

$ exit Or use [Ctrl-d]

Script done, file is typescript
$ _ Back to login shell 

You can now view this file with the cat command. script overwrites any previous 

typescript that may exist. If you want to append to it, look up the man page to locate 

the -a option.

The file created by script contains the control character, [Ctrl-m], at the end 

of every line. The cat command won’t show this character, but on your vi editor this 

character appears as ^M. Later, you should be able to view it (with cat -v) and remove 

it both interactively (with vi) and noninteractively (with sed).

Don’t forget to type exit at the end of the recording session. If you don’t, the  file typescript 
will progressively get bloated and take up much of your disk space. This can easily happen if 
you are working on your home computer where you may never log out. 

 2.9 Using Email with mailx

You are probably well-versed in email semantics already. Even if you are totally com-

fortable using a GUI program like Thunderbird or Outlook Express, it’s necessary to 

know one command-line tool that can be used noninteractively in shell scripts: mailx, 

the only mail utility that POSIX requires all UNIX systems to support. Using the shell’s 

redirection features (like the < and |) and mailx options, we should be able to generate 

mail headers and message body on the fly.

An email message is identified by a sender and a recipient, both of which appear 

as headers in the message. We’ll save the discussions on these headers for Chapter 11. 

Sender and recipient can be on the same or different machines or hosts. Accordingly, 

an email address can take the following forms:

henry  User henry on same host

henry@saturn On a different host

henry@heavens.com On the Internet

Caution

das76205_Ch02_025-055.indd   40das76205_Ch02_025-055.indd   40 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  41

Received mail is deposited in a mailbox. This is simply a text file that may contain 
binary attachments in encoded form. When a message has been viewed, it moves from 

the mailbox to the mbox. In mail jargon, these files are often referred to as folders.

GUI programs don’t make use of the default mailbox but instead maintain it, along with other 
folders that store sent and unsent mail, in a separate directory. Only command-line tools make 
use of the mail handling features offered by the UNIX system.

 2.9.1 Sending Mail
mailx works in the sending or receiving mode. When you invoke it with the email ad-

dress of the recipient as argument, the command works in the interactive sending mode. 

Key in the subject, and then the message body. Finally press [Ctrl-d] (or a solitary .) to 

terminate your input. This is how henry sends mail to charlie:

$ mailx charlie charlie is on same host

Subject: New System
The new system will start functioning from next month.
Convert your files by next week - henry
[Ctrl-d] or dot 
EOT System indicates end of text

The sent message lands in charlie’s mailbox. If this interactive mode were the only 

means of using mailx for sending mail, you’d be better off using Mozilla Thunderbird 

or Outlook Express. What makes mailx a “true” UNIX program is that it can be used 

noninteractively as well:

mailx -s “New System” charlie < message.txt

The -s option takes care of the subject, and the message body is obtained from the file 

message.txt using a shell feature called redirection. No GUI mail program can be 

used in this way.

Though POSIX doesn’t require mailx to copy messages to other people, most 

versions support the -c (carbon copy) and -b (blind carbon copy) options. Multiple 

recipients should be enclosed in quotes:

mailx -s “New System” -c “jpm,sumit” -b andrew charlie < message.txt

This command sends a message to charlie with carbon copies to jpm and sumit, and a 

blind carbon copy to andrew.

What makes this method of invocation remarkable is that the subject and recipients need 
not be known in advance, but can be obtained from shell variables. The message body could 
even come from the output of another program. You can use this feature to design automated 
mailing lists.

 2.9.2 Receiving Mail
Incoming mail is appended to the mailbox, a text file named after the user-id of the re-

cipient. The mailbox is located in the directory /var/mail (/var/spool/mail in Linux). 

Note

Note

das76205_Ch02_025-055.indd   41das76205_Ch02_025-055.indd   41 12/13/11   10:43 AM12/13/11   10:43 AM



42 Your UNIX/Linux: The Ultimate Guide

charlie’s mail is appended to /var/mail/charlie. We are often prompted to read the 

mailbox by this message from the shell:

You have new mail in /var/mail/charlie

charlie now has to invoke the mailx command in the receiving mode (without using an 

argument) to see the mailbox. The system first displays the headers and some credentials 

of all incoming mail that’s still held in the mailbox:

$ mailx
mailx version 5.0 Wed Jan  5 16:00:40 PST 2000  Type ? for help.
“/var/mail/charlie”: 5 messages 2 new 5 unread
 U  1 andrew@heavens.com Fri Apr  3 16:38 19/567 “sweet dreams”
 U  2 MAILER-DAEMON@heaven Sat Apr  4 16:33 69/2350 “Warning: could not se”
 U  3 MAILER-DAEMON@heaven Thu Apr  9 08:31 63/2066 “Returned mail: Cannot”
 N  4 henry@heavens.com Thu Apr 30 10:02 17/515 “Away from work”
>N  5 henry@heavens.com Thu Apr 30 10:39 69/1872 “New System”
? _ The ? prompt

The pointer (>) is positioned on the fifth message; we call this the current message. char-

lie can either press [Enter] or the number of the message shown in the second column 

to view the message body. The following message is typically seen on charlie’s screen:

Message 5:
>From henry@heavens.com  Thu Apr 30 10:39:14 2000
Date: Tue, 13 Jan 2003 10:06:13 +0530
From: “henry blofeld” <henry@heavens.com>
To: charlie@saturn.heavens.com
Subject: New System
  
The new system will start functioning next month.
Convert your files by next week - henry
  
? q Quitting mailx with q

Saved 1 message in /home/charlie/mbox
$ _

As mentioned before, after a message has been seen by the recipient, it moves from the 

mailbox to the mbox. This is generally the file named mbox in the user’s home directory 

(the directory where  the user is placed upon logging in).

 2.9.3 mailx Internal Commands
Internal commands are not the sole preserve of the shell. mailx also has its own internal 

commands (Table 2.3) that you can enter at the ? prompt. You can see the next message 

(if there is one) using the concept of relative addressing. Enter a + to see the next mes-

sage or a - to display the previous one. A message can also be accessed by its number:

3 Shows message number 3

das76205_Ch02_025-055.indd   42das76205_Ch02_025-055.indd   42 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  43

Replying to mail charlie can reply to a message by using the r (reply) command, 

which switches mailx to the sending mode. Every mail program has a mechanism of 

deducing the sender’s details, and consequently, the r command is usually not used 

with an address:

? r
To: henry@heavens.com Sender’s address automatically inserted

Subject: Re: File Conversion
I am already through.
[Ctrl-d]
EOT

Saving Messages Generally all mail commands act on the current message by default. 

With the w command, you can save one or more messages in separate files rather than 

the default mbox:

w note3 Appends current message to note3

w 1 2 3 note3 Appends first three messages to note3

You can later view these messages with their headers using mailx -f note3.

Deleting Mail To delete a message from the mailbox, use the d (delete) command. 

It actually only marks mail for deletion; the mail actually gets deleted only after quit-

ting mailx.

T A B L E  2 . 3  Internal Commands Used by mailx

Command Action

+ Prints next message

- Prints previous message

N Prints message numbered N

h Prints headers of all messages

d N Deletes message N (the current message if N is not specifi ed)

u N Undeletes message N (the current message if N is not specifi ed)

s fl name Saves current message with headers in fl name 

 (mbox if fl name is not specifi ed)

w fl name Saves current message without headers in fl name 

 (mbox if fl name is not specifi ed)

m user Forwards mail to user

r N Replies to sender of message N (the current message if N is not specifi ed)

q Quits mailx

! cmd Runs UNIX command cmd

das76205_Ch02_025-055.indd   43das76205_Ch02_025-055.indd   43 12/13/11   10:43 AM12/13/11   10:43 AM



44 Your UNIX/Linux: The Ultimate Guide

 2.10 passwd: Changing Your Password

The remaining commands in this chapter relate to our UNIX system, and we’ll first 

take up the passwd command that changes the user’s password. If your account has a 

password that is already known to others, you should change it immediately:

$ passwd
passwd:  Changing password for romeo
Enter login password: ******* Asks for old password

New password: ******** New password to be

Re-enter new password: ******** entered twice

passwd (SYSTEM): passwd successfully changed for romeo

passwd changes the password of the user running the command. If everything goes 

smoothly, the new password is encrypted (scrambled) by the system and stored in the 

file /etc/shadow (/etc/passwd on older systems). This file is used by the system for 

authentication every time you log in.

Many systems conduct certain checks on the password string to ensure that you 

don’t choose easy-to-remember passwords. Systems often insist on a minimum length 

or a mix of letters and numerals. Contrary to popular belief, it is safer to note the pass-

word down rather than try to remember it—and then forget it. The author employs the 

technique of choosing the name of one of his childhood heroes and then inserting the 

digits of the year of birth using a predetermined algorithm. If you adopt this approach, 

you need to note down only the algorithm and the name of the hero. It’s not difficult to 

obtain the year of birth of our heroes.

Today, many users in a network connect to a UNIX machine using an SSH 

program where the password is not used for authentication. Rather, it’s Public Key-

based cryptography that authenticates users (and is discussed in Section 11.8). The 

/etc/passwd file is used only when users connect through the console, a dumb terminal, 

or the telnet command.

A nonprivileged user like you can change only your own password, but the system administrator 
(the privileged user) uses the same command to change any user’s password. This is discussed in 
Chapter 19. Also, the command may not work on machines using the LDAP network protocol.

 2.11 uname: Your Machine’s Name and Operating System

The uname command displays certain features of the operating system running on your 

machine. By default, it simply displays the name of the operating system:

$ uname
SunOS Linux shows Linux

This is the operating system used by Sun Solaris. Using suitable options, you can 

display certain key features of the operating system and also the name of the machine. 

The output depends on the system you are using.

Note

das76205_Ch02_025-055.indd   44das76205_Ch02_025-055.indd   44 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  45

Linux

The Current Release (-r) A UNIX command often varies across versions so much 

that you’ll need to use the -r option to find out the version of your operating system:

$ uname -r
5.8 This is SunOS 5.8

This is a machine running SunOS 5.8, the operating system used by the Solaris 8 en-

vironment. If a command doesn’t work properly, it could either belong to a different 

“implementation” (could be BSD) or a different “release” (may be 4.0, i.e., System V 

Release 4 of AT&T).

The Machine Name (-n) Every machine has a name (the hostname), and if your 

network is connected to the Internet, this hostname is a component of your machine’s 

domain name. The -n option tells you the hostname:

$ uname -n
mercury.heavens.com The complete domain name

Here, mercury is the hostname and heavens.com is the domain name. Many UNIX net-

working utilities use the hostname as an argument. To copy files from a remote machine 

named mercury, you have to run ftp mercury.

uname -n may show either the hostname (like mercury) or the complete domain 

name (like mercury.heavens.com), depending on the flavor of Linux you are using. 

uname and uname -r display the operating system name and version number of the 

kernel, respectively:

$ uname
Linux
$ uname -r
2.6.16.60-0.21-smp Kernel version is 2.6

The first two numbers of the kernel version (here, 2.6) are something every Linux 

user must remember. Before installing software, the documentation may require you 

to use a kernel that is “at least” 2.4. The same software should run on this machine, 

whose kernel version is 2.6.

 2.12 who: Know the Users

Let’s take a look at two commands that we introduced in the hands-on session of 

Chapter 1. We saw the users logged in with the who command. Let’s now examine the 

other columns of the command’s output:

$ who
root console Aug  1 07:51 (:0)
romeo pts/10 Aug  1 07:56 (pc123.heavens.com)

das76205_Ch02_025-055.indd   45das76205_Ch02_025-055.indd   45 12/13/11   10:43 AM12/13/11   10:43 AM



46 Your UNIX/Linux: The Ultimate Guide

juliet pts/6 Aug  1 02:10 (pc125.heavens.com)
project pts/8 Aug  1 02:16 (pc125.heavens.com)
andrew pts/14 Aug  1 08:36 (mercury.heavens.com)

The first column shows the user-ids of the five users currently working on the system. 

The second column shows the filenames of the devices associated with the respective 

terminals. romeo’s terminal has the name pts/10 (a file named 10 in the pts direc-

tory). The third, fourth, and fifth columns show the date and time of logging in. The last 

column shows the hostname from where the user logged in. Users can log in remotely 

to a UNIX system, and all users here except root have logged in remotely from four 

different hosts.

One of the users shown in the first column is obviously the user who invoked the 

who command. To know that specifically, use the arguments am and i with who:

$ who am i
romeo      pts/10       Aug  1 07:56    (pc123.heavens.com)

UNIX provides a number of tools (called filters) to extract data from command output 

for further processing. For instance, you can use the cut command to take out the first 

column from the who output and then use this list with mailx to send a message to these 

users. The ability to combine commands to perform tasks that are not possible to achieve 

using a single command is what makes UNIX so different from other operating systems. 

We’ll often combine commands in this text.

 2.13 date: Displaying the System Date

The UNIX system maintains an internal clock meant to run perpetually. When the system 

is shut down, a battery backup keeps the clock ticking. This clock actually stores the 

number of seconds elapsed since the Epoch: January 1, 1970. A 32-bit counter stores 

these seconds (except on 64-bit machines), and the counter will overflow sometime 

in 2038.

You can display the current date with the date command, which shows the date 

and time to the nearest second:

$ date
Mon Aug 11 17:04:30 GMT 2003

The command can also be used with suitable +-prefixed format specifiers as arguments. 

For instance, you can print only the month, using the format +%m:

$ date +%m
08

das76205_Ch02_025-055.indd   46das76205_Ch02_025-055.indd   46 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  47

or the month name:

$ date +%h
Aug

or you can combine them in one command:

$ date +”%h %m”
Aug 08

When you use multiple format specifiers, you must enclose them within quotes (single 

or double) and use a single + symbol as a prefix. Here’s a useful list of the other 

format specifiers:

d—The day of the month (1 to 31).

y—The last two digits of the year.

H, M and S—The hour, minute, and second, respectively.

D—The date in the format mm/dd/yy.

T—The time in the format hh:mm:ss.

You can’t change the date as an ordinary user, but the system administrator uses the same 
command with a different syntax to set the system date! This is discussed in Chapter 19.

 2.14 stty: When Things Go Wrong

Different terminals have different characteristics, and your terminal may not behave in 

the way you expect it to. Sometimes you may want to change the settings before you 

run a program. The stty command changes terminal settings but also displays them 

when used with the -a option:

$ stty -a
speed 38400 baud; rows = 24; columns = 80; ypixels = 0; xpixels = 0;
intr = ̂ c; quit = ^\; erase = ^?; kill = ^u;
eof = ̂ d; eol = <undef>; eol2 = <undef>; swtch = <undef>;
start = ̂ q; stop = ^s; susp = ^z; dsusp = ^y;
isig icanon -xcase echo echoe echok -echonl -noflsh
-tostop echoctl -echoprt echoke -defecho -flusho -pendin iexten

stty shows the settings of several keywords in this trimmed output. The first line shows 

38,400 as the baud rate (the speed) of the terminal. The other keywords take two forms:

 • keyword = value
 • keyword or -keyword. The - prefix implies that the option is turned off.

Let’s now understand the significance of some of these keywords and then use 

stty to change the settings.

Note

das76205_Ch02_025-055.indd   47das76205_Ch02_025-055.indd   47 12/13/11   10:43 AM12/13/11   10:43 AM



48 Your UNIX/Linux: The Ultimate Guide

 2.14.1 Changing the Settings
Interrupting a Command (intr) Sometimes you might want to interrupt a program 

before it completes. The stty output shows intr as the interrupt key, which here is 

set to ^c (a caret and c signifying [Ctrl-c]). Pressing this key on this machine should 

terminate a program. You can define a different key for this function:

stty intr DEL The [Delete] key 

To revert to the original setting, use stty intr \^c. The \ is often used in UNIX to 

emphasize that the character following it needs to be interpreted differently. Here, it 

suggests that ^ must not be interpreted as the caret character, but as a component of 

the [Ctrl-c] sequence. We’ll see more of the \ when we take up the shell in Chapter 6.

Changing the End-of-File Key (eof) When using mailx, you used [Ctrl-d] to termi-

nate input. Many commands like cat and wc also use the eof or end-of-file character, which 

stty understands as the keyword eof. The stty output shows eof set to ^d ([Ctrl-d]). 

You can change this setting also in the manner described previously.

Backspacing (erase) Backspacing is controlled by the erase character, which is set 

to ^?, the key labeled [Backspace]. Sometimes backspacing may not work at all and 

instead produce a series of ^H characters every time you press the key:

$ password^H^H^H [Backspace] pressed three times

This often happens when you log on to a remote machine whose terminal settings are 

different from your local one. Try using [Ctrl-h] or [Delete] or explicitly assign the 

[Backspace] key in this way:

stty erase [Backspace] Press the [Backspace] key after erase

Suspending a Job (susp) Modern shells allow you to suspend a job and then resume 

it later. stty shows [Ctrl-z] as the stop character. When a command is running you can 

press this key, but do so only after you have read Section 7.11.

Entering a Password through a Shell Script (echo) Shell programmers often 

manipulate echo to let shell programs accept passwords without displaying them on 

screen. Here it is on, but we can turn it off with stty -echo. You should turn it off after 

the entry is complete by using stty echo.

When Everything Else Fails (sane) stty is also used to set the terminal characteris-

tics to values that will work on most terminals. Use stty sane or the reset command 

to restore sanity to the terminal.

These key functions are summarized in Table 2.4. Note that the default key se-

quences (like eof and interrupt) could be different on your system. In any case, you are 

advised against tampering with too many settings.

das76205_Ch02_025-055.indd   48das76205_Ch02_025-055.indd   48 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  49

erase [Ctrl-h] Erases text

interrupt [Ctrl-c] or [Delete] Interrupts a command

eof [Ctrl-d] Terminates input to a program that expects

  input from the keyboard

stop [Ctrl-s] Stops scrolling of display and locks keyboard

start [Ctrl-q] Resumes scrolling of display and unlocks keyboard

kill [Ctrl-u] Kills command line without executing it

quit [Ctrl-\] Kills running command but creates a core fi le

  containing the memory image of the program

susp  [Ctrl-z] Suspends process and returns shell prompt;

  use fg to resume job

echo - Enables display to echo keyboard input 

  (-echo to disable)

sane - Restores terminal to normal status

T A B L E  2 . 4  stty Settings and Keyboard Commands to Try When Things Go Wrong

stty Keyword Typical Setting Function

Keep these two keys in mind: [Ctrl-c], the interrupt key, used to interrupt a running program, 
and [Ctrl-d], the eof key, used to signify the end of terminal input to a program that’s expect-
ing input from the terminal.

 2.15 The X Window System

Finally, let’s briefly examine an alternative to the command line interface. Every UNIX 

system supports a graphical user interface (GUI), which generically is known as the X 

Window system. Like the ubiquitous Microsoft Windows, X (i.e., X Window) displays 

every application in a separate window. It uses the mouse to invoke programs, display 

menus, select options, and handle cut-copy-paste operations. Because X uses a bit-mapped 

display (where every pixel on the screen is handled individually), Web browsers like 

Mozilla and Konqueror must run under X.

X was originally developed to work in a network, and Section 11.12 examines the 

networking features of X. But X also supports a host of applications that can be used 

in standalone mode. However, the use of X is strongly discouraged for handling tasks 

that are better handled by the command line. Alternatively, you can use this command 

line from a window running under X. This application is called the terminal emulator, 

which along with a file management program, is discussed next.

Unlike Microsoft Windows, the look-and-feel of the X Window system varies 

widely across UNIX and Linux systems. For some time, it appeared that vendors had 

finally standardized on the Common Desktop Environment (CDE). Eventually, Solaris 

abandoned CDE, and Linux systems have several alternatives (like GNOME or KDE) 

for you to choose from.

Tip

das76205_Ch02_025-055.indd   49das76205_Ch02_025-055.indd   49 12/13/11   10:43 AM12/13/11   10:43 AM



50 Your UNIX/Linux: The Ultimate Guide

 2.15.1 The Terminal Emulator
X supports a program called the terminal emulator, which runs a shell in a window 

(Fig. 2.4). You can enter every UNIX command from the shell prompt of this window. 

UNIX commands use a character-based display, but you can also invoke any graphical 

X program from the emulator window. This is how you run Mozilla Firefox:

firefox & Run all X programs in the background with &

The original emulator program is xterm. CDE offered dtterm,  but today we have better 

emulator programs to choose from. The one shown in Fig. 2.4 is the konsole program 

offered on SuSE Linux. Every emulator features a menu and a scrollbar that allows you 

to recall previous commands and their output. The exit command that kills your login 

session on a character terminal kills the window and its associated shell here.

Almost every X application allows cut-copy-paste operations. To copy text 

from one window to another, first highlight the text with the left mouse button; the 
text automatically gets copied to a buffer. Now select the other window, click on the 

desired location, and then click on the middle button (or both buttons simultaneously 

when using a two-button mouse). The copied text is  pasted on this window. Using this 

technique, you can re-execute a long command line on a different window or copy text 

from a Web page to your vi editor. Usually cut-copy-paste operations are also avail-

able as menu options.

F I G U R E  2 . 4  A Terminal Emulator Program

das76205_Ch02_025-055.indd   50das76205_Ch02_025-055.indd   50 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  51

You can have several terminal emulators (apart from several programs) on your 

desktop, and you can invoke a separate application in each one of them. You can also 

switch from one application to another without quitting any of them.

If you have difficulty in copy-paste operations using the technique described here, you can 
use the window menu, which also offers options to do the same work. Often, the keys are the 
same ones used in Microsoft Windows—[Ctrl-c] for copying and [Ctrl-v] for pasting.

 2.15.2 The File Manager
We use files all the time, copying, moving and deleting them several times a day. Every 

X implementation offers a file management program that can perform these tasks. A file 

manager can also be used to view file contents and execute programs. Windows offers a 

similar application—Windows Explorer. The file manager on the CDE is dtfile, which 

is shown in Fig. 2.5. Linux users may use Konqueror instead. However, your system 

may contain other file managers.

Using menu options, you can create and remove directories. Try creating some. 

To copy or move files from one directory to another, you need to work with two win-

dows of the same program. Look up the menu option that splits a window. Every file 

is represented by an icon, and you select it by clicking it with the mouse. You can also 

select multiple files by pressing [Ctrl] and then clicking on each icon. To select all files, 

Tip

F I G U R E  2 . 5  Two Views of the dtfile File Manager

das76205_Ch02_025-055.indd   51das76205_Ch02_025-055.indd   51 12/13/11   10:43 AM12/13/11   10:43 AM



52 Your UNIX/Linux: The Ultimate Guide

use the option offered by the menu; it often is [Ctrl-a]. You can now drag the files by 

keeping the left mouse button pressed and drop them to their new location by releasing 

the button. Files can thus be copied and moved in this way. 

In Chapter 3, you’ll use the mkdir, rmdir, cp and mv commands for file and 

directory handling. You’ll see how effortlessly you can work with groups of files and 

directories using these commands. However, it’s good to know the X techniques now 

because that will help you appreciate the power of the UNIX command line interface 

later. The limitations of the X method of doing things will soon become apparent. 

S U M M A R Y

UNIX commands are case-sensitive but are generally in lowercase. They need not have 

any specific extensions. Commands for general use are located in the directories /bin 

and /usr/bin. The shell variable, PATH, specifies the search list of directories for locat-

ing commands.

The shell treats a command either as external when it exists on disk, or internal 
when it is built into the shell. Commands like man and mailx also have their own in-

ternal commands.

The command line comprises the command and its options and arguments. 

Commands and arguments are separated by whitespace. Multiple commands can be 

delimited with a ;, and a command sequence can be split into multiple lines.

Use the man command to look up the documentation for a command, a configura-

tion file, or a system call. Most commands are found in Section 1. You’ll find system 

calls and library functions in Sections 2 and 3.

echo displays a message on the screen. It supports escape sequences (like \c and 

\007). The command has portability problems, the reason why printf should be used. 

printf also supports format specifiers (like %d).

script logs all user activities in a separate file named typescript.

A mail message is saved in a text file called mailbox. Mail is moved to the mbox 

after it is viewed. mailx, a command-line mail program, can be used interactively and 

also noninteractively from shell scripts.

date displays any component of the system date and time in a number of formats. 

passwd changes a user’s password. The system administrator can change the system 

date and the password of any user.

uname reveals details of your machine’s operating system (-r and -s). It also 

displays the hostname (-n) that is used by networking commands.

who displays the users working on the system.

stty displays and sets various terminal attributes. It defines the key that interrupts 

a program (intr), suspends a job (susp), and marks the end-of-file (eof). stty sane 

sets the terminal to some standard values.

The X Window system provides a graphical user interface (GUI) for users to run 

programs that involve graphics. X also provides several applications including a terminal 
emulator and a file management program.

das76205_Ch02_025-055.indd   52das76205_Ch02_025-055.indd   52 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  53

S E L F - T E S T

2.1 Enter a : and press [Enter]. Next run type :. What do you conclude?

2.2 UNIX commands must be in lowercase and must not have extensions. True or 

false?

2.3 Name three UNIX commands whose names are more than five characters long.

2.4 Find out whether these commands are internal or external: 

 echo, date, pwd, and ls.

2.5 If two commands with the same filename exist in two directories in PATH, how 

can they be executed?

2.6 How is the current directory indicated in PATH?

2.7 How many options are there in this command? ls -lut chap01 note3
2.8 If you find yourself using options preceded by two hyphens (like --all), which 

flavor of UNIX could you be using?

2.9 What is the name given to the command and its options and arguments?

2.10 How do you find out the version number of your operating system?

2.11 Why are the directories /bin and /usr/bin usually found first in PATH?

2.12 What is whitespace? Explain the treatment the shell metes out to a command 

that contains a lot of whitespace.

2.13 Do you need to wait for a command to finish before entering the next one?

2.14 Why doesn’t this command run in the way it is meant to? 

 printf “Filename: %s\n”, fname
2.15 What is a pager? Name the two standard pagers used by man.

2.16 You located the string crontab in a man page by searching with /crontab[Enter]. 

How do you find out the other occurrences of this string in the page?

2.17 You don’t know the name of the command that could do a job. What do you do?

2.18 How do you find out the users who are idling from the man documentation 

of who?

2.19 What is the difference between the mailbox and mbox?

2.20 The passwd command didn’t prompt for the old password. When do you think 

that can happen? Where is the password stored?

2.21 Can you change the system date with the date command?

2.22 Enter the uname command without any arguments. What do you think the output 

represents?

2.23 How will you record your login session in the file foo?

2.24 Interpret the following output of who am i:

romeo      pts/10       Aug  1 07:56    (pc123.heavens.com)

2.25 How do you determine the erase, kill and eof characters on your system?

2.26 You suddenly find your keyboard is displaying uppercase letters even though 

your [CapsLock] key is set properly. What should you try?

das76205_Ch02_025-055.indd   53das76205_Ch02_025-055.indd   53 12/13/11   10:43 AM12/13/11   10:43 AM



54 Your UNIX/Linux: The Ultimate Guide

E X E R C I S E S

2.1 Enter a # before a command and press [Enter]. What do you see, and how do 

you think you can take advantage of the behavior?

2.2 Name three major differences between UNIX commands and Windows programs.

2.3 A program file named foo exists in the current directory, but when we try to 

execute it by entering foo, we see the message foo: command not found. 

Explain how that can happen.

2.4 If a command resides in a directory which is not in PATH, there are at least two 

ways you can still execute it. Explain.

2.5 Where are the commands used by the system administrator located?

2.6 You won’t find the cd command either in /bin or /usr/bin. How is it executed 

then?

2.7 If you find the echo command in /bin, would you still call it an external 

command?

2.8 Is an option also an argument? How many arguments are there in this command? 

cat < foo > bar
2.9 Why shouldn’t you have a filename beginning with a -?

2.10 Reduce the number of keystrokes to execute this command: 

 tar -t -v -f /dev/fd0.

2.11 Look up the tar man page to find out whether the command 

 tar -cvfb 20 foo.tar *.c is legitimate or not. Will the command work 

without the - symbol?

2.12 Both of the following commands try to open the file foo, but the error messages 

are a little different. What could be the reason?

$ cat foo
cat: foo: No such file or directory
$ cat < foo
bash: foo: No such file or directory

2.13 Invoke the commands echo hello   dolly and echo “hello   dolly” (three 

spaces between hello and dolly). Explain the difference in command behavior.

2.14 What does the secondary prompt look like, and when does it appear?

2.15 What do the | and the three dots in the SYNOPSIS section of these man pages 

indicate as shown below?

/usr/xpg4/bin/tail [ -f | -r ]
/usr/bin/ls [ -aAbcCdfFgilLmnopqrRstux1 ]  [ file ... ]

2.16 If a command, filename, and a system call have the same name and are available 

in Sections 1, 5, and 2 respectively, how will you display the man pages of each 

one of them?

2.17 Your system doesn’t have the apropos command. What will you do?

2.18 The command echo “Filename: \c” didn’t place the cursor at the end of 

the line. How will you modify the command to behave correctly if your shell 

is (i) Bash, (ii) any other shell?

das76205_Ch02_025-055.indd   54das76205_Ch02_025-055.indd   54 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 2: Becoming Familiar with UNIX Commands  55

2.19 What is an escape sequence? Name three escape sequences used by the echo 

command, and explain the significance of each.

2.20 Use printf to find out the hex and octal values of 255.

2.21 Run ps, then the script command, and then run ps again. What do you notice?

2.22 In what way is the mailx command superior to a GUI program like Netscape or 

Mozilla? 

2.23 Can you have the same user-id more than once in the who output?

2.24 Both your local and remote machines use identical versions of UNIX. How do 

you confirm whether you are logged in to a remote machine or not?

2.25 Which command does the nonprivileged user use to change the system date 

and time?

2.26 Display the current date in the form dd/mm/yyyy.

2.27 You need to accept a secret code through a shell script. What command will you 

run in the script to make sure that your keyboard input is not displayed? How 

do you then revert to the normal setting?

2.28 Explain why it is possible to key in the next command before the previous com-

mand has completed execution.

2.29 What will you do to ensure that [Ctrl-c] interrupts a program? Will it work the 

next time you log in?

das76205_Ch02_025-055.indd   55das76205_Ch02_025-055.indd   55 12/13/11   10:43 AM12/13/11   10:43 AM



56

3 
C H A P T E R  3

The File System

UNIX looks at everything as a file, and any UNIX system has thousands of 

files. For convenience, we make a distinction between ordinary files and di-

rectories that house groups of files. In this chapter, we’ll create directories, navigate the 

file system, and list files in a directory. We’ll also examine the structure of the standard 

UNIX file system.

In addition, we’ll create, copy, move, and delete files, and we will learn how these 

actions affect the directory. Some commands exhibit recursive behavior by descending a 

directory structure to perform some action. Because we frequently encounter Windows 

systems, we need to be able to move files between UNIX and Windows systems. As 

Internet users, we also need to handle compressed files that we download. However, we 

don’t tamper with the major file attributes in this chapter.

  Objectives
 • Understand the initial categorization of files into ordinary, directory, and device.

 • Learn the hierarchical structure of the file system, and how UNIX organizes its 

own data.

 • Understand the significance of the home directory and current directory.

 • Create and remove directories with mkdir and rmdir.

 • Navigate the file system with cd and pwd.

 • Become aware of the significance of absolute and relative pathnames.

 • List files with ls.

 • Copy, rename, and delete files with cp, mv, and rm.

 • View text files with cat and more.

 • Create and edit a file with pico.

 • Count the number of lines, words, and characters with wc.

 • Learn how UNIX handles printing, and use lp and lpr.

 • Display the nonprintable characters in a file with od.

 • Convert between UNIX and DOS formats with unix2dos, dos2unix and the Tofrodos 

package.

 • Compress files with gzip and create archives comprising multiple files with tar.

 • Perform both compressing and archiving with zip.

das76205_Ch03_056-091.indd   56das76205_Ch03_056-091.indd   56 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 57

 3.1 The File

The file is a container for storing information. As a first approximation, we can treat 

it simply as a sequence of characters. UNIX doesn’t impose any structure for the data 

held in a file. It’s for you to do that to suit your programs. A file doesn’t contain an 

end-of-file (eof) mark, but that doesn’t prevent the kernel from knowing when to stop 

reading the file. Neither the file’s name nor its size is stored in the file. File attributes 

are kept in a separate area of the hard disk, not directly accessible to users, but only 

to the kernel.

The shell is a file and so is the kernel. UNIX treats directories and devices like the 

hard disk, DVD-ROM, and printer as files as well. As an initial exercise, let’s understand 

a file as being of three types:

 • Ordinary file—Also known as a regular file. It contains only data as a stream of 

characters.

 • Directory file—A folder containing the names of other files and subdirectories as 

well as a number associated with each name.

 • Device file—This represents a device or peripheral. To read or write a device, you 

have to perform these operations on its associated file.

There are other types of files, but we’ll stick to these three for the time being. We need 

to make this distinction between file types because the significance of a file’s attributes 

often depends on its type. Execute permission for an ordinary file means something quite 

different from that for a directory. You can’t directly put something into a directory file, 

and a device file isn’t really a stream of characters. Some commands work with all file 

types, but some don’t.

 3.1.1 Ordinary (Regular) File
An ordinary file is the most common file type containing a stream of data. This type 

of file can be further divided into two types:

 • Text file

 • Binary file

A text file contains only printable characters. All C and Java program sources, and shell 

and Perl scripts, are text files. A text file contains lines where each line is terminated 

with the linefeed (LF) character, also known as newline. When you press [Enter] while 

inserting text in a text editor like vi or pico, the LF character is appended to every 

line. You won’t see this character normally, but the cat -e command makes it visible 

(by showing a $ at the end of each line). Also, the od command  makes all characters 

in a file visible.

A binary file, on the other hand, contains both printable and nonprintable char-

acters that cover the entire ASCII range (0 to 255). Most UNIX commands are binary 

files, and the object code and executables that you produce by compiling C programs 

are also binary files. Picture, sound, and video files are binary files as well (with few 

exceptions). Displaying such files with a simple cat command produces unreadable 

output and may even disturb your terminal’s settings.

das76205_Ch03_056-091.indd   57das76205_Ch03_056-091.indd   57 12/13/11   10:43 AM12/13/11   10:43 AM



58 Your UNIX/Linux: The Ultimate Guide

 3.1.2 Directory File
A directory contains no data as such, but maintains some details of the files and subdi-

rectories that it contains. The UNIX file system is organized with a number of directo-

ries and subdirectories. You can also create them when you need to group a set of files 

pertaining to a specific application.

A directory file contains an entry for every file and subdirectory that it houses. 

If you have 20 files in a directory, there will be 20 entries in the directory. Each entry 

has two components:

 • The filename.

 • A unique identification number for the file or directory (called the inode number).

If a directory bar contains an entry for a file foo, we commonly (and loosely) say that 

the directory bar contains the file foo. Though we’ll often be using the phrase “contains 

the file” rather than “contains the filename,” you must not interpret the statement liter-

ally. A directory contains the filename and not the file’s contents.

You can’t, however, write a directory file, but you can perform some action that 

makes the kernel write a directory. For instance, when you create or remove a file, the 

kernel automatically updates its corresponding directory by adding or removing the entry 

(inode number and filename) associated with the file.

The name of a file can only be found in its directory. The file itself doesn’t contain its own name 
or any of its attributes, like its size or time of last modification.

 3.1.3 Device File
You’ll also be printing files, installing software from DVD-ROMs, or backing up files 

to tape. All of these activities are performed by reading or writing the file representing 

the device. For instance, when you restore files from tape, you read the file associated 

with the tape drive.

A device file is indeed special; it’s not really a stream of characters. In fact, it 
doesn’t contain anything at all. You’ll soon learn that every file has some attributes that 

are not stored in the file but are stored elsewhere on disk. The attributes of a device 

file entirely govern the operation of the device. The kernel identifies a device from its 

attributes and then uses them to operate the device.

Now that you understand the three types of files, you shouldn’t feel baffled by 

subsequent use of the word in the book. The term file will often be used in this book to 

refer to any of these types, though it will mostly be used to mean an ordinary file. The 

real meaning of the term should be evident from its context.

 3.2 What’s in a (File)name?

On most UNIX systems today, a filename can consist of up to 255 characters. Files may 

or may not have extensions, and can consist of practically any ASCII character except 

the / and the NULL character (ASCII value 0). As a general rule you should avoid us-

ing unprintable characters in filenames. Further, since the shell has a special treatment 

Note

das76205_Ch03_056-091.indd   58das76205_Ch03_056-091.indd   58 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 59

for characters like $, `, ?, *, & among others, it is recommended that only the following 

characters be used in filenames:

 • Alphabetic characters and numerals.

 • The period (.), hyphen (-), and underscore (_).

UNIX imposes no restrictions on the extension, if any, that a file should have. 

A shell script doesn’t need to have the .sh extension even though it helps in identification. 

But the C compiler expects .c program files and Java expects .java. DOS/Windows 

users must also keep these two points in mind:

 • A filename can comprise multiple embedded dots; a.b.c.d.e is a perfectly valid 

filename. Moreover, a filename can also begin with a dot or end with one.

 • UNIX is sensitive to case; chap01, Chap01 and CHAP01 are three different filenames, 

and it’s possible for them to coexist in the same directory. This is, however, not true 

for Mac OS X, the operating system used by Apple Macintosh.

Never use a - at the beginning of a filename. You could have a tough time getting rid of it! 
A command that uses a filename as an argument often treats it as an option and reports errors. 
For instance, if you have a file named -z, cat -z won’t display the file but will interpret it as 
an invalid option. There’s a workaround, though: embed the filename in a pathname. Both 
cat ./-z and  rm test/-z would work on most systems. 

 3.3 The File System Hierarchy 

All files in UNIX are organized in a hierarchical (an inverted tree) structure (Fig. 3.1). 

This hierarchy has a top called root, which serves as the reference point for all files. 

root is actually a directory that is represented by a / (frontslash). Don’t mix up the root 

directory with the user-id root, which is used by the system administrator to log in. In this 

text, we’ll be using both the name “root” and the symbol / to represent the root directory.

The root directory (/) has a number of subdirectories under it. These subdirectories 

have more subdirectories and other files under them. For instance, home is a directory 

under root, and romeo is yet another directory under home. login.sql is presumably 

an ordinary file under romeo. Every hierarchy contains parent-child relationships, and 

we can conveniently say that romeo is the parent of login.sql, home is the parent of 

romeo, and / (root) is the parent of home.

We can specify the relationship login.sql has with root by a pathname: 

/home/romeo/login.sql. The first / represents the root directory and the remaining /s 

act as delimiters of the pathname components. This pathname is appropriately referred 

to as an absolute pathname because by using root as the ultimate reference point we 

can specify a file’s location in an absolute manner. To view this file, we need to use 

cat /home/romeo/login.sql.

When you specify a file using absolute pathnames, you have a mechanism for 

identifying a file uniquely. No two files in a UNIX system can have identical absolute 

pathnames. You can have two files with the same name, but in different directories; their 

pathnames will also be different. Thus, the file /home/romeo/progs/fork.c can coexist 

with the file /home/romeo/safe/fork.c.

Caution

das76205_Ch03_056-091.indd   59das76205_Ch03_056-091.indd   59 12/13/11   10:43 AM12/13/11   10:43 AM



60 Your UNIX/Linux: The Ultimate Guide

It’s obvious that the parent is always a directory. home and romeo are both direc-

tories as they are both parents of at least one file or directory. An ordinary or device file 

like login.sql can’t be the parent of another file.

We don’t always use absolute pathnames in our command lines. When you access a file in 
the current directory or in its subdirectories, the first / should be dropped. The command 
cat /progs/foo.c is different from cat progs/foo.c.

 3.4 The UNIX File System

Now let’s take a cursory look at the structure of the UNIX file system. This structure 

had changed  constantly over the years until AT&T proposed its SVR4 release. Though 

vendor implementations vary in detail, broadly the SVR4 structure has been adopted by 

most vendors. Fig. 3.1 shows a heavily trimmed structure.

For our initial comprehension, we’ll stick to the directories that follow. It helps, 

from the administrative point of view at least, to view the entire file system as compris-

ing two groups. The first group contains the files that are made available during system 

installation:

 • /bin and /usr/bin These are the directories where all the commonly used UNIX 

commands (binaries, hence the name bin) are found. Note that the PATH variable 

always shows these directories in its list.

Caution

F I G U R E  3 . 1  The UNIX File System Tree

varusretcsbinhomedevbin

bin lib local

fd0 lp0

/

romeo juliet

progs login.sql

dsk

sbin

.profile

tmplib

das76205_Ch03_056-091.indd   60das76205_Ch03_056-091.indd   60 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 61

 • /sbin and /usr/sbin If there’s a command that you can’t execute but the system 

administrator can, then it would probably be in one of these directories. You won’t 

be able to execute most (some, you can) commands in these directories. Only the 

system administrator’s PATH shows these directories.

 • /etc This directory contains the configuration files of the system. You can change 

a very important aspect of system functioning by editing a text file in this directory. 

Your login name and password are stored in files /etc/passwd and /etc/shadow.

 • /dev This directory contains all device files. These files don’t occupy space on 

disk. There could be more subdirectories like pts, dsk, and rdsk in this directory.

 • /lib and /usr/lib These directories contain all library files in binary form. You 

need to link your C programs with files in these directories.

 • /usr/include This directory contains the standard header files used by C pro-

grams. The statement #include <stdio.h> used in most C programs refers to 

the file stdio.h in this directory.

 • /usr/share/man This is where the man pages are stored. There are separate 

subdirectories here (like man1, man2, etc.) that contain the pages for each section. 

For instance, the man page of ls can be found in /usr/share/man/man1, where 

the 1 in man1 represents Section 1 of the UNIX manual. These subdirectories may 

have different names on your system (like sman1, sman2, etc., in Solaris).

Users also work with their own files; they write programs, send and receive mail, and 

create temporary files. These files are available in the second group:

 • /tmp The directories where users are allowed to create temporary files. These 

files are wiped away regularly by the system.

 • /var The variable part of the file system. Contains all of your print jobs and your 

outgoing and incoming mail.

 • /home On many systems, users are housed here. romeo would have his home 

directory in /home/romeo. However, your system may use a different location for 

home directories.

On a busy system, it’s in directories belonging to the second group that you could 

experience rapid depletion of available disk space. You’ll learn later to house some 

of these directory structures on separate file systems so that depletion of space (and 

corruption) in one file system doesn’t affect other file systems.

 3.5 Using Absolute Pathnames with Commands

Absolute pathnames have universal application. They can be used either with the com-

mand name or its argument if it represents a filename. To illustrate the latter, we often 

use the command

cat /etc/passwd

to look up the passwd file in the directory /etc. The command will also work if we use 

the absolute pathname for cat as well:

/bin/cat /etc/passwd Assuming that cat exists in /bin

das76205_Ch03_056-091.indd   61das76205_Ch03_056-091.indd   61 12/13/11   10:43 AM12/13/11   10:43 AM



62 Your UNIX/Linux: The Ultimate Guide

We don’t need to use the absolute pathname with cat because it is found in /bin or 

/usr/bin, both of which are standard components of PATH. But there are two possible 

situations when a command must be used with an absolute pathname:

 • If firefox is available in /usr/local/bin, and this directory is not included in 

PATH, then we need to use /usr/local/bin/firefox.

 • A command sometimes occurs in two directories, both of which could be in PATH. 

For instance, on Solaris systems two versions of grep are found in /usr/bin and 

/usr/xpg4/bin, and if /usr/bin occurs prior to /usr/xpg4/bin on our system:

PATH=/bin:/usr/bin:/usr/xpg4/bin:.

 then we need to use /usr/xpg4/bin/grep to take advantage of the features of 

grep that conform to the X/Open Portability Guide.

However, if you are frequently accessing programs in a certain directory, it often makes 

sense to include the directory itself in PATH. The technique of doing that is shown in 

Section 8.3.

 3.6 The HOME Variable and ~: The Home Directory

When you log onto the system, say using romeo as the user-id, you are placed in your 

home directory. The shell variable HOME maintains the absolute pathname of this 

directory:

$ echo $HOME
/home/romeo

The system administrator sets the home directory for a user in /etc/passwd at the time 

of opening a user account. On many UNIX systems, home directories are maintained 

in /home, but your home directory could be located differently (say, in /export/home). 

It’s often convenient to refer to a file foo located in the home directory as $HOME/foo.

Most shells (except Bourne) also use the ~ symbol to refer to the home directory. It 

is a little tricky to use because it can refer to any user’s home directory and not just your 

own. For instance, you can also access $HOME/foo as ~/foo. If user juliet has the same 

file in her home directory, then romeo can access it as ~juliet/foo. The principle is this: 

A tilde followed by / (like ~/foo) refers to one’s own home directory, but when followed 

by a string (~juliet) refers to the home directory of that user represented by the string.

In your shell scripts, never refer to files in your home directory or in its subdirectories by their 
absolute pathnames. Use $HOME/progs or ~/progs rather than /home/romeo/progs. This lets 
you move the scripts to a different system where the home directory is different, say, /u2/romeo, 
because $HOME  and ~ evaluate differently.

 3.7 pwd and cd: Navigating the File System

Just as a file has a location, UNIX makes users believe that they too are placed in a 

specific directory. It also allows you to move around in the file system. At any instant 

Tip

das76205_Ch03_056-091.indd   62das76205_Ch03_056-091.indd   62 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 63

of time, you are located in a directory known as the current directory. The pwd (print 

working directory) command displays the absolute pathname of this directory:

$ pwd
/home/romeo

Navigation is performed with the cd (change directory) command. This command can 

be used either with or without an argument. When used with one, it switches to the 

directory:

$ pwd
/home/romeo
$ cd progs Switches to the progs directory

$ pwd
/home/romeo/progs

The command cd progs means: “Change your subdirectory to progs under the current 

directory.” We didn’t use an absolute pathname here (cd /home/romeo/progs) because 

that would require more keystrokes.

cd can also be used without an argument; it simply returns you to your home 

directory:

$ pwd
/home/romeo/progs
$ cd cd used without arguments

$ pwd reverts to the home directory

/home/romeo

Attention, DOS users! cd invoked without an argument doesn’t display the current di-

rectory. We often use this form when we have moved away (to say, /home/juliet or 
~juliet) and now want to make an immediate return:

$ cd /home/juliet Or cd ~juliet

$ pwd
/home/juliet
$ cd Returns to home directory

$ pwd
/home/romeo

The cd command can sometimes fail if you don’t have proper permissions to access the 

directory. This doesn’t normally happen unless you deliberately tamper with the direc-

tory’s permissions. Navigation with the cd command using mostly absolute pathnames 

is illustrated in Fig. 3.2. Directory permissions are examined in Section 4.4.

Unlike in DOS, when cd is invoked without arguments, it simply reverts to its home directory. 
It doesn’t show you the current directory!

Note

das76205_Ch03_056-091.indd   63das76205_Ch03_056-091.indd   63 12/13/11   10:43 AM12/13/11   10:43 AM



64 Your UNIX/Linux: The Ultimate Guide

 3.8 Relative Pathnames (. and ..)

The command cd progs worked because progs resides in the current directory. This 

command will also work if progs contains a directory scripts under it:

cd progs/scripts progs is in current directory

A file is looked for in the current directory if its pathname doesn’t begin with a /. The 

pathname progs/scripts is not an absolute one because it doesn’t begin with a /. UNIX 

allows the use of two symbols in pathnames that use the current and parent directory 

as the reference point:

 • . (a single dot) This represents the current directory.

 • .. (two dots) This represents the parent directory.

Pathnames that begin with either of these symbols are known as relative pathnames. 

The command cd progs is really a synonym for cd ./progs, so progs/scripts is 

also a relative pathname. The usefulness of the . becomes obvious when we execute 

F I G U R E  3 . 2  Navigation with the cd Command

/

home
(/home)

juliet
(/home/juliet)

doc
(/home/romeo/docs)

docs
(/home/juliet/docs)

cd /

cd /bin

cd /home/julietcd /home

cd /home/juliet/docscd docs

bin
(/bin)

romeo
(/home/romeo)

progs
(/home/romeo/progs)

 Note: Absolute pathname indicated in parentheses

das76205_Ch03_056-091.indd   64das76205_Ch03_056-091.indd   64 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 65

our own cat program that exists in the current directory. Since cat also exists in /bin, 

we need to use ./cat foo to run our version of cat rather than the standard one.

Make sure that the name of a shell script or C program written by you doesn’t conflict with 
one in the UNIX system by using either type, which, or whereis with the program name you 
have developed. If you find that a program of the same name exists in another directory in 
PATH, then either change the name of your program or run it as ./foo.

Now let’s turn our attention to the .. for framing relative pathnames. In a previous 

example we used cd /home/juliet when our current directory was /home/romeo. We 

could easily have used a relative pathname here:

$ pwd
/home/romeo
$ cd ../juliet Moves one level up and then down 

$ pwd
/home/juliet
$ cd .. Moves one level up

$ pwd
/home

Note the second invocation of cd uses .. as a single argument. We often use this com-

pact method to ascend the hierarchy. You can also combine any number of such sets of 

.. separated by /s:

$ pwd
/home/romeo/pis
$ cd ../.. Moves two levels up

$ pwd
/home

The significance of the pathname components changes here; the .. on the right of the 

/ is the parent of the .. on the left. Contrast this with cd bar1/bar2 where bar1 is the 

parent of bar2. The use of relative pathnames using .. is depicted in Fig. 3.3.

The . and .. can also be gainfully used with commands that use a directory name 

as argument. Consider these sequences that use the cp command for copying a file:

cp /home/juliet/addressbook.sam .
cp addressbook.sam ..

In the first case, the file is copied to the current directory. The second command copies 

the same file from the current directory to the parent directory.

Absolute pathnames can get very long if you are located a number of “generations” away 
from root. Whether you should use one depends solely on the relative number of keystrokes 
required. Even though the relative pathname required fewer key depressions in all of these 
examples, that may not always be true.

Tip

Note

das76205_Ch03_056-091.indd   65das76205_Ch03_056-091.indd   65 12/13/11   10:43 AM12/13/11   10:43 AM



66 Your UNIX/Linux: The Ultimate Guide

 3.9 mkdir: Making Directories

The mkdir (make directory) command creates one or more directories. Let’s use this 

command to create one or more directories in our home directory:

mkdir patch
mkdir patch dbs doc Three directories created

The second example provides the first justification for using commands rather than GUI 

programs. Can you use a Windows Explorer-type program to create three directories 

as effortlessly as you do with mkdir? That’s not all: a single invocation of mkdir can 

even create a directory tree. Here’s how you create both a directory progs and two 

subdirectories, include and lib:

mkdir progs progs/include progs/lib Creates the directory tree

Note that the sequence of arguments is important; first progs has to be created and 

then its subdirectories. (There’a a better method though, but that is left as a Self-Test 

exercise for you.)

F I G U R E  3 . 3  Navigation with Relative Pathnames

/

home
(/home)

romeo
(/home/romeo)

juliet
(/home/juliet)

progs
(/home/romeo/progs)

progs
(/home/juliet/progs)

docs
(/home/juliet/docs)

cd ../..

cd ../../juliet/progs

cd ../docs

cd ..

das76205_Ch03_056-091.indd   66das76205_Ch03_056-091.indd   66 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 67

Sometimes the system refuses to create a directory:

$ mkdir test
mkdir: Failed to make directory “test”; Permission denied

This can happen due to these reasons:

 • The directory test may already exist.

 • There may be an ordinary file by that name in the current directory.

 • The permissions set for the current directory don’t permit the creation of files and 

directories by the user. You’ll most certainly get this message if you try to create 

a directory in /bin, /etc,  or any other directory that houses the UNIX system’s 

files. Also, user romeo can’t create files in the directory structure of user juliet 

unless the latter has explicitly granted that permission.

 • There may be no space left on the file system to permit creation of files and 

directories.

We’ll take up file and directory permissions in Chapter 4.

 3.10 rmdir: Removing Directories

The rmdir  (remove directory) command removes empty directories. We can reverse 

the previous actions of mkdir like this:

rmdir patch
rmdir patch dbs doc Directories must be empty

We can also delete the directory tree that we created with mkdir. This time we must 

delete the subdirectories before the parent directory:

rmdir progs/lib progs/include progs Removes the directory tree

A directory can also be removed with the rm command. If you are using rmdir, the 

following conditions need to be fulfilled:

 • The directory is empty. However, the rm command can remove a nonempty directory.

 • The user’s current directory is above the directory.

Let’s test these rules by trying to delete the directory tree progs that was created with 

mkdir:

$ rmdir progs
rmdir: ̀ progs’: Directory not empty Contains include and lib

$ cd progs ; pwd
/home/romeo/progs
$ rmdir include lib progs is now empty 

$ rmdir . but you can’t delete it ...

rmdir: ̀ .’: Invalid argument

das76205_Ch03_056-091.indd   67das76205_Ch03_056-091.indd   67 12/13/11   10:43 AM12/13/11   10:43 AM



68 Your UNIX/Linux: The Ultimate Guide

$ cd .. ; pwd unless you move up and ...

/home/romeo
$ rmdir progs run rmdir from here

$ _

The mkdir and rmdir commands work only in directories owned by the user. A user is 

the owner of her home directory, so she can use these commands in her home directory 

tree. Unless other users are negligent, one user can’t remove directories belonging to 

other users. The concept of ownership is discussed in Chapter 4.

How Files and Directories Are Created and Removed
A file (ordinary or directory) is associated with a name and a number, called the 

inode number. When a file or directory is created, an entry comprising these two 

parameters is made in the file’s parent directory. The entry is removed when the 

file is deleted. Fig. 3.4 highlights the effect of mkdir and rmdir when creating and 

removing the subdirectory progs in /home/romeo.

F I G U R E  3 . 4  Directory Entry after mkdir and rmdir

mkdir progs rmdir progs

Filename Inode 
Number

. 386444

.. 417585
foo 499770
progs 162112

Filename Inode 
Number

. 386444

.. 417585
foo 499770

Filename Inode 
Number

. 386444

.. 417585
foo 499770

We’ll discuss the significance of the entries . and .. that you’ll find in every 

directory. In this chapter and the next, we’ll be monitoring this directory for changes 

that are caused by some of the file-handling commands.

 3.11 ls: Listing Files

The ls (list) command lists files—that is, their names. By default (i.e., when used without 

arguments), it reads the current directory for the list. The default output could show the 

filenames in multiple columns:

$ ls
08_packets.html helpdir
TOC.sh progs
calendar usdsk06x
cptodos.sh usdsk07x
dept.lst usdsk08x
emp.lst

das76205_Ch03_056-091.indd   68das76205_Ch03_056-091.indd   68 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 69

Linux

Viewed from top to bottom and then from left to right, the default output is ordered in 

ASCII collating sequence (numbers first, uppercase, and then lowercase). However, 

using certain options, the ordering sequence can be altered.

ls can also be used with one or more filenames to check whether a file is available:

$ ls calendar /bin/perl
calendar calendar available

/bin/perl: No such file or directory but not /bin/perl

When the Argument Is a Directory The behavior of ls changes when its argu-

ment is a directory. Rather than simply display the name of the directory (like it did for 

calendar above), ls displays its contents:

$ ls helpdir
forms.hlp        graphics.hlp     reports.hlp

There are three files in the directory helpdir. But you can also make ls display 

simply the name of the directory without listing its contents. Use the -d option: 

ls -d helpdir.

ls can be configured to display filenames in different colors. Generally, executables 

and directories are shown in separate colors. Run the alias command, and make sure 

that ls is redefined on your system like this:

alias ls=’ls --color=tty’

If you don’t see this output, then simply run the alias command as shown above. 

alias is an internal command of the Bash shell, and it’s likely that you would be 

using this shell if you are using Linux.

 3.11.1 ls Options
In this chapter, we discuss a few ls options from Table 3.1. The other options are taken 

up in later chapters. We have already used one (-d) for suppressing a listing of the con-

tents of a directory. On many systems, ls displays filenames in multiple columns by 

default, but if that doesn’t happen on your system, use the -x option.

Identifying Directories and Executables (-F) The default output of ls doesn’t 

identify directories or binary executables, but the -F option does. Combining it with -x 

produces a multicolumnar output as well:

$ ls -Fx Combining the -F and -x options

08_packets.html TOC.sh* calendar* cptodos.sh*
dept.lst emp.lst helpdir/ progs/
usdsk06x usdsk07x usdsk08x ux2nd06

das76205_Ch03_056-091.indd   69das76205_Ch03_056-091.indd   69 12/13/11   10:43 AM12/13/11   10:43 AM



70 Your UNIX/Linux: The Ultimate Guide

Note the use of the * and / as type indicators. The * indicates that the file contains ex-

ecutable code and the / refers to a directory. There are two subdirectories here: helpdir 

and progs.

Showing Hidden Files Also (-a) Filenames beginning with a dot have a special place 

in the UNIX system. They are usually found in the home directory, but ls doesn’t show 

them by default. Use the -a (all) option:

$ ls -axF
./ ../ .cshrc .emacs
.exrc .kshrc .mozilla/ .profile
.sh_history .shosts .vimrc .xinitrc
08_packets.html* TOC.sh* calendar*
  .....

There are several filenames here beginning with a dot. The file .profile contains a set 

of instructions that are performed when a user logs in. It is discussed later. Another file, 

.exrc (or .vimrc), contains a sequence of startup instructions for the vi editor. We’ll 

also examine the significance of .shosts when we discuss the secure shell.

The first two files (. and ..) are special directories. Recall that we used the same 

symbols in relative pathnames to represent the current and parent directories (3.8). 
Whenever you create a subdirectory, these “invisible” directories are created automati-

cally by the kernel. You can’t remove them, nor can you write into them. They help in 

holding the file system together.

-x Multicolumnar output

-F Marks executables with *, directories with /, and symbolic links with @

-a Shows all fi lenames beginning with a dot including . and ..

-R Lists fi les recursively

-r Sorts fi lenames in reverse order (ASCII collating sequence by default)

-l Long listing in ASCII collating sequence showing seven attributes of a 

 fi le (4.1)

-d dirname Lists only dirname if dirname is a directory (4.1.1)

-t Sorts fi lenames by last modifi cation time (4.10)

-lt Sorts listing by last modifi cation time (4.10)

-u Sorts fi lenames by last access time (4.10)

-lu Sorts by ASCII collating sequence but listing shows last access time  (4.10)

-lut As above but sorted by last access time (4.10)

-i Displays inode number (4.6)

T A B L E  3 . 1  Options to ls

Option Description

das76205_Ch03_056-091.indd   70das76205_Ch03_056-091.indd   70 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 71

Recursive Listing (-R) The -R (recursive) option lists all files and subdirectories in 

a directory tree. This traversal of the directory tree is done recursively until there are 

no subdirectories left:

$ ls -xR
08_packets.html TOC.sh calendar cptodos.sh
dept.lst emp.lst helpdir progs
usdsk06x usdsk07x usdsk08x ux2nd06
  
./helpdir: Three files in helpdir

forms.hlp graphics.hlp reports.hlp
  
./progs: Four files in progs

array.pl cent2fah.pl n2words.pl name.pl

The list shows the filenames in three sections—the ones under the home directory 

and those under the subdirectories helpdir and progs. Note the subdirectory naming 

conventions followed; ./helpdir indicates that helpdir is a subdirectory under . (the 

current directory).

If ls displays a list of files when used with a single filename as argument, you can conclude 
that the file is actually a directory. ls then shows the contents of the directory. The -d option 
suppresses this behavior.

 3.12 cp: Copying Files

We now take up the three essential commands that you can’t do without—cp (copy), 

rm (remove), and mv (move or rename). Even though UNIX commands are generally 

noninteractive, all three commands can also be made to run interactively. 

Copies serve as good backups. The cp command copies one or more files or di-

rectory structures. The syntax requires at least two filenames (source and destination) 

to be specified:

cp fork.c fork.c.bak

Even though we used simple filenames here, both source and destination can also 

be pathnames. If the destination file (fork.c.bak) doesn’t exist, cp first creates it. 

Otherwise, it simply overwrites the file without any warning. So check with ls whether 

the destination file exists before you use cp.

The destination can also be a directory. The following example shows two ways 

of copying a file to the progs directory:

cp fork.c progs/fork.c.bak fork.c copied to fork.c.bak under progs

cp fork.c progs fork.c retains its name under progs

Note

das76205_Ch03_056-091.indd   71das76205_Ch03_056-091.indd   71 12/13/11   10:43 AM12/13/11   10:43 AM



72 Your UNIX/Linux: The Ultimate Guide

cp is often used with the shorthand notation, . (dot), to signify the current directory as 

the destination. The two commands that follow do the same thing; the second one uses 

the ~ notation to signify juliet’s home directory:

cp /home/juliet/.profile .profile Destination is a file

cp ~juliet/.profile . Destination is the current directory

When cp is used to copy multiple files, the last filename must be a directory and must 

already exist because cp won’t create it:

cp chap01 chap02 chap03 progs progs must exist as a directory

If these files are already resident in progs, then they will be overwritten. The shell can 

help in abbreviating this command line. You can use the metacharacter * as a suffix to 

chap to match all of these filenames:

cp chap* progs Copies all files beginning with chap

We’ll continue to use the * as a shorthand for multiple filenames. The metacharacters 

related to filenames are discussed in Section 6.3. Can you do this job with ease using a 

GUI program like the file manager?

In the previous example, cp doesn’t look for a file named chap*. Before it runs, the shell expands 
chap* to regenerate the command line arguments for cp to use.

cp will fail if the source is read-protected or the destination is write-protected. File permissions 
are discussed in Section 4.2.

 3.12.1 cp Options
Interactive Copying (-i) cp turns interactive when the -i (interactive) option is used 

and the destination file also exists:

$ cp -i chap01 unit01
cp: overwrite unit01 (yes/no)? y

A y at this prompt overwrites the file; any other response leaves it uncopied. In 

Section 8.4 we consider a technique by which cp can be made to behave in this 

manner by default.

Copying Directory Structures (-R) The -R (recursive) option can be used to copy 

an entire directory tree. This command copies all files and subdirectories in progs to 

newprogs:

cp -R progs newprogs newprogs must not exist

Attention! For this program to run in the way it is meant to, make sure that newprogs 

doesn’t exist. cp -R will then create it as well as its associated subdirectories. Run the 

command twice, and you’ll see different results!

Note

Caution

das76205_Ch03_056-091.indd   72das76205_Ch03_056-091.indd   72 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 73

 3.13 mv: Renaming Files

Once you have used cp, you’ll feel comfortable with mv. This command renames a file 

or directory. It can also move a group of files to a directory. This is how you rename 

fork.txt to fork.c:

mv fork.txt fork.c Creates or overwrites destination

You can move multiple files, but only to a directory. mv can also rename a directory:

mv fork1.c fork2.c fork3.c progs Or mv fork*.c progs

mv progs c_progs Directory renamed

As in cp -R, there’s a difference in behavior depending on whether c_progs exists or 

not (see Self-Test). mv also supports a -i option which makes it behave interactively 

(See Tip in Section 3.14.1).

Unlike its DOS counterpart (REN), mv can’t rename a group of files. In other words, 

you can’t use mv *.avi *.xvid to change all .avi filename extensions to .xvid. UNIX 

doesn’t have a command for this purpose, but Linux supports rename, which can perform 

this change using the command rename .avi .xvid *.avi. However, the command 

is not supported by POSIX.

 3.14 rm: Deleting Files

Files tend to build up on disk and should be removed regularly to free disk space. The 

rm command deletes files as well as directories. Here it deletes three files:

rm chap01 chap02 chap03 rm chap* could be dangerous to use!

rm is often used with a * to delete all files in a directory. Here it empties the directory 

progs:

rm progs/*

rm can also clean up the current directory:

$ rm * All files gone!

$ _

DOS users, beware! You won’t encounter the message All files in directory will 
be deleted! It’s impossible for rm  to behave in this manner because it doesn’t see the 

* at all but only a list of filenames provided by the shell. Also, you need to be extremely 

careful before deleting a file because a deleted file can’t be recovered. The * used here 

is equivalent to *.* used in DOS.

The * doesn’t match filenames beginning with a dot. So rm * leaves hidden files undeleted. 
The technique of deleting such files is discussed in Section 6.3.3.

Note

das76205_Ch03_056-091.indd   73das76205_Ch03_056-091.indd   73 12/13/11   10:43 AM12/13/11   10:43 AM



74 Your UNIX/Linux: The Ultimate Guide

 3.14.1 rm Options
Like cp and mv, rm -i also behaves interactively, so we’ll not discuss this option. Instead, 

we examine two extremely risky options: -R and -f.

Recursive and Dangerous Deletion (-r or -R) The command rm * doesn’t remove 

directories, but rm supports a -R (or -r) option to recursively delete an entire directory 

tree. This command

rm -R * Leaves out hidden files

deletes all files and subdirectories in the current directory. Note that the directories don’t 

need to be empty for rm to remove them.

Forcing Removal (-f) rm doesn’t delete files that have the write permission removed. 

Instead, it prompts for user confirmation, as is evident from this behavior on a Solaris 

and Linux system:

rm: foo: override protection 444 (yes/no)? Solaris

rm: remove write-protected regular file `foo’? Linux

We’ll take up permissions and examine the significance of 444 in Chapter 4. rm will still 

delete this file if you respond with a y. But the -f option overrides this minor protection 

also. And when you combine the -r option with it, it could be the most dangerous thing 

that you’ve ever done:

rm -rf * Deletes everything in the current directory and below

If you don’t have a backup, then these files will be lost forever. Note that this command 

will delete hidden files in all directories except the current directory.

Even though the cp, rm, and mv commands use simple syntaxes, you’ll often be 

using them with pathnames—both absolute and relative. Table 3.2 shows how these 

commands can handle a wide variety of arguments.

T A B L E  3 . 2  Usage of cp, rm, and mv Commands

Command line Action

cp note .. Copies fi le note to the parent directory

cp ../note . Copies fi le note from the parent directory to the current 

 directory

rm ../bar/index Deletes fi le index in the bar directory placed at the same

 hierarchical location as the current directory

mv foo1 foo2 /foo1/foo2 Moves fi les foo1 and foo2 to the directory /foo1/foo2

rm -r bar Deletes complete directory structure of bar. Will delete

 only bar if it is an ordinary fi le

cp -r . ../bar Copies current directory tree to the directory bar under 

 the parent directory (bar must exist)

mv ../* . Moves all fi les from the parent directory to the current 

 directory

das76205_Ch03_056-091.indd   74das76205_Ch03_056-091.indd   74 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 75

Make sure you are doing the right thing before you use rm *. Be doubly sure before you use 
rm -rf *. The first command removes only ordinary files in the current directory. The second 
one removes everything—files and directories alike. If the root user (the superuser) invokes 
rm -rf * in the / directory, the entire UNIX system will be wiped out from the hard disk!

To protect your files from accidental overwriting or deletion you can redefine the three com-
mands so that they always execute with the -i option. Aliases are taken up in Chapter 8, but 
you can use one here. The syntax of the definition depends on the shell you use:

Korn and Bash C Shell
alias cp=”cp -i” alias cp “cp -i”

alias mv=”mv -i” alias mv “mv -i”

alias rm=”rm -i” alias rm “rm -i”

The Bourne shell doesn’t support aliases, where shell functions would be the choice. Shell 
functions are discussed in Chapter 13.

Caution

Tip

How a Directory is Affected by cp, mv,and rm
cp, mv, and rm work by modifying the directory entry of the fi le they work on. As 

shown in Fig. 3.5, cp adds an entry to the directory with the name of the fi le, and 

the inode number that is allotted by the kernel. mv replaces the name of an existing 

directory entry without disturbing its inode number. rm removes an entry from the 

directory.

F I G U R E  3 . 5  Directory Status after cp, mv, and rm

Filename Inode 
Number

. 386444

.. 417585
bar 499770
foo.bak 509876

Filename Inode 
Number

. 386444

.. 417585
bar 499770
foo.bak 509876

mv foo bar

rm foo.bak

Filename Inode 
Number

. 386444

.. 417585
bar 499770

cp foo foo.bak 

Filename Inode 
Number

. 386444

.. 417585
foo 499770

das76205_Ch03_056-091.indd   75das76205_Ch03_056-091.indd   75 12/13/11   10:43 AM12/13/11   10:43 AM



76 Your UNIX/Linux: The Ultimate Guide

This is a rather simplistic view, and is true only when source and destination 

are in the same directory. When you “mv” a fi le to a directory that resides on a 

separate hard disk, the fi le is actually moved. You’ll appreciate this better after you 

have understood how multiple fi le systems create the illusion of a single fi le system 

on your UNIX machine.

The action of rm also needs to be studied further. A fi le is not actually removed 

by deleting its directory entry. There could be “similar” entries (ones having the 

same inode number) for this fi le in this or another directory. We’ll examine this 

directory table again when we take up fi le attributes in Chapter 4.

 3.15 cat: Displaying and Concatenating Files

Most of the remaining commands in this chapter are concerned with content handling. 

We begin with cat, the command that displays the contents of one or more files. It’s 

suitable for displaying small files:

$ cat /etc/passwd
root:x:0:1:Super-User:/:/usr/bin/bash
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:
   .......Remaining lines suppressed .......

This is how user information is structured. We’ll discuss the significance of each of the 

seven fields in Chapter 19, but just note that the root user uses Bash as the shell on this 

Solaris system. cat simply prints each byte in the file without any header and trailer 

information.

The name “cat” expands to “concatenation,” which means it can concatenate 

multiple files. cat’s output by default comes to the terminal, but we often save it in a 

file using the shell’s > symbol:

cat foo.c foo1.c foo2.c > foo4.c

We don’t use cat to view executables because it produces junk. In Chapter 6, we’ll use 

cat to even create a file to highlight an important feature of the shell.

 3.16 more: The UNIX Pager

The man command internally uses more (less in Linux) to display its output a page at 

a time. more today has replaced pg, the original pager of UNIX. Linux offers both more 

and less (discussed in an aside at the end of this section). You need to use more rather 

than cat to view large files:

more /etc/inetd.conf Press q to exit

das76205_Ch03_056-091.indd   76das76205_Ch03_056-091.indd   76 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 77

Apart from the first page, you also see at the bottom the filename and percentage of the 

file that has been viewed:

--More--(17%)

Like mailx, more is used with its internal commands that don’t show up when you in-

voke them. q, the exit command, is an internal command. The AT&T and BSD versions 

of this command differ widely in both usage and capabilities. The POSIX specification 

is based on the BSD version. You have to try out the commands shown in Table 3.3 to 

know whether they apply to your system. more has a fairly useful help screen too; hit-

ting h invokes this screen.

Navigation You must have viewed a number of man pages by now, so you should be 

familiar with these two navigation keys:

f or the spacebar  One page forward

b   One page back

Remember that the letters are not displayed on the screen. These navigation commands 

and many others can be prefixed by a number called the repeat factor. This simply 

repeats the command that many times. This means you can use 10f for scrolling forward 

by 10 pages and 30b for scrolling back 30 pages. (vi also uses this feature; both more 

and vi were developed at Berkeley.)

Repeating the Last Command (.) more has a repeat command, the dot (the 

same command used by vi), which repeats the last command you used. If you scroll 

T A B L E  3 . 3  Internal Commands of more and less

more less Action

Spacebar or f Spacebar or f or z One page forward

20f - 20 pages forward

b b One page back

15b - 15 pages back

[Enter] j or [Enter] One line forward

- k One line back

- p or 1G Beginning of fi le

- G End of fi le

/pat /pat Searches forward for expression pat

n n Repeats search forward

- ?pat Searches back for expression pat

. (a dot) - Repeats last command

v v Starts up vi editor

!cmd !cmd Executes UNIX command cmd

q q Quit

h h Help

das76205_Ch03_056-091.indd   77das76205_Ch03_056-091.indd   77 12/13/11   10:43 AM12/13/11   10:43 AM



78 Your UNIX/Linux: The Ultimate Guide

Linux

forward with 10f, you can scroll another 10 pages by simply pressing a dot. This is 

a great convenience!

Searching for a Pattern You have seen the pattern search feature when using man. 

Press a / and then the pattern:

/ftp[Enter] Looks for ftp

You can repeat this search by pressing n as many times until you have scanned the entire 

file. Move back with b (using a repeat factor, if necessary) to arrive at the first page.

Using more in a Pipeline We often use more to page the output of another command. 

The ls output won’t fit on the screen if there are too many files, so the command has 

to be used like this:

ls | more No filename with more!

We have a pipeline here of two commands where the output of one is used as the input 

of the other. Pipes are a feature of the shell, and the topic is taken up in Chapter 6.

less—The Standard Pager

Even though every Linux system offers more, its standard pager is ironically named 

less. In many respects it is a superset of more. You’ll find vi features in less as well, 

like the commands that permit one-line movement:

j One line up

k One line down

Unlike more, less can search for a pattern in the reverse direction also. The sequence 

?ftp searches backwards for ftp. But less does have one serious limitation: unlike 

more (which uses the .), it can’t repeat the last command.

 3.17 pico: Rudimentary Text Editing

In Section 1.6.3, we used a workaround to create a file. We used echo with the > symbol 

to create the file foo containing the string date. It’s time to learn a program that performs 

the task of creating and editing a file. Programs that handle editing are appropriately 

called editors, and every UNIX system has a number of them on offer. In this section 

we consider a simple one, viz., the pico command, and in Chapter 5 we present a very 

powerful one (the vi/vim editor). 

The pico command is normally invoked with a filename. The file is created if it 

doesn’t already exist:

pico foo

You’ll be presented a full screen (Fig. 3.6), where the topmost line and three lines at 

the bottom are reserved for messages. The rest of the screen can be used for text input 

das76205_Ch03_056-091.indd   78das76205_Ch03_056-091.indd   78 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 79

with the cursor initially positioned at the beginning of the first line. Observe the status 

line at the top before you enter a few lines of text as shown, with each line followed by 

[Enter]. The moment you have entered a character, the message Modified appears at 

the top right. This indicates that you have made some change to a buffer (a temporary 

work area) that has not been saved to disk yet.

The two lines at the bottom show the commonly used key sequences that you’ll 

need for text editing. All navigation and editing functions in pico are carried out 

using the Control key (shown as ^) along with a letter. For instance, [Ctrl-g] (shown 

as ^G) invokes the help screen, which lists the complete set of internal commands 

offered by this editor. Before we discuss the navigation and editing functions, let’s 

save our work. Press [Ctrl-o] when a message pops up at the lower part of the screen 

showing the default filename:

File Name to write : foo

You can change the filename if you want, but if you don’t want to, simply press the 

[Enter] key. Your work has been saved. At this point you can quit the editor by press-

ing [Ctrl-x].

 3.17.1 Navigation
You can move in the four directions either by using the cursor keys or the ones that follow:

[Ctrl-p] One line up

[Ctrl-n] One line down

[Ctrl-f] One character forward

[Ctrl-b] One character back 

You can also move to the beginning or end of a line by using [Ctrl-a] and [Ctrl-e], 

respectively. Movement by units of pages is also possible; use the help screen to find 

out what the commands are.

    UW PICO(tm)  4.10              File: foo                          Modifi ed                                                                     

This is the pico editor.[Enter]
You need to know the commands for navigation.[Enter]
You also need to know the commands for cut-and-paste operations.[Enter]
Don't forget to save the buffer before you quit pico.[Enter]
There is a very useful help facility that is invoked by pressing ^G.

^G Get Help  ^O WriteOut    ^R Read File   ^Y Prev Pg   ^K Cut Text    ^C Cur Pos          
^X Exit      ^J Justify     ^W Where is    ^V Next Pg   ^U UnCut Text  ^T To Spell

F I G U R E  3 . 6  Inserting Text in pico

das76205_Ch03_056-091.indd   79das76205_Ch03_056-091.indd   79 12/13/11   10:43 AM12/13/11   10:43 AM



80 Your UNIX/Linux: The Ultimate Guide

 3.17.2 Text Editing
Editing operations involve changing text in the buffer. While entering text, you’ll need 

to erase text. Simply press either the [Delete] key or [Ctrl-d]. You’ll also need to move 

text from one section of the buffer to another. pico doesn’t support copy-paste opera-

tions, but it allows you to cut text at one location and paste it at another location. For 

this purpose, a block of text has to be selected. The beginning of the block is marked by 

pressing [Ctrl-^] (shown as ^^ in the help screen). Now, use the right cursor or [Ctrl-f] 

to select text which gets highlighted as the cursor is moved right. Once text has been 

selected in this way, cut it by pressing this key sequence:

[Ctrl-k]

The text gets deleted. Move the cursor to the point where the deleted text has to be 

pasted and then press 

[Ctrl-u] Shown as Uncut Text in the help screen.

The deleted text appears at the new location. In case you have to copy text, use a work-

around: Cut the text normally, paste it first at the original location and then again at the 

new location.

The pico editor is useful for kickstarting your UNIX learning experience, but 

eventually as a programmer you’ll need to use a more powerful editor. The vi/vim 
editor is presented in Chapter 5.

 3.18 wc: Counting Lines, Words and Characters

The wc (word count) command counts lines, words, and characters. It takes one or more 

filenames as its arguments and displays a four-columnar output. Let’s first “cat” a file:

$ cat infile
I am the wc command
I count characters, words and lines
With options I can also make a selective count

Now run wc without options to verify its own claim made above:

$ wc infile 
      3     20    103 infile

wc counts 3 lines, 20 words, and 103 characters. The filename has also been shown in 

the fourth column. The meanings of these terms should be clear to you as they are used 

throughout the book:

 • A line is any group of characters not containing a newline.

 • A word is a group of characters not containing a space, tab, or newline.

 • A character is the smallest unit of information and includes a space, tab, and 

newline.

das76205_Ch03_056-091.indd   80das76205_Ch03_056-091.indd   80 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 81

wc offers three options to make a specific count. The -l option makes a line count:

$ wc -l infile
      3 infile Number of lines

The -w and -c options count words and characters, respectively. Like cat, wc doesn’t 

work with only files; it also acts on a data stream. You’ll learn all about these streams 

in Chapter 6.

 3.19 lp: Printing a File

The printing system in UNIX requires a user to spool (line up) a job along with others 

in a print queue. A separate program monitors this queue and then picks up each job in 

turn for printing. The spooling facility in System V is provided by the lp (line printing) 

and cancel commands. Linux uses the BSD system.

You must have your printer configured properly before you can use lp. The fol-

lowing lp command prints a single copy of the file rfc822.ps (a document containing 

an Internet specification in the form of a Request For Comment):

$ lp rfc822.ps A Postscript file

request id is pr1-320 (1 file)
$ _ Prompt returns immediately

lp notifies the request-id, a unique string that can later be accessed with other commands. 

The job will be picked up from the queue and printed on the default printer. If the de-

fault is not defined or if there is more than one printer in the system, use the -d option:

lp -dlaser chap01.ps Printer name is laser

You can notify the user with the -m (mail) option after the file has been printed. You can 

also print multiple copies (-n):

lp -n3 -m chap01.ps Prints three copies and mails user a message

Even though we used lp with filenames, this will not always be the case. You are aware 

that the shell’s | symbol allows us to use ls | more. The same symbol also lets us 

use ls | lp.

 3.19.1 Other Commands in the lp Subsystem
The print queue is viewed with the lpstat (line printer status) command. By viewing 

this list, you can use the cancel command to cancel any jobs submitted by you. cancel 

uses the request-id or printer name as argument:

cancel laser Cancels current job on printer laser

cancel pr1-320 Cancels job with request-id pr1-320

das76205_Ch03_056-091.indd   81das76205_Ch03_056-091.indd   81 12/13/11   10:43 AM12/13/11   10:43 AM



82 Your UNIX/Linux: The Ultimate Guide

Linux

You can cancel only those jobs that you own (i.e., you have submitted yourself), but the 

system administrator can cancel any job. cancel is effective only when a job remains 

in the print queue. If it is already being printed, cancel can’t do a thing.

How UNIX Printers Work
Most UNIX printers are of the Postscript variety; i.e., they can properly print 

fi les formatted in Postscript, like the fi les rfc822.ps and chap01.ps used in the 

examples. (Postscript fi les are easily identifi ed by the extension .ps.) When you 

select Print from the File menu of any GUI program, the program converts the data 

to Postscript, which then serves as input to the printer.

No such conversion, however, takes place when you use lp to print a text fi le 

like /etc/passwd. If you have a text fi le to print, use a Postscript conversion utility 

before you use lp. On Solaris, you can use the program

/usr/lib/lp/postscript/postprint before running lp.

Linux has a rich set of tools that convert text fi les to Postscript. Check whether 

you have the programs a2ps or enscript on your system. Both eventually call up 

lpr, the BSD printing program used by Linux.

Printing with lpr, lpq, and lprm

Berkeley devised its own system for printing that has been subsequently adopted by 

many UNIX systems as well as Linux. This system uses the lpr command for printing. 

The command normally doesn’t throw out the job number:

lpr /etc/group

As in System V, you can mail job completion, print a specific number of copies, and 

direct output to a specific printer:

lpr -P hp4500 foo.ps Prints on printer hp4500

lpr -#3 foo.ps Prints 3 copies

lpr -m foo.ps Mails message after completion

lpq displays the print queue showing the job numbers. Using one or more job numbers 

as arguments to lprm, you can remove from the print queue only those jobs that are 

owned by you:

lprm 31 Removes job number 31

lprm - Removes all jobs owned by the user

 3.20 od: Viewing Nonprintable Characters

Binary files contain nonprinting characters, and most UNIX commands don’t display 

them properly. You can easily identify an executable file written in C by examining its 

first few bytes, which is known as the magic number. These bytes are often characters 

in the extended ASCII range and can’t be viewed with cat or more. We need to use od.

das76205_Ch03_056-091.indd   82das76205_Ch03_056-091.indd   82 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 83

The od (octal dump) command displays the octal value of each character in its 

input. When used with the -bc options, the output is quite readable. We’ll use od -bc to 

look at the executable /bin/cat and /bin/ls. Since the output won’t fit on the screen, 

we need to pipe it to more or less. We show below the first 16 characters of cat and 

32 characters (2 lines) of ls:

$ od -bc /bin/cat | more
0000000 177 105 114 106 001 002 001 000 000 000 000 000 000 000 000 000
 177 E L F 001 002 001 \0 \0 \0 \0 \0 \0 \0 \0 \0
$ od -bc /bin/ls | less
0000000 177 105 114 106 001 001 001 000 000 000 000 000 000 000 000 000
 177 E L F 001 001 001 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000020 002 000 003 000 001 000 000 000 060 221 004 010 064 000 000 000
 002 \0 003 \0 001 \0 \0 \0 0 221 004 \b 4 \0 \0 \0

Each line displays 16 bytes of data in octal, preceded by the offset (position) in the file 

of the first byte in the line. The first character has the ASCII octal value 177, and the 

next three comprise the string ELF. All C executables have the same first four charac-

ters. The second line shows the text representation of each character wherever possible.

You can try a similar exercise with tar archives and “gzipped” files after you have 

completed this chapter. od also displays escape sequences like \r and \n, and we’ll see 

them when we use the command again for examining DOS files.

 3.21 dos2unix, unix2dos, and Tofrodos: 
Converting Between DOS and UNIX

You’ll sometimes need to move files between Windows and UNIX systems. Windows files 

use the same format as DOS, where the end of line is signified by two characters—CR 

(\r) and LF (\n). UNIX files, on the other hand, use only LF. Here are two lines from 

a DOS file, foo, viewed on a UNIX system with the vi editor:

Line 1^M The [Ctrl-m] character at end

Line 2^M

There’s a ^M ([Ctrl-m]) representing the CR sequence at the end of each line. An octal 

dump confirms this:

$ od -bc foo
0000000 114 151 156 145 040 061 015 012 114 151 156 145 040 062 015 012
 L i n e 1 \r \n L i n e 2 \r \n

Conversion of this file to UNIX is just a simple matter of removing the \r. Some 

UNIX systems feature two utilities—dos2unix and unix2dos—for converting files 

between DOS and UNIX. The behavior of these commands varies across systems, 

das76205_Ch03_056-091.indd   83das76205_Ch03_056-091.indd   83 12/13/11   10:43 AM12/13/11   10:43 AM



84 Your UNIX/Linux: The Ultimate Guide

so you need the help of man to determine which of the following actually works on 

your system:

dos2unix foo foo.unix Output written to foo.unix—Solaris

dos2unix foo > foo.unix Taking shell’s help

dos2unix foo Output written back to foo—Linux

dos2unix foo foo Same as above—Solaris

When you use od again, you’ll find that the CR character is gone:

$ od -bc foo.unix
0000000 114 151 156 145 040 061 012 114 151 156 145 040 062 012
 L i n e 1 \n L i n e  2 \n

unix2dos inserts CR before every LF, and thus increases the file size by the number of 

lines in the file. The syntactical form that works for dos2unix also works for unix2dos.

You could also consider the Tofrodos package that contains two commands, todos 

and fromdos. The default output for both is written back to the same file:

todos foo Converts to DOS

fromdos foo Converts to UNIX

Irrespective of what the names suggest, either command can perform both tasks us-

ing the -d option. Thus, todos -d foo is the same as fromdos foo, and vice versa. 

Use the -h option to know about the other options. One of them (-b) lets you save the 

original as a .bak file. 

If you view the UNIX file foo.unix on Windows using Notepad but without performing the 
conversion, you’ll see a single line, Line 1Line2. In fact, whenever you see a single line on a 
Windows machine that should have been multiple lines, satisfy yourself that you are viewing 
an unconverted UNIX file.

Never perform this conversion on a binary file. If you have downloaded a Windows program 
(say, a .EXE file) on a UNIX machine, the file must be transferred to the Windows machine 
without conversion. Otherwise, the program simply won’t execute.

 3.22 tar: The Archival Program

For sending a group of files to someone either by FTP (the file transfer protocol) or email, 

it helps to combine them into a single file called an archive. The tar (tape archiver) 

command is an archiver which we consider briefly here and in detail in Chapter 19. It 

supports these key options; only one option can be used at a time:

  -c Creates an archive

  -x Extracts files from archive

  -t Displays files in archive

Note

Caution

das76205_Ch03_056-091.indd   84das76205_Ch03_056-091.indd   84 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 85

In addition, we’ll frequently use two options: -f for specifying the name of the archive 

and -v to display the progress. This is how we create a file archive, archive.tar, from 

two uncompressed files:

$ tar -cvf archive.tar libc.html User_Guide.ps
a libc.html 3785K -v (verbose) displays list

a User_Guide.ps 364K a indicates append

By convention, we use the .tar extension, so you’ll remember to use the same tar 

command for extraction. Move this .tar file to another directory and then use the -x 

option for extracting the two files:

$ tar -xvf archive.tar Extracts files

x libc.html, 3875302 bytes, 7569 tape blocks x indicates extract

x User_Guide.ps, 372267 bytes, 728 tape blocks

You’ll now find the two files in the current directory. tar is most useful for archiving 

one or more directory trees.

To view the contents of the archive, use the -t (table of contents) option. It doesn’t 

extract files, but simply shows their attributes in a form that you’ll see more often later:

$ tar -tvf archive.tar
-rw-r--r-- 102/10  3875302 Aug 24 19:49 2002 libc.html
-rw-r--r-- 102/10   372267 Aug 24 19:48 2002 User_Guide.ps

You’ll understand the significance of these columns after you have learned to interpret 

the ls -l output. But you can at least see the individual file size (third column) and the 

filename (last column) in this output.

 3.23 gzip: The Compression Program

Eventually you’ll encounter compressed files on the Internet or need to compress one 

yourself before sending it as an email attachment. Your UNIX system may have one or 

more of these compression programs: gzip, bzip2, and zip. The degree of compression 

depends on the type of file, its size, and the compression program used. In this section 

we take up gzip and its decompression sibling, gunzip.

gzip provides the extension .gz to the compressed filename and removes the 

original file. This command compresses an HTML file:

gzip libc.html Replaces with libc.html.gz

To see the amount of compression achieved, use the -l option:

$ gzip -l libc.html.gz .gz not necessary

compressed  uncompr. ratio uncompressed_name
   788096    3875302  79.6% libc.html

das76205_Ch03_056-091.indd   85das76205_Ch03_056-091.indd   85 12/13/11   10:43 AM12/13/11   10:43 AM



86 Your UNIX/Linux: The Ultimate Guide

Linux

Uncompressing a “gzipped” File (-d) To restore the original and uncompressed 

file, you have two options: use either gzip -d or gunzip:

gunzip libc.html.gz Retrieves lib.html

gzip -d libc.html.gz Same

You’ll have to understand why two commands have been offered to do the same job 

when one of them would have sufficed. Are gzip and gunzip  one and the same file? 

Is the same true for todos and fromdos? This question is related to file attributes, and 

we discuss file attributes in Chapter 4.

To view compressed plain text files, you really don’t need to “gunzip” (decompress) them. 
Use the gzcat and gzmore (or zcat and zmore) commands if they are available on your system.

Using with tar An additional layer of compression helps bring down the file size, 

the reason why gzip is often used with tar for creating a compressed archive. Here we 

“gzip” the file archive.tar that was created in Section 3.21 with tar:

gzip archive.tar Archived and compressed

This creates a “tar-gzipped” file, archive.tar.gz. A shorthand notation of the .tar.gz 

extension is often seen: .tgz. This file can now be sent out by FTP or as an email attach-

ment to someone. To extract the files from this compressed archive, we simply have to 

reverse the procedure: use gunzip to decompress the archive and then run tar:

gunzip archive.tar.gz Retrieves archive.tar

tar -xvf archive.tar Extracts libc.html and User_Guide.ps

A great deal of open-source UNIX and Linux software is available as .tar.gz or .tgz 

files on the Internet. To be able to extract files from this archive, the recipient needs to 

have both tar and gunzip (or gzip) at her end.

tar and gzip are so often used together that GNU tar has a -z option that compresses 

and archives together (and decompresses and extracts together). This dual activity is 

reflected in the following commands:

tar -cvzf archive.tar.gz libc.html User_Guide.ps Compresses also

tar -xvzf archive.tar.gz Decompresses also

Note that whether you should use the -z option with -x depends on whether the archive 

was compressed in the first place with -c. The archive’s extension (.tar.gz or .tgz) 

should provide this hint, but that’s no guarantee. A wrong extension could have been 

provided by the user at the time of archiving. If you are working on a DOS system, 

then you can use the later versions of the WinZip or WinRAR programs which can 

also handle these files. Mac OS X users can use Stuffit.

Tip

das76205_Ch03_056-091.indd   86das76205_Ch03_056-091.indd   86 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 87

For some years, gzip reigned as the most favored compression agent. Today we have a better 
agent in bzip2 (and bunzip2). bzip2 is slower than gzip and creates .bz2 files. bzip2 options 
are modeled on gzip, so if you know gzip you also know bzip2. GNU tar also supports com-
pression with bzip2 in the --bzip2 option. Provide the extension .tar.bz2 to the compressed 
archive so that the person at the other end knows how to handle it.

 3.24 zip: The Compression and Archival Program

The popular PKZIP and PKUNZIP programs are now available as zip and unzip on 

UNIX. zip combines the compressing function of gzip with the archival function of tar. 

So instead of using two commands to compress an archive (say, a directory structure), 

you can use only one—zip.

zip requires the first argument to be the compressed filename; the remaining 

arguments are interpreted as files and directories to be compressed. A previous archival 

and subsequent compression in two previous examples could have been achieved with 

zip in the following way:

$ zip archive.zip libc.html User_Guide.ps
  adding: libc.html (deflated 80%)
  adding: User_Guide.ps (deflated 66%)

The unusual feature of this command is that it doesn’t overwrite an existing compressed 

file. If archive.zip exists, files will either be updated or appended to the archive de-

pending on whether they already exist in the archive.

Recursive Compression (-r) For recursive behavior, zip uses the -r option. It de-

scends the tree structure in the same way tar does except that it also compresses files. 

You can easily compress your home directory in this way:

cd ; zip -r sumit_home.zip . cd is same as cd $HOME

Using unzip zip files are decompressed with unzip. unzip does a noninteractive 

restoration if it doesn’t find the same files on disk:

$ unzip archive.zip
Archive:  archive.zip
  inflating: libc.html
  inflating: User_Guide.ps

But if the uncompressed file exists on disk, then unzip makes sure that it’s doing the 

right thing by seeking user confirmation:

replace libc.html? [y]es, [n]o, [A]ll, [N]one, [r]ename: y

You can respond with y or n. You can also rename the file (r) to prevent overwriting, or 

direct unzip to perform the decompression on the remaining files noninteractively (A).

Note

das76205_Ch03_056-091.indd   87das76205_Ch03_056-091.indd   87 12/13/11   10:43 AM12/13/11   10:43 AM



88 Your UNIX/Linux: The Ultimate Guide

Viewing the Archive (-v) You can view the compressed archive with the -v option. 

The list shows both the compressed and uncompressed size of each file in the archive 

along with the percentage of compression achieved:

$ unzip -v archive.zip
Archive:  archive.zip
 Length Method Size Ratio Date Time CRC-32 Name
 ------ ------ ---- ----- ---- ---- ------ ----
3875302 Defl:N 788068 80% 08-24-02 19:49 fae93ded libc.html
 372267 Defl:N 128309 66% 08-24-02 19:48 7839e6b3 User_Guide.ps
 ------  ------ ---    -------
4247569  916377 78%    2 files

 3.25 Other Ways of Using These Commands

The commands discussed in this chapter don’t always take input from files. Some com-

mands (like more and lp) use, as alternate sources of input, the keyboard or the output 

of another command. Most of the other commands (like wc, cat, od, gzip, and tar) can 

also send output to a file or serve as input to another command. Some examples in this 

chapter (and previous ones) have shown this to be possible with the > and | symbols. 

The discussion of these techniques is taken up in Chapter 6.

S U M M A R Y

We considered three types of files—ordinary, directory, and device. A directory maintains 

the inode number and name for each file. The kernel uses the attributes of a device file 

to operate the device. File attributes are maintained in the inode.

A filename is restricted to 255 characters and can use practically any character. 

Executable files don’t need any specific extensions.

UNIX supports a hierarchical file system where the topmost directory is called 

root. An absolute pathname begins with a / and denotes the file’s location with respect 

to root. A relative pathname uses the symbols . and .. to represent the file’s location 

relative to the current and parent directory, respectively.

pwd tells you the current directory, and cd is used to change it or to switch to the 

home directory. This directory is set in /etc/passwd and is available in the shell vari-

able HOME. A file foo in the home directory is often referred to as $HOME/foo or ~/foo.

mkdir and rmdir are used to create or remove directories. To remove a directory 

bar with rmdir, bar must be empty and you must be positioned above bar.

By default, ls displays filenames in ASCII collating sequence (numbers, uppercase, 

lowercase). It can also display hidden filenames beginning with a dot (-a). When used 

with a directory name as argument, ls displays the filenames in the directory.

You can copy files with cp, remove them with rm, and rename them with mv. 

All of them can be used interactively (-i), and the first two can be used to work on a 

complete directory tree (-r or -R) i.e., recursively. rm -r can remove a directory tree 

even if is not empty.

das76205_Ch03_056-091.indd   88das76205_Ch03_056-091.indd   88 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 89

cat and more are used to display the contents of a file. more supports a number 

of internal commands that enable paging and searching for a pattern. Linux offers less 

as a superior pager.

Rudimentary editing tasks can be performed with the pico editor. The program 

uses the Control keys for all navigation and editing operations. You can perform cut-

and-paste operations using the keys [Ctrl-k] and [Ctrl-u], respectively.

lp submits a job for printing which is actually carried out by a separate program. 

Linux and many UNIX systems use the lpr command for printing. Both can be directly 

used to print Postscript documents.

wc counts the number of lines, words, and characters. od displays the octal value 

of each character and is used to display invisible characters.

The dos2unix and unix2dos commands convert files between DOS and UNIX. 

DOS files use CR-LF as the line terminator, while UNIX uses only LF. The todos and 

fromdos commands also perform the same functions.

gzip and gunzip compresses and decompresses individual files (extension: .gz). 

tar can archive a directory tree and is often used with gzip to create compressed archives 

(extension: .tar.gz or .tgz). zip and unzip use .zip files. zip alone can create a 

compressed archive from directory structures (-r). bzip2 is better than zip and unzip 

(extension: .bz2).

S E L F - T E S T

3.1 How long can a UNIX filename be? What characters can’t be used in a filename?

3.2 State two reasons for not having a filename beginning with a hyphen.

3.3 Name the two types of ordinary files, and explain the difference between them. 

Provide three examples of each type of file.

3.4 Can the files note and Note coexist in the same directory?

3.5 Frame cd  commands to change from (i) /var/spool/lp/admins  to

/var/spool/mail, (ii) /usr/include/sys to /usr.

3.6 Switch to the root directory with cd, and then run cd .. followed by pwd. What 

do you notice?

3.7 Explain the significance of these two commands: ls .. ; ls -d ...

3.8 Can you execute any command in /sbin and /usr/sbin by using the absolute 

pathname?

3.9 If the file /bin/echo exists on your system, are the commands echo and 

/bin/echo equivalent?

3.10 Look up the man pages of mkdir to find out the easiest way of creating this 

directory structure: share/man/cat1.

3.11 If mkdir test fails, what could be the possible reasons?

3.12 How do you run ls to (i) mark directories and executables separately, (ii) also 

display hidden files?

3.13 What will cat foo foo foo display?

3.14 A file contains nonprintable characters. How do you view them?

3.15 How will you copy a directory structure bar1 to bar2? Does it make any differ-

ence if bar2 exists?

das76205_Ch03_056-091.indd   89das76205_Ch03_056-091.indd   89 12/13/11   10:43 AM12/13/11   10:43 AM



90 Your UNIX/Linux: The Ultimate Guide

3.16 Assuming that bar is a directory, explain what the command rm -rf bar does. 

How is the command different from rmdir bar?

3.17 How do you print the file /etc/passwd on the printer named laser on System V 

(i) to generate three copies, (ii) and know that the file has been printed?

3.18 How will you find out the ASCII octal values of the numerals and letters?

3.19 Run the wc command with two or more filenames as arguments. What do you see?

3.20 How can you abort an editing session with pico without saving the changes?

3.21 How can you join multiple lines in pico into a single line without using cut-and-

paste operations?

E X E R C I S E S

3.1 Describe the contents of a directory, explaining the mechanism by which its entries 

are updated by cp, mv, and rm. Why is the size of a directory usually small?

3.2 How does the device file help in accessing the device?

3.3 Which of these commands will work? Explain with reasons: (i) mkdir a/b/c, 

(ii) mkdir a a/b, (iii) rmdir a/b/c, (iv) rmdir a a/b, (v) mkdir /bin/foo.

3.4 The command rmdir c_progs failed. State three possible reasons.

3.5 Using echo, try creating a file containing (i) one, (ii) two, and (iii) three dots. 

What do you conclude?

3.6 The command rmdir bar fails with the message that the directory is not empty. 

On running ls bar, no files are displayed. Why did the rmdir command fail?

3.7 How does the command mv bar1 bar2 behave, where both bar1 and bar2 are 

directories, when (i) bar2 exists, (ii) bar2 doesn’t exist?

3.8 Explain the difference between the commands cd ~charlie and cd ~/charlie. 

Is it possible for both commands to work?

3.9 charlie uses /usr/charlie as his home directory, and many of his scripts refer 

to the pathname /usr/charlie/html. Later, the home directory is changed to 

/home/charlie, thus breaking all his scripts. How could charlie have avoided 

this problem?

3.10 Why do we sometimes run a command like this—./update.sh instead of 

update.sh?

3.11 What is the sort order prescribed by the ASCII collating sequence?

3.12 The commands ls bar and ls -d bar display the same output—the string bar. 

This can happen in two ways. Explain.

3.13 Assuming that you are positioned in the directory /home/romeo, what are 

these commands presumed to do, and explain whether they will work at all: 

(i) cd ../.., (ii) mkdir ../bin, (iii) rmdir .., (iv) ls ...

3.14 Explain what the following commands do: (i) cd, (ii) cd $HOME, (iii) cd ~.

3.15 The command cp hosts backup/hosts.bak didn’t work even though all files 

exist. Name three possible reasons.

3.16 You have a directory structure $HOME/a/a/b/c where the first a is empty. How 

do you remove it and move the lower directories up?

3.17 Explain what the following commands do: (i) rm *, (ii) rm -i *, (iii) rm -rf *.

das76205_Ch03_056-091.indd   90das76205_Ch03_056-091.indd   90 12/13/11   10:43 AM12/13/11   10:43 AM



Chapter 3: The File System 91

3.18 What is the significance of these commands? (i) mv $HOME/include ., 

(ii) cp -r bar1 bar2, (iii) mv * ../bin.

3.19 Will the command cp foo bar work if (i) foo is an ordinary file and bar is a 

directory, (ii) both foo and bar are directories?

3.20 Explain the significance of the repeat factor used in more. How do you search 

for the pattern include in a file and repeat the search? What is the difference 

between this repeat command and the dot command?

3.21 Look up the man page for the file command, and then use it on all files in the 

/dev directory. Can you group these files into two categories?

3.22 How do DOS and UNIX text files differ? Name the utilities that convert files 

between these two formats.

3.23 Run the script command, and then issue a few commands before you run exit. 

What do you see when you run cat -v typescript?

3.24 Run the tty command,  and note the device name of your terminal. Now use this 

device name (say, /dev/pts/6) in the command cp /etc/passwd /dev/pts/6. 

What do you observe?

3.25 How do you use tar to add two files, foo.html and bar.html, to an archive, 

archive.tar, and then compress the archive? How will you reverse the entire 

process and extract the files in their original uncompressed form?

3.26 Name three advantages zip has over gzip.

3.27 How do you send a complete directory structure to someone by email using 

(i) tar, (ii) zip? How does the recipient handle it? Which method is superior 

and why? Does gzip help in any way?

3.28 What is meant by recursive behavior of a command? Name four commands, 

along with a suitable example of each, that can operate recursively.

3.29 There are shortcuts available for many pico commands that use the function 

keys. Use the help screen to find out the function keys that cut and paste text.

3.30 Use the pico help screen to find out the key sequence that places the contents 

of another file in the file being edited.

das76205_Ch03_056-091.indd   91das76205_Ch03_056-091.indd   91 12/13/11   10:43 AM12/13/11   10:43 AM



92

4 
C H A P T E R  4

File Attributes

In Chapter 3, you created directories, navigated the file system, and copied, 

moved, and removed files without any problem. In real life, however, matters 

may not be so rosy. You may have problems when handling a file or directory. Your file 

may be modified or even deleted by others. A restoration from a backup may be unable 

to write to your directory. You must know why these problems occur and how to prevent 

and rectify them.

The UNIX file system lets users access files that don’t belong to them—without 

infringing on security. A file also has a number of attributes that are changeable by cer-

tain well-defined rules. In this chapter, we’ll use the ls command in all possible ways 

to display these attributes. We’ll also use other commands to change these attributes. 

Finally, we’ll discuss find—one of the most versatile attribute handling tools of the 

UNIX system.

  Objectives
 • Learn the significance of the seven fields of the ls -l output (listing).

 • Use chmod to change file permissions in a relative and absolute manner.

 • Understand the significance of directory permissions and how they ultimately impact 

a file’s access rights.

 • Understand the concept of the user mask and how umask changes the default file and 

directory permissions.

 • Become familiar with file systems and the inode as a file identifier.

 • Create hard links to a file with ln.

 • Learn the limitations of hard links and how they are overcome by symbolic links.

 • Know the importance of ownership and group ownership of a file and how they 

affect security.

 • Use chown and chgrp to change the owner and group owner of files on BSD and 

AT&T systems.

 • Locate files by matching one or more file attributes with find.

 4.1 ls Revisited (-l): Listing File Attributes

File attributes are stored in the inode, a structure that is maintained in a separate area 

of the hard disk. Before we examine the contents of the inode, let’s first have a look 

das76205_Ch04_092-121.indd   92das76205_Ch04_092-121.indd   92 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 93

at some of the major attributes which are listed by the ls -l command. The output in 

UNIX lingo is often referred to as the listing, and a typical listing is shown in Fig. 4.1.

The list shows seven labeled fields in nine columns with the filenames ordered 

in ASCII collating sequence. Each field here represents a file attribute, and all of these 

attributes (except the filename) are stored in the inode. We’ll discuss most of these 

attributes in detail in this chapter, but let’s understand their significance first.

Type and Permissions The first column of the first field shows the file type. Here 

we see three possible values—a - (ordinary file), d (directory), or l (symbolic link). 

Most files here are ordinary files, but c_progs and shell_scripts are directories. 

We’ll discuss the symbolic link later. The remaining nine characters form a string of 

permissions which can take the values r, w, x, and -.

Links The second field indicates the number of links associated with the file. UNIX 

lets a file have multiple names, and each name is interpreted as a link. Directories have 

a link count of at least two, but here two ordinary files (backup.sh and restore.sh) 

also have two links each. Even though they have the same file size (163 bytes), that 

doesn’t confirm that there’s only a single file out there.

Ownership and Group Ownership Every file has an owner. The third field shows 

romeo as the owner of most of the files. A user also belongs to a group, and the fourth 

field shows metal as the group owner of most of the files. The owner can tamper with 

a file in every possible way—a privilege that is also available to the root user. We’ll 

discuss how two files having different ownership and group ownership (987 and a.out) 

have crept into this directory.

Size The fifth field shows the file size in bytes. This actually reflects the character 

count and not the disk space consumption of the file. The kernel allocates space in 

blocks of 1024 bytes or more, so even though backup.sh contains 163 bytes, it could 

F I G U R E  4 . 1  Listing of Files with ls -l

$ ls -l
total 24
-r--r--r-- 1 256 105 13921 Jul 26     2001 987
-rw-rw-rw- 1 romeo metal 473 Jul 13 21:36 CallByRef.java
-rwxr-xr-x 1 root root 6496 Aug 10 10:20 a.out
-rwxr-xr-- 2 romeo metal 163 Jul 13 21:36 backup.sh
drwxr-xr-x 2 romeo metal 512 Aug 10 10:42 c_progs
lrwxrwxrwx 1 romeo metal 17 Aug 11 00:49 hex.c -> c_progs/hexdump.c
-r--r--r-- 1 romeo metal 268 Jul 13 21:36 prime.c
-rwxr-xr-- 2 romeo metal 163 Jul 13 21:36 restore.sh
drwxrwxr-x 2 romeo metal 512 Aug 10 10:45 shell_scripts

das76205_Ch04_092-121.indd   93das76205_Ch04_092-121.indd   93 12/13/11   10:44 AM12/13/11   10:44 AM



94 Your UNIX/Linux: The Ultimate Guide

occupy 1024 bytes on this system. The two directories show smaller file sizes, but that 

is to be expected because the size of a directory depends on the number of filenames it 

contains—whatever the size of the files themselves.

Last Modification Time The sixth field displays the last modification time in three 

columns—a time stamp that is stored to the nearest second. The file named 987 shows 

the year; the year is displayed if more than a year has elapsed since it was last modified 

(six months in Linux). You’ll often need to run automated tools that make decisions 

based on a file’s modification time. This column shows two other time stamps when ls 

is used with certain options.

Filename The last field displays the filename, which can be up to 255 characters long. 

If you would like to see an important file at the top of the listing, then choose its name 

in uppercase—at least, its first letter.

The entire list is preceded by the words total 24; a total of 24 blocks are occupied 

by these files in the disk. There are other file attributes (like the inode number), and 

sometimes we combine the -l option with other options for displaying other attributes 

or ordering the list in a different sequence. We’ll now examine each of these attributes 

and learn to change them.

 4.1.1 Listing Directory Attributes (-ld)
We can use ls -l with filenames as arguments for a selective listing. But since ls bar 

lists the contents of bar if it is a directory, we need to combine the -l and -d options 

to force the listing:

$ ls -ld c_progs shell_scripts
drwxr-xr-x   2 romeo    metal        512 Aug 10 10:42 c_progs
drwxrwxr-x   2 romeo    metal        512 Aug 10 10:45 shell_scripts

While we maintain that a directory is also a file, the significance of its permissions, link 

count, and size differ with ordinary files.

To see the attributes of a directory bar rather than the filenames it contains, use ls -ld bar. 
Note that simply using ls -ld won’t show the listing of all subdirectories in the current direc-
tory. Strange though it may seem, ls has no option to list only directories!

 4.2 File Permissions

UNIX has a simple and well-defined system of assigning permissions to files. Observe 

from the listing in Fig. 4.1 that permissions can vary a great deal between files. Let’s 

examine the permissions of backup.sh:

-rwxr-xr--   2 romeo    metal        163 Jul 13 21:36 backup.sh

UNIX follows a three-tiered file protection system that determines a file’s access rights. 

To understand how this system works, let’s break up the permissions string of this file 

Note

das76205_Ch04_092-121.indd   94das76205_Ch04_092-121.indd   94 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 95

into three groups as shown in Fig. 4.2. The initial - (in the first column) signifies an 

ordinary file and is left out of the permissions string.

Each group here represents a category. There are three categories representing the 

user (owner), group owner, and others. Each category contains three slots representing 

the read, write, and execute permissions of the file. r indicates read permission, which 

means cat can display the file. w indicates write permission; you can edit such a file 

with an editor. x indicates execute permission; the file can be executed as a program. 

The - shows the absence of the corresponding permission.

The first category (rwx) shows the presence of all permissions. The file is read-

able, writable, and executable by the owner of the file. Identifying the owner is easy; 

the third field shows romeo as the owner. You have to log in with the username romeo 

for these privileges to apply to you.

In a similar manner, the second category (r-x) indicates the absence of write 

permission for the group owner of the file. This group owner is metal as shown in the 

fourth field. The third category (r--) applies to others (neither owner nor group owner). 

This category is often referred to as the world. This file is world-readable, but others 

can’t write or execute it.

A file or directory is created with a default set of permissions that is determined 

by a simple setting (called umask), which we’ll discuss later. Different systems have 

different umask settings, but to make sure that you also obtain the same initial permis-

sions, use umask in this manner before creating a file, date.sh (a shell script), contain-

ing the string date:

$ umask 022
$ echo date > date.sh ; ls -l date.sh
-rw-r--r--   1 romeo    metal          5 Aug 16 16:05 date.sh

All users have read permission, only the owner has write permission, but the file is not 

executable by anyone:

$ ./date.sh Preferred way to run shell scripts

bash: ./date.sh: Permission denied

How then does one execute such a file? Just change its permissions with the chmod 

(change mode) command. With this command, you can set different permissions for the 

three categories of users—owner, group, and others. It’s important that you understand 

F I G U R E  4 . 2  Structure of a File’s Permissions String

- r    w    x r    -    x r    -    -

Type of file

Owner’s permissions

Group’s permissions

Others’ permissions

das76205_Ch04_092-121.indd   95das76205_Ch04_092-121.indd   95 12/13/11   10:44 AM12/13/11   10:44 AM



96 Your UNIX/Linux: The Ultimate Guide

them because a little learning here can be a dangerous thing. A faulty file permission is 

a sure recipe for disaster.

The group permissions here don’t apply to romeo (the owner) even if romeo belongs to the 
metal group. The owner has its own set of permissions that override the group owner’s per-
missions. However, when romeo renounces the ownership of the file, the group permissions 
then apply to him.

 4.3 chmod: Changing File Permissions

Before we take up chmod, let’s decide to change a habit. Henceforth, we’ll refer to the 

owner as user because that’s how the chmod command (which changes file permissions) 

refers to the owner. In this section, whenever we use the term user, we’ll actually mean 

owner.

We’ll now use chmod to change a file’s permissions. The command uses the fol-

lowing syntax:

chmod [-R] mode file ...

POSIX specifies only a single option (-R). The mode can be represented in two ways:

 • In a relative manner by specifying the changes to the current permissions.

 • In an absolute manner by specifying the final permissions.

We’ll consider both ways of using chmod, but just remember that only the owner of this 

file (romeo) can change these permissions.

 4.3.1 Relative Permissions
When changing permissions in a relative manner, chmod only changes the permissions 

specified in mode and leaves the other permissions unchanged. The structure of a chmod 

command is shown in Fig. 4.3. The mode as used in the syntax contains three components:

 • User category (user, group, others)

 • The operation to be performed (assign or remove a permission)

 • The type of permission (read, write, execute)

Note

F I G U R E  4 . 3  Structure of a chmod Command

chmod u + x note

Command

Category

Operation

Permission

File

das76205_Ch04_092-121.indd   96das76205_Ch04_092-121.indd   96 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 97

To make the file date.sh executable, frame a suitable expression by using appropriate 

characters from each of the three columns of Table 4.1. We need to assign (+) execute 

permission (x) to the user (u). The expression required is u+x:

$ chmod u+x date.sh Execute permission for user

$ ls -l date.sh
-rwxr--r--   1 romeo    metal          5 Aug 16 16:05 date.sh
$ ./date.sh Now execute the shell script

Sat Aug 16 16:16:12 GMT 2003

Permissions are removed with the - operator. This is how we revert to the original 

permissions:

$ chmod u-x date.sh ; ls -l date.sh
-rw-r--r--   1 romeo    metal          5 Aug 16 16:05 date.sh

The expression can comprise multiple categories. This is how we assign execute per-

mission to all:

$ chmod ugo+x date.sh ; ls -l date.sh
-rwxr-xr-x   1 romeo    metal          5 Aug 16 16:05 date.sh

The synonym a is available for ugo, so ugo+x is the same as a+x (or even +x). We can 

also assign multiple permissions:

$ chmod go-rx date.sh ; ls -l date.sh
-rwx------   1 romeo    metal          5 Aug 16 16:05 date.sh

How do we revert now to the original permissions? We need to remove the execute per-

mission from user and assign read permission to the other two categories. This requires 

two expressions, and using a comma as a delimiter between them, we can use a single 

invocation of chmod:

$ chmod u-x,go+r date.sh ; ls -l date.sh
-rw-r--r--   1 romeo    metal          5 Aug 16 16:05 date.sh

However, this isn’t convenient; we had to use a complex expression to revert to the 

default permissions. Whatever the current permissions are, we should be able to assign 

permissions in an absolute manner. chmod can do that too. (Note that some versions of 

chmod don’t accept the comma.)

T A B L E  4 . 1  Abbreviations Used by chmod

Category    Operation    Permission

u—User    +—Assigns permission    r—Read permission

g—Group    -—Removes permission    w—Write permission

o—Others    =—Assigns absolute permission    x—Execute permission

a—All (ugo)

das76205_Ch04_092-121.indd   97das76205_Ch04_092-121.indd   97 12/13/11   10:44 AM12/13/11   10:44 AM



98 Your UNIX/Linux: The Ultimate Guide

 4.3.2 Absolute Assignment
The = operator can perform a limited form of absolute assignment. It assigns only the 

specified permissions and removes other permissions. Thus, if a file is to be made read-

only to all, we can simply use one of these three forms:

chmod ugo=r date.sh
chmod a=r date.sh
chmod =r date.sh

This technique has its limitations; you can’t just set all nine permission bits explicitly. 

Absolute assignment is actually done with octal numbers. You may or may not be familiar 

with this numbering system, so a discussion would be in order.

Octal numbers use the base 8, and octal digits have the values 0 to 7. This means 

that a set of three bits can represent one octal digit. If we represent the permissions of 

each category by one octal digit, then this is how the permissions can be represented:

 • Read permission—4  (Octal 100)

 • Write permission—2 (Octal 010)

 • Execute permission—1 (Octal 001)

For each category we add up the numbers. For instance, 6 represents read and write 

permissions, and 7 represents all permissions as can easily be understood from the fol-

lowing table:

Binary Octal Permissions Significance

000 0 --- No permissions

001 1 --x Executable only

010 2 -w- Writable only

011 3 -wx Writable and executable

100 4 r-- Readable only

101 5 r-x Readable and executable

110 6 rw- Readable and writable

111 7 rwx Readable, writable, and executable

We have three categories and three permissions for each category, so three octal digits 

can describe a file’s permissions completely. The most significant digit represents user, 

and the least significant one represents others. chmod can use this three-digit string as 

the expression.

The default file permissions on our system are rw-r--r--. This is octal 644, so 

let’s use it with chmod:

$ chmod 644 date.sh ; ls -l date.sh
-rw-r--r--   1 romeo    metal          5 Aug 16 16:05 date.sh

das76205_Ch04_092-121.indd   98das76205_Ch04_092-121.indd   98 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 99

Some network applications store the password in a configuration file in the home 

directory. This file must be made unreadable to group and others. For this you need the 

expression 600:

$ cd ; chmod 600 .netrc ; ls -l .netrc
-rw-------   1 romeo    metal         50 Aug 16 16:50 .netrc

It’s obvious that 000 indicates the absence of all permissions, and 777 signifies the pres-

ence of all permissions for all categories. But can we delete a file with permissions 000? 

Yes, we can. Can we prevent a file with permissions 777 from being deleted? We can 

do that, too. We’ll soon learn that it’s the directory that determines whether a file can 

be deleted, not the file itself. Table 4.2 shows the use of chmod both with and without 

using octal notation.

A file’s permissions can only be changed by the owner (understood by chmod as user) of the 
file. One user can’t change the protection modes of files belonging to another user. However, 
this restriction doesn’t apply to the privileged user, root.

 4.3.3 Recursive Operation (-R)
chmod -R descends a directory hierarchy and applies the expression to every file and 

subdirectory it finds in the tree-walk:

chmod -R a+x shell_scripts

So, to use chmod on your home directory tree, “cd” to it and use it in one of these ways:

chmod -R 755 . Works on hidden files also

chmod -R a+x * Leaves out hidden files

Note

T A B L E  4 . 2  chmod Usage

Initial Permissions Symbolic Expression Octal Expression Final Permissions

rw-r----- o+rw 646 rw-r--rw-
rw-r--r-- u-w,go-r 400 r--------
rwx------ go+rwx 777 rwxrwxrwx
rwxrw--wx u-rwx,g-rw,o-wx 000 ---------
--------- +r 444 r--r--r--
r--r--r-- +w 644 rw-r--r--    (Note this)
rw-rw-rw- -w 466 r--rw-rw-    (Note this)
rw-rw-rw- a-w 444 r--r--r--
--------- u+w,g+rx,o+x 251 -w-r-x--x
rwxrwxrwx a=r 444 r--r--r--

das76205_Ch04_092-121.indd   99das76205_Ch04_092-121.indd   99 12/13/11   10:44 AM12/13/11   10:44 AM



100 Your UNIX/Linux: The Ultimate Guide

When you know the shell metacharacters well, you’ll appreciate the difference between 

the two invocations. The dot is generally a safer bet, but note that both commands change 

the permissions of directories also. What do permissions mean when they are applied 

to a directory? Just read on.

 4.4 The Directory

A directory stores the filename and inode number. So the size of a directory is determined 

by the number of files housed by it and not by the size of the files. A directory also has 

its own set of permissions whose significance differs a great deal from ordinary files. 

Let’s use the same umask setting and then create a directory:

$ umask 022 ; mkdir progs ; ls -ld progs
drwxr-xr-x   2 romeo    metal        512 Aug 16 09:24 progs

All categories have read and execute permissions and only the user has write permission. 

A directory’s permissions also affect the access rights of its files. This area is the source 

of a great deal of confusion, so let’s examine these permissions carefully.

 4.4.1 Read Permission
Read permission for a directory means that the list of filenames stored in that directory 

is accessible. Since ls reads the directory to display filenames, if a directory’s read 

permission is removed, ls won’t work. Consider removing the read permission first 

from the directory progs:

$ chmod u-r progs
$ ls progs
progs: Permission denied

However, this doesn’t prevent you from reading the files separately if you know their 

names.

 4.4.2 Write Permission
Write permission for a directory implies that you are permitted to create or remove 

files in it (that would make the kernel modify the directory entries). Security issues are 

usually related to a directory’s write permission, so let’s try out a couple of tests with 

the directory that we just created.

First, we’ll restore the read permission and then copy a file with permissions 644 

to this directory:

chmod u+r progs ; cp date.sh progs

Now let’s “cd” to this directory and display the listing both of the directory and the 

filename in it:

$ cd progs ; ls -ld . date.sh
drwxr-xr-x   2 romeo    metal 512 Aug 16 09:39 .
-rw-r--r--   1 romeo    metal 5 Aug 16 09:39  date.sh

das76205_Ch04_092-121.indd   100das76205_Ch04_092-121.indd   100 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 101

Both file and directory have write permission for the user. date.sh can now be both 

edited and deleted. We can also create a new file in this directory.

Directory’s Write Permission Off; File’s Write Permission On Let’s remove the 

directory’s write permission and then check whether we can delete the file:

$ chmod u-w . ; ls -ld . ; rm date.sh
dr-xr-xr-x   2 romeo    metal        512 Aug 16 09:59 .
rm: date.sh not removed: Permission denied

Removing a file implies deletion of its entry from the directory. It’s obvious that date.sh 

can’t be deleted. But can it be edited? Yes, of course; the file has write permission, which 

means you can edit it with your vi editor. Modifying a file doesn’t affect its directory 
entry in any way.

Directory’s Write Permission On; File’s Write Permission Off We now reverse the 

previous setting by restoring the directory’s write permission and removing it from the file:

$ chmod u+w . ; chmod u-w date.sh ; ls -ld . date.sh
drwxr-xr-x   2 romeo    metal 512 Aug 16 09:59 .
-r--r--r--   1 romeo    metal 5 Aug 16 09:39  date.sh

We can create a file in this directory, that’s obvious, but can we delete date.sh?

$ rm date.sh
rm: date.sh: override protection 444 (yes/no)? yes

rm turns interactive when it encounters a file without write permission. Note that the 

absence of write permission in date.sh only implies that it can’t be modified. But 

whether it can be deleted or not depends entirely on the directory’s permissions.

Directory’s Write Permission Off; File’s Write Permission Off Now that date.sh 

is gone, let’s get it again from the parent directory and then switch off the write permis-

sion for both file and directory:

$ cp ../date.sh .
$ chmod u-w date.sh . ; ls -ld . date.sh
dr-xr-xr-x   2 romeo    metal 512 Aug 16 10:11 .
-r--r--r--   1 romeo    metal 5 Aug 16 10:11  date.sh

This is the safest arrangement you can have. You can neither edit the file nor create or 

remove files in this directory.

We can now summarize our observations in this manner:

 • The write permission for a directory determines whether you can create or remove 

files in it because these actions modify the directory.

 • Whether you can modify a file depends solely on whether the file itself has write 

permission. Changing a file doesn’t modify its directory entry in any way.

das76205_Ch04_092-121.indd   101das76205_Ch04_092-121.indd   101 12/13/11   10:44 AM12/13/11   10:44 AM



102 Your UNIX/Linux: The Ultimate Guide

The term “write-protected” has a limited meaning in the UNIX file system. A write-protected 
file can’t be written, but it can be removed if the directory has write permission.

Danger arises when you mistakenly assign the permissions 775 or 777 to a directory. In the 
present scenario, 775 allows any user of the metal group to create or remove files in the 
directory. 777 extends this facility to the world. As a rule, you must never make directories 
group- or world-writable unless you have definite reasons to do so. Sometimes, you’ll have a 
good reason (19.4.3).

 4.4.3 Execute Permission
Executing a directory just doesn’t make any sense, so what does its execute privilege 

mean? It only means that a user can “pass through” the directory in searching for sub-

directories. When you use a pathname with any command:

cat /home/romeo/progs/date.sh

you need to have execute permission for each of the directories in the pathname. The 

directory home contains the entry for romeo, and the directory romeo contains the entry 

for progs, and so forth. If a single directory in this pathname doesn’t have execute 

permission, then it can’t be searched for the name of the next directory. That’s why the 

execute privilege of a directory is often referred to as the search permission.

A directory has to be searched for the next directory, so the cd command won’t 

work if the search permission for the directory is turned off:

$ chmod 666 progs ; ls -ld progs
drw-rw-rw-   2 romeo    metal        512 Aug 16 10:11 progs
$ cd progs
bash: cd: progs: Permission denied

As for regular files, directory permissions are extremely important because system 

security is heavily dependent upon them. If you tamper with the permissions of your 

directories, then make sure you set them correctly. If you don’t, then be assured that an 

intelligent user could make life miserable for you!

 4.5 umask: Default File and Directory Permissions

When you create files and directories, the permissions assigned to them depend on the 

system’s default setting. The UNIX system has the following default permissions for 

all files and directories:

 • rw-rw-rw- (octal 666) for regular files.

 • rwxrwxrwx (octal 777) for directories.

However, you don’t see these permissions when you create a file or a directory. Actually, 

this default is transformed by subtracting the user mask from it to remove one or more 

Note

Caution

das76205_Ch04_092-121.indd   102das76205_Ch04_092-121.indd   102 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 103

permissions. To understand what this means, let’s evaluate the current value of the mask 

by using umask without arguments:

$ umask
022

This is an octal number which has to be subtracted from the system default to obtain 

the actual default. This becomes 644 (666 – 022) for ordinary files and 755 (777 – 022) 

for directories. When you create a file on this system, it will have the permissions 

rw-r--r--. A directory will have the permissions rwxr-xr-x.

umask is a shell built-in command. A user can also use this command to set a new 

default. Here’s an extreme setting:

umask 000 All read-write permissions on

A umask value of 000 means that you haven’t subtracted anything, and this could be 

dangerous. The system’s default then applies (666 for files and 777 for directories). All 

files and directories are then writable by all; nothing could be worse than that! However, 

a mask value of 666 or 777 doesn’t make much sense either; you’ll then be creating files 

and directories with no permissions.

The important thing to remember is that no one—not even the administrator—

can use umask to turn on permissions not specified in the systemwide default settings. 

However, you can always use chmod as and when required. The systemwide umask 

setting is placed in one of the machine’s startup scripts and is automatically made avail-

able to all users. The effect of some of these settings on file and directory permissions 

is shown in Table 4.3.

 4.6 File Systems and Inodes

Before we take up links, we need some idea of the way files are organized in a UNIX 

system. So far, we have been referring to the UNIX file hierarchy as a “file system” as 

if all files and directories are held together in one big superstructure. That is seldom 

T A B L E  4 . 3  Effect of umask Settings on Default Permissions

umask Value Default File Permissions Default Directory Permissions

000 rw-rw-rw- rwxrwxrwx
002 rw-rw-r-- rwxrwxr-x
022 rw-r--r-- rwxr-xr-x
026 rw-r----- rwxr-x--x
046 rw--w---- rwx-wx--x
062 rw----r-- rwx--xr-x
066 rw------- rwx--x--x
222 r--r--r-- r-xr-xr-x
600 ---rw-rw- --xrwxrwx
666 --------- --x--x--x
777 --------- ---------

das76205_Ch04_092-121.indd   103das76205_Ch04_092-121.indd   103 12/13/11   10:44 AM12/13/11   10:44 AM



104 Your UNIX/Linux: The Ultimate Guide

the case, and never so in large systems. The hard disk is split up into distinct partitions 

(or slices), with a separate file system in each partition (or slice).

Every file system has a directory structure headed by root. If you have three file sys-

tems, then you are dealing with three separate root directories. One of these file systems 

is called the root file system, which is more equal than others in at least one respect: 

its root directory is also the root directory of the combined UNIX system. The root file 

system contains most of the essential files of the UNIX system. At the time of booting, 

the other file systems mount (attach) themselves to the root file system, creating the 

illusion of a single file system to the user.

Every file is associated with a table called the inode (shortened from index node). 

The inode is accessed by the inode number and contains the following attributes of a file:

 • File type (regular, directory, device, etc.)

 • File permissions (the nine permissions and three more)

 • Number of links (the number of aliases the file has)

 • The UID of the owner

 • The GID of the group owner

 • File size in bytes

 • Date and time of last modification

 • Date and time of last access

 • Date and time of last change of the inode

 • An array of pointers that keep track of all disk blocks used by the file

Observe that the inode doesn’t store either the name of the file or the inode number. Both 

attributes are stored in the directory. ls displays the inode number with the -i option:

$ ls -i date.sh
    254414 date.sh

Every file system has its own set of inodes stored in a separate area of the disk. Since 

a UNIX machine usually comprises multiple file systems, you can conclude that the 

inode number for a file is unique in a single file system.

How cat and ls Work
When you run cat foo, the kernel fi rst locates the inode number of foo from 

the current directory. Next, it reads the inode for foo to fetch the fi le size and the 

addresses of the disk blocks that contain the fi le’s data. It then goes to each block 

and reads the data until the number of characters displayed is equal to the fi le size.

When you execute ls -l progs where progs is a directory, the kernel looks 

up the directory progs and reads all entries. For every entry, the kernel looks up 

the inode to fetch the fi le’s attributes.

das76205_Ch04_092-121.indd   104das76205_Ch04_092-121.indd   104 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 105

 4.7 ln: Creating Hard Links

Why is the filename not stored in the inode? So that a file can have multiple filenames. 

When that happens, we say the file has more than one link. We can then access the file 

by any of its links. A file’s link count is normally one, but observe from Fig. 4.1 that 

backup.sh has two links:

-rwxr-xr--   2 romeo    metal        163 Jul 13 21:36 backup.sh

The ln command links a file, thus providing it with an alias and increasing the link 

count by one. This count is maintained in the inode. ln can create both a hard and a 

soft link (discussed later) and has a syntax similar to the one used by cp. Before we use 

it to create a hard link, let’s recall the listing of date.sh which we used in Section 4.2, 

and then link it with who.sh:

$ ls -li date.sh -i displays inode number

    254414 -rw-r--r--   1 romeo    metal          5 Aug 16 09:38 date.sh
$ ln date.sh who.sh Link count increases to 2

$ ls -il date.sh who.sh
    254414 -rw-r--r--   2 romeo    metal          5 Aug 16 09:38 date.sh
    254414 -rw-r--r--   2 romeo    metal          5 Aug 16 09:38 who.sh

Three More Permission Bits
So far, we have restricted our discussions to nine permission bits. But the inode 

stores 12 permission bits. We’ll be discussing the remaining three bits at different 

points in the text, but a brief discussion is presented here for completeness.

After completing Chapter 7, you’ll appreciate that fi le permissions actually 

apply to the process run by the user. When you run cat foo, a process named cat 

is created from the cat program. Even though the cat executable is owned by root, 

the UID of the cat process is that of the user running the program.

This scheme works in most instances except for certain critical events. A 

process must sometimes take on the powers of the owner of the program, especially 

in situations where the owner is root. The passwd command (which changes your 

own password) modifi es the fi le /etc/shadow even though the fi le is unreadable 

to nonprivileged users. Thus passwd must run as if it’s executed by the superuser.

Two permission bits determine whether a process will run with the UID 

and GID of the owner and group owner. These two bits, set-user-id (SUID) and 

set-group-id (SGID), can be set with chmod, and we’ll reexamine them in Chapter 19.

The third bit, the sticky bit, also applies to a fi le, but today it is more useful 

when set on a directory. Such directories can be shared by a group of users in a 

safe manner so that they can create, modify, and remove their own fi les and not 

those of others. The sticky bit is also taken up in Chapter 19.

das76205_Ch04_092-121.indd   105das76205_Ch04_092-121.indd   105 12/13/11   10:44 AM12/13/11   10:44 AM



106 Your UNIX/Linux: The Ultimate Guide

Prior to the invocation of ln, the current directory had an entry containing date.sh and 

its inode number, 254414. After the invocation, the kernel performed two tasks:

 • It added an entry to the directory for the filename who.sh, but with the same inode 

number.

 • It also updated the link count in the inode from one to two.

Note that there’s actually one file and that we can’t refer to them as two “files,” but only 

as two “filenames.” Changes made in one alias (link) are automatically available in the 

others. If you create one more link (using, for example, ln who.sh ps.sh), another 

directory entry will be created and the link count will be incremented to three.

ln won’t work if the destination filename exists, but you can force linking with 

the -f option. You can also use ln with multiple files (i.e., create a link for each), but 

then the destination filename must be a directory. Here’s how you create links for all 

shell scripts in the directory shell_scripts:

ln *.sh shell_scripts

If *.sh matches 27 filenames, then there will be 27 linked filenames in shell_scripts; 

i.e., there will be 27 entries in that directory.

We use rm to remove files. Technically speaking, rm simply reverses the action of 

ln; the kernel removes the directory entry for the link and brings down the link count 

in the inode. The following command removes one link:

$ rm who.sh ; ls -l date.sh
    254414 -rw-r--r--   1 romeo    metal          5 Aug 16 09:38 date.sh

The link count has come down to one. Another rm will further bring it down to zero. A file 

is considered to be completely removed from the system when its link count drops to zero.

rm and ln are complementary, which is evident from the names of the system 

calls they use—unlink and link. The effect they have on the inode and directory is 

depicted in Fig. 4.4.

F I G U R E  4 . 4  Effect of ln and rm on Inode and Directory

Directory

.

..
date.sh

386444
417585
254414

Inode for date.sh

Link Count = 1

Filename           Inode
                        Number

Directory

386444
417585
254414

.

..
date.sh

Inode for date.sh

Link Count = 1

ln date.sh who.sh rm who.sh

Directory

.

..
date.sh
who.sh

386444
417585
254414
254414

Inode for date.sh

Link Count = 2

Filename           Inode
                        Number

Filename           Inode
                        Number

das76205_Ch04_092-121.indd   106das76205_Ch04_092-121.indd   106 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 107

 4.7.1 Where to Use Hard Links
Links are an interesting feature of the file system, but where does one use them? We 

can think of three situations straightaway:

1. Let’s assume that you have written a number of programs that read a file foo.txt 

in $HOME/input_files. Later, you reorganize your directory structure and move 

foo.txt to $HOME/data instead. What happens to all the programs that look for 

foo.txt at its original location? Simple, just link foo.txt to the directory input_files:

  ln data/foo.txt input_files Creates link in directory input_files

 With this link available, your existing programs will continue to find foo.txt 

in the input_files directory. It’s more convenient to do this than to modify all 

programs to point to the new path.

2. Links provide some protection against accidental deletion, especially when they 

exist in different directories. Referring to the previous application, even though 

there’s only a single file foo.txt on disk, you have effectively made a backup of 

this file. If you inadvertently delete input_files/foo.txt, one link will still be 

available in data/foo.txt; your file is not gone yet.

3. Because of links, we don’t need to maintain two programs as two separate disk 

files if there is very little difference between them. A file’s name is available to a 

C program (as argv[0]) and to a shell script (as $0). A single file with two links 

can have its program logic make it behave in two different ways depending on the 

name by which it is called. There’s a shell script using this feature in Section 13.8.2.

Many UNIX commands are linked. Refer to Section 3.23, where we posed the ques-

tion whether gzip and gunzip were two separate files. This question can now easily be 

answered by looking at their inode numbers:

$ cd /usr/bin ; ls -li gzip gunzip
     13975 -r-xr-xr-x   3 root     bin        60916 Jan  5  2000 gunzip
     13975 -r-xr-xr-x   3 root     bin        60916 Jan  5  2000 gzip

They are, in fact, one and the same file. The listing shows the existence of a third link as 

well, but how does one locate it? Doing an ls -li and then looking for entries with the 

same inode number may not always work; a link could be available in another directory. 

The find command that can do this job is discussed in Section 4.11.

 4.8 ln Again: Creating Symbolic Links

To understand why we need symbolic links, let’s extend the example that we considered as 

the first point in Section 4.7.1. Imagine that a hundred files in the directory input_files 

have been moved to the directory data as part of the reorganization process. To ensure 

that all programs still “see” the files at their original location, we could hard-link these 

files to the new data directory, but that would mean adding a hundred entries to this 

directory. It’s here that one encounters two serious limitations of hard links:

 • You can’t link a file across two file systems. In other words, if input_files and 

data are on two separate file systems, you can’t connect a file in one file system 

das76205_Ch04_092-121.indd   107das76205_Ch04_092-121.indd   107 12/13/11   10:44 AM12/13/11   10:44 AM



108 Your UNIX/Linux: The Ultimate Guide

with a link to the other. This is quite obvious because a hard link takes only an inode 

number. There’s no way of knowing which file system the inode number refers to.

 • You can’t link a directory even within the same file system.

A symbolic link overcomes both problems. Until now, we have divided files into three 

categories (ordinary, directory, and device); the symbolic link is the fourth file type. 

Observe the listing in Fig. 4.1 yet again to locate the file hex.c:

lrwxrwxrwx   1 romeo    metal     17 Aug 11 00:49 hex.c -> c_progs/hexdump.c

A symbolic link is identified by the l (el) as the file type and the pointer notation, ->, 

that follows the filename. The ln command creates symbolic links also, but it needs 

the -s option. We can create a symbolic link to date.sh, but this time the listing tells 

you a different story:

$ ln -s date.sh date.sym
$ ls -li date.sh date.sym
    254414 -rw-r--r--   1 romeo   metal      5 Aug 16 09:38 date.sh
    254411 lrwxrwxrwx   1 romeo   metal      7 Aug 18 06:52 date.sym -> date.sh

Here, date.sym is a symbolic link to date.sh. Unlike a hard link, a symbolic link is a 

separate file with its own inode number. date.sym simply contains the pathname date.sh 

as is evident from the file size (date.sh contains seven characters). The two files are not 

identical; it’s date.sh that actually has the contents. A command like cat date.sym 

follows the symbolic link and displays the file the link points to.

A symbolic link can also point to an absolute pathname, but to ensure portability, 

we often make it point to a relative pathname:

$ ln -s ../jscript/search.htm search.htm
$ ls -l search.htm
lrwxrwxrwx  1 romeo  metal 21    Mar 2 00:17 search.htm -> ../jscript/search.htm

To return to the problem of linking a hundred files in the directory data, you can use 

ln to connect data to a symbolic link named input_files:

ln -s data input_files First argument is a directory 

Being more flexible, a symbolic link is also known as a soft link or symlink. As for 

a hard link, the rm command removes a symbolic link even if it points to a directory.

Symbolic links are used extensively in the UNIX system. System files constantly 

change locations with version enhancements. Yet it must be ensured that all programs 

still find the files where they originally were. 

Windows shortcuts are more like symbolic links. The concept of symbolic links can 

also be seen in iPod and MP3 players. These devices let you create playlists where the 

same song may be present in more than one playlist. Playlist entries resemble symbolic 

links in that when you click on an entry, the link to the original file is followed. Also, 

deleting a playlist entry doesn’t delete the original MP3 file. 

das76205_Ch04_092-121.indd   108das76205_Ch04_092-121.indd   108 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 109

Linux

What happens when we copy a symbolic link with the cp command? By default, 

the file pointed to by the symlink is copied and not the symlink itself. But this behavior 

can be overridden with the -P option to cp. For instance, if foo.sym is a symlink to the 

file foo, then cp -P foo.sym foo.sym2 copies the symlink itself. In this case, both 

foo.sym and foo.sym2 point to the same file foo.

A symbolic link has an inode number separate from the file that it points to. In most 

cases, the pathname is stored in the symbolic link and occupies space on disk. However, 

Linux uses a fast symbolic link, which stores the pathname in the inode itself provided 

it doesn’t exceed 60 characters.

Think twice before you delete the file or directory that a symlink points to. For instance, 
removing date.sym (considered in a previous example) won’t affect us much because we can 
easily re-create the link. But if we remove date.sh, we will lose the file containing the data:

$ rm date.sh ; cat date.sym
cat: cannot open date.sym

A disaster of greater magnitude could occur if we removed data instead of input_files. We 
would then lose all one hundred files! In either case, date.sym and input_files would point 
to a nonexistent file. These links are known as dangling symbolic links.

The pwd command is built into most shells (except the C shell). When you use cd with a sym-
bolic link in one of these shells, pwd shows you the path you used to get to the directory. This 
is not necessarily the same as the actual directory you are in. To know the “real” location, you 
should use the external command /bin/pwd.

 4.9 File Ownership

The chmod and ln commands will fail if you don’t have the authority to use them, that 

is, if you don’t own the file. Observe the listing of this file:

rw-r--r--   1 romeo    metal          5 Aug 16 09:38 date.sh

romeo can change all attributes of date.sh, but juliet cannot—even if she belongs to 

the metal group. But if juliet copies this file to her home directory, then she’ll be the 

owner of the copy and can then change all attributes of the copy at will.

Several users may belong to a single group. People working on a project are 

generally assigned a common group, and all files created by group members (who have 

separate user-ids) have the same group owner. However, make no mistake: The privileges 

of the group are set by the owner of the file and not by the group members.

Caution

Note

das76205_Ch04_092-121.indd   109das76205_Ch04_092-121.indd   109 12/13/11   10:44 AM12/13/11   10:44 AM



110 Your UNIX/Linux: The Ultimate Guide

When the system administrator creates a user account, she has to assign these 

parameters to the user:

 • The user-id (UID)—both its name and numeric representation.

 • The group-id (GID)—both its name and numeric representation. The administrator 

has to assign the group name also if the GID represents a new group.

The file /etc/passwd maintains three out of the four parameters. They are shown in 

Fig. 4.5 for a sample entry for the user romeo. The UID is shown in the first field (the 

name) and the third (the number). The fourth field signifies the GID (number only). The 

group database is maintained in /etc/group and contains the GID (both number and 

name). The inode, however, stores only the numbers, and commands like ls use these 

files as translation tables to display the names rather than the numbers. We’ll discuss 

these two files when we add a user account in Chapter 19.

To know your own UID and GID without viewing /etc/passwd and /etc/group, use the id 
command:

$ id
uid=1003(romeo) gid=101(metal)

Whatever files this user creates will have romeo as the owner and metal as the group owner.

 4.9.1 chown: Changing File Ownership
There are two commands meant to change the ownership of a file or directory—chown and 

chgrp. UNIX systems differ in the way they restrict the usage of these two commands. 

On BSD-based systems, only the system administrator can change a file’s owner with 

chown. On the same systems, the restrictions are less severe when it comes to changing 

groups with chgrp. On other systems, only the owner can change both.

We’ll first consider the behavior of BSD-based chown (change owner) that has been 

adopted by many systems, including Solaris and Linux. The command is used in this way:

chown options owner [:group]  file(s)

chown transfers ownership of a file to a user, and the syntax shows that it can change 

the group as well. The command requires the (UID) of the recipient, followed by one or 

Tip

F I G U R E  4 . 5  The UID and GID Components in /etc/passwd

  romeo:x:1003:101::/export/home/romeo:/usr/bin/ksh

UID GID

das76205_Ch04_092-121.indd   110das76205_Ch04_092-121.indd   110 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 111

more filenames. Changing ownership requires superuser permission, so let’s first change 

our status to that of superuser with the su command:

$ su
Password: ******** This is the root password!

# _ This is another shell

su lets us acquire superuser status if we know the root password, and it returns a # prompt, 

the same prompt used by root. To now renounce the ownership of the file date.sh to 

juliet, use chown in the following way:

# ls -l date.sh
-rw-r--r--   1 romeo    metal          5 Aug 18 09:23 date.sh
# chown juliet date.sh ; ls -l date.sh
-rw-r--r--   1 juliet   metal          5 Aug 18 09:23 date.sh
# exit                                  Switches from superuser’s shell

$ _                                          to user’s login shell

Once ownership of the file has been given away to juliet, the user file permissions that 

previously applied to romeo now apply to juliet. Thus, romeo can no longer edit date.sh 

since there’s no write privilege for group and others. He can’t get back the ownership, 

either. But he can copy this file, in which case he becomes the owner of the copy.

 4.9.2 chgrp: Changing Group Owner
By default, the group owner of a file is the group to which the owner belongs. The chgrp 

(change group) command changes a file’s group owner. On systems that implement the 

BSD version of chgrp (like Solaris and Linux), a user can change the group owner of a 

file, but only to a group to which she also belongs. Yes, a user can belong to more than 

one group, and the one shown in /etc/passwd is the user’s main group. We’ll discuss 

supplementary groups in Chapter 19 featuring system administration.

chgrp shares a similar syntax with chown. In the following example, romeo changes 

the group ownership of a file to dba (no superuser permission required):

$ ls -l prime.c
-r--r--r--   1 romeo    metal        268 Jul 13 21:36 prime.c
$ chgrp dba prime.c ; ls -l prime.c
-r--r--r--   1 romeo    dba          268 Jul 13 21:36 prime.c

This command will work on a BSD-based system if romeo is also a member of the dba 

group. If he is not, then only the superuser can make the command work. Note that romeo 

can reverse this action and restore the previous group ownership (to metal) because he 

is still owner of the file and consequently retains all rights related to it.

Using chown to Do Both As an added benefit, UNIX allows the administrator to use 

only chown to change both owner and group. The syntax requires the two arguments to 

be separated by a :

chown juliet:dba prime.c             Ownership to juliet, group to dba

das76205_Ch04_092-121.indd   111das76205_Ch04_092-121.indd   111 12/13/11   10:44 AM12/13/11   10:44 AM



112 Your UNIX/Linux: The Ultimate Guide

Like chmod, both chown and chgrp use the -R option to perform their operations in a 

recursive manner.

If you want members of a project to be able to read and write a set of files, ask the system 
administrator to have a common group for them and then set the permissions of the group to 
rwx. There’s a better way of doing this (with the sticky bit), and it is discussed in Section 19.4.3.

 4.9.3 How to Handle Intruders
View the original listing in Fig. 4.1 to detect two intruders in romeo’s directory. Neither 

file is owned by romeo or group-owned by metal:

-r--r--r--   1 256      105        13921 Jul 26  2001 987
-rwxr-xr-x   1 root     root        6496 Aug 10 10:20 a.out

To explain why numbers rather than names appear in the first line, recall that ls -l does 

a number-name translation. It prints the owner’s name by looking up /etc/passwd and 

the group name by looking up /etc/group. These numbers are obviously not there in 

these files, so ls printed them as they are. Problems of this sort are often encountered 

when files are transferred from another system.

For the second file, romeo could have acquired root status to change the ownership 

of a file and then forgotten to revert to the normal user before compiling a C program. 

To remedy this situation, romeo needs to use the superuser account to run chown and 

chgrp on this file or ask the system administrator to do that job for him.

 4.10 Modification and Access Times

The inode stores three time stamps. In this section, we’ll be discussing just two of them 

(the first two of the following list):

 • Time of last file modification     Shown by ls -l
 • Time of last access         Shown by ls -lu
 • Time of last inode modification     Shown by ls -lc

Whenever you write to a file, the time of last modification is updated in the inode. A 

file also has an access time, i.e., the last time someone read, wrote, or executed the file. 

This time is distinctly different from the modification time that gets set only when the 

contents of the file are changed. ls -l displays the last modification time, and ls -lu 

displays the last access time.

A directory can be modified by changing its entries—by creating, removing, 

and renaming files in the directory. Note that changing a file’s contents only changes 

its last modification time but not that of its directory. For a directory, the access time 

is changed by a read operation only; creating or removing a file or doing a “cd” to a 

directory doesn’t change its access time.

Even though ls -l and ls -lu show the time of last modification and access, 

respectively, the sort order remains standard, i.e., ASCII. However, when you add the -t 

option to -l or -lu, the files are actually displayed in order of the respective time stamps:

ls -lt           Displays listing in order of their modification time

ls -lut          Displays listing in order of their access time

Tip

das76205_Ch04_092-121.indd   112das76205_Ch04_092-121.indd   112 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 113

Many tools used by the system administrator look at these time stamps to decide whether 

a particular file will participate in a backup or not. A file is often incorrectly stamped 

when it is extracted from a backup with tar or cpio. Section 19.3.1 discusses how the 

touch command is used to rectify such situations.

It’s possible to change the access time of a file without changing its modification time. In an 
inverse manner, when you modify a file, you generally change its access time as well. However, 
on some systems, when you redirect output (with the > and >> symbols), you change the 
contents but not the last access time.

What happens when you copy a file with cp? By default, the copy has the modification and 
access  time stamps set to the time of copying. Sometimes, you may not like this to happen. 
In that case, use cp -p (preserve) to retain both time stamps.

 4.11 find: Locating Files

find is one of the power tools of the UNIX system. It recursively examines a directory 

tree to look for files matching some criteria and then takes some action on the selected 

files. It has a difficult command line, and if you have ever wondered why UNIX is hated 

by many, then you should look up the cryptic find documentation. However, find is 

easily tamed if you break up its arguments into three components:

find path_list selection_criteria action

Fig. 4.6 shows the structure of a typical find command. The command completely 

examines a directory tree in this way:

 • First, it recursively examines all files in the directories specified in path_list. Here, 

it begins the search from /home.

 • It then matches each file for one or more selection_criteria. This always consists of 

an expression in the form -operator argument (-name index.html). Here, find 

selects the file if it has the name index.html.

 • Finally, it takes some action on those selected files. The action -print simply 

displays the find output on the terminal.

All find operators (also referred to as options in this text) begin with a hyphen. You 

can provide one or more subdirectories as the path_list and multiple selection_criteria 
to match one or more files. This makes the command difficult to use initially, but it is 

a program that every user must master since it lets her select files under practically any 

condition.

Note

Tip

Path list ActionSelection criteria

find /home -name index.html -print

F I G U R E  4 . 6  Structure of a find command

das76205_Ch04_092-121.indd   113das76205_Ch04_092-121.indd   113 12/13/11   10:44 AM12/13/11   10:44 AM



114 Your UNIX/Linux: The Ultimate Guide

Linux

As our first example, let’s use find to locate all files named a.out (the executable 

file generated by the C compiler):

$ find / -name a.out -print
/home/romeo/scripts/a.out
/home/andrew/scripts/reports/a.out
/home/juliet/a.out

Since the search starts from the root directory, find displays absolute pathnames. You 

can also use relative names in the path list, and find will then output a list of relative 

pathnames. Moreover, when find is used to match a group of filenames with a wild-card 

pattern, the pattern should be quoted to prevent the shell from looking at it:

find . -name “*.c” -print        All files with extension .c

find . -name ‘[A-Z]*’ -print     Single quotes will also do

The first command looks for all C program source files in the current directory tree. 

The second one searches for all files whose names begin with an uppercase letter. You 

must not forget to use the -print option because without it, find on UNIX systems 

will look for files all right but won’t print the list.

find in UNIX displays the file list only if the -print operator is used. However, Linux 

doesn’t need this option; it prints by default. Linux also doesn’t need the path list; it 

uses the current directory by default. Linux even prints the entire file list when used 

without any options whatsoever! This behavior is not required by POSIX.

 4.11.1 Selection Criteria
The -name operator is not the only operator used in framing the selection criteria; there 

are many others (Table 4.4). We’ll consider the selection criteria first, and then the pos-

sible actions we can take on the selected files.

Locating a File by Inode Number (-inum) Refer to Section 4.7.1, where we found 

that gzip has three links and gunzip was one of them. find allows us to locate files 

by their inode number. Use the -inum option to find all filenames that have the same 

inode number:

$ find / -inum 13975 -print     Inode number obtained from Section 4.7.1

find: cannot read dir /usr/lost+found: Permission denied
/usr/bin/gzip
/usr/bin/gunzip
/usr/bin/gzcat                               “Cats” a compressed file   

Now we know what the three links are. Note that find throws an error message when 

it can’t change to a directory. Read the following Tip.

das76205_Ch04_092-121.indd   114das76205_Ch04_092-121.indd   114 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 115

If you use find from a nonprivileged account to start its search from root, the command will 
generate a lot of error messages on being unable to “cd” to a directory. Since you might miss 
the selected file in an error-dominated list, the error messages should be directed by using the 
command in this way: find / -name typescript -print 2>/dev/null. Note that you can’t do 
this in the C shell. Section 6.7 explains the significance of 2>/dev/null.

File Type and Permissions (-type and -perm) The -type option followed by the 

letter f, d, or l selects files of the ordinary, directory, and symbolic link type. Here’s 

how you locate all directories of your home directory tree:

$ cd ; find . -type d -print 2>/dev/null
.                              Shows the . also

./.netscape                    Displays hidden directories also

./java_progs

./c_progs

./c_progs/include

./.ssh

Tip

T A B L E  4 . 4  Major Expressions Used by find (Meaning gets reversed when - is 
replaced by +, and vice versa)

Selection Criteria Selects File

-inum n    Having inode number n

-type x    If of type x; x can be f (ordinary file), d (directory), or l (symbolic link)

-perm nnn    If octal permissions match nnn completely

-links n    If having n links

-user usname          If owned by usname

-group gname    If owned by group gname

-size +x[c]            If size greater than x blocks (characters if c is also specified) (Chapter 19)

-mtime -x          If modified in less than x days

-newer flname         If modified after flname (Chapter 19)

-mmin -x         If modified in less than x minutes (Linux only)

-atime +x          If accessed in more than x days

-amin +x          If accessed in more than x minutes (Linux only)

-name flname          flname

-iname flname    As above, but match is case-insensitive (Linux only)

-follow    After following a symbolic link

-prune     But don’t descend directory if matched

-mount    But don’t look in other file systems

Action                Significance

-print               Prints selected file on standard output

-ls    Executes ls -lids command on selected files

-exec cmd          Executes UNIX command cmd followed by {} \;

-ok cmd            Like -exec, except that command is executed after user confirmation

das76205_Ch04_092-121.indd   115das76205_Ch04_092-121.indd   115 12/13/11   10:44 AM12/13/11   10:44 AM



116 Your UNIX/Linux: The Ultimate Guide

Note that the relative pathname find displays, but that’s because the pathname itself was 

relative (.). find also doesn’t necessarily display an ASCII sorted list. The sequence in 

which files are displayed depends on the internal organization of the file system.

The -perm option specifies the permissions to match. For instance, -perm 666 

selects files having read and write permission for all user categories. Such files are 

security hazards. You’ll often want to use two options in combination to restrict the 

search to only directories:

find $HOME -perm 777 -type d -print

find uses an AND condition (an implied -a operator between -perm and -type) to 

select directories that provide all access rights to everyone. It selects files only if both 

selection criteria (-perm and -type) are fulfilled.

Finding Unused Files (-mtime and -atime) Files tend to build up incessantly on 

disk. Some of them remain unaccessed or unmodified for months—even years. find’s 

options can easily match a file’s modification (-mtime) and access (-atime) times to 

select them. The -mtime option helps in backup operations by providing a list of those 

files that have been modified, say, in less than two days:

find . -mtime -2 -print

Here, -2 means less than two days. To select from the /home directory all files that have 

not been accessed for more than a year, a positive value has to be used with -atime:

find /home -atime +365 -print

+365 means greater than 365 days; -365 means less than 365 days. For specifying exactly 
365, use 365.

 4.11.2 The find Operators (!, -o, and -a)
There are three operators that are commonly used with find. The ! operator is used 

before an option to negate its meaning. So,

find . ! -name “*.c” -print

selects all but the C program files. To look for both shell and perl scripts, use the -o 

operator, which represents an OR condition. We need to use an escaped pair of paren-

theses here:

find /home \( -name “*.sh” -o -name “*.pl” \) -print

The ( and ) are special characters that are interpreted by the shell to run commands in 

a group (7.6.2). The same characters are used by find to group expressions using the 

-o and -a operators, the reason why they need to be escaped.

Note

das76205_Ch04_092-121.indd   116das76205_Ch04_092-121.indd   116 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 117

The -a operator represents an AND condition, and is implied by default whenever 

two selection criteria are placed together.

 4.11.3 Operators of the Action Component
Displaying the Listing (-ls) The -print option belongs to the action component 

of the find syntax. In real life, you’ll often want to take some action on the selected 

files and not just display the filenames. For instance, you may want to view the listing 

with the -ls option:

$ find . -type f -mtime +2 -mtime -5 -ls         -a option implied

475336   1 -rw-r--r--  1 romeo    users   716 Aug 17 10:31 ./c_progs/fileinout.c

find here runs the ls -lids command to display a special listing of those regular files 

that are modified in more than two days and less than five days. In this example, we see 

two options in the selection criteria (both -mtime) simulating an AND condition. It’s 

the same as using \( -mtime +2 -a -mtime -5 \).

Taking Action on Selected Files (-exec and -ok) The -exec option allows 

you to run any UNIX command on the selected files. -exec takes the command to 

execute as its own argument, followed by {} and finally the rather cryptic symbols 

\; (backslash and semicolon). This is how you can reuse a previous find command 

quite meaningfully:

find $HOME -type f -atime +365 -exec rm {} \;          Note the usage

This will use rm to remove all ordinary files unaccessed for more than a year. This can 

be a risky thing to do, so you can consider using rm’s -i option. But not all commands 

have interactive options, in which case you should use find’s -ok option:

$ find $HOME -type f -atime +365 -ok mv {} $HOME/safe \; 
< mv ... ./archive.tar.gz > ? y
< mv ... ./yourunix02.txt > ? n
< mv ... ./yourunix04.txt > ? y
   .......

mv turns interactive with -i but only if the destination file exists. Here, -ok seeks con-

firmation for every selected file to be moved to the $HOME/safe directory irrespective 

of whether the files exist at the destination or not. A y deletes the file.

find is the system administrator’s tool, and in Chapter 19, you’ll see it used for 

a number of tasks. It is especially suitable for backing up files and for use in tandem 

with the xargs command (see Going Further of Chapter 6).

The pair of {} is a placeholder for a filename. So, -exec cp {} {}.bak provides a .bak extension 
to all selected files. Don’t forget to use the \; symbols at the end of every -exec or -ok option.Note

das76205_Ch04_092-121.indd   117das76205_Ch04_092-121.indd   117 12/13/11   10:44 AM12/13/11   10:44 AM



118 Your UNIX/Linux: The Ultimate Guide

S U M M A R Y

The ls -l command displays the listing containing seven file attributes. ls -ld used 

with a directory name lists directory attributes.

A file can have read, write, or execute permission, and there are three sets of 

such permissions for the user, group, and others. A file’s owner uses chmod to alter file 

permissions. The permissions can be relative or absolute. The octal digit 7 includes read 

(4), write (2), and execute permissions (1).

Permissions have different significance for directories. Read permission means 

that the filenames stored in the directory are readable. Write permission implies that you 

are permitted to create or remove files in the directory. Execute (or search) permission 

means that you can change to that directory with the cd command.

The umask setting determines the default permissions that will be used when 

creating a file or a directory.

Multiple file systems, each with its own root directory, are mounted at boot time 

to appear as a single file system. A file’s attributes are stored in the inode, which is 

identified by the inode number. The inode number is unique in a single file system.

A file can have more than one name or link, and is linked with ln. Two linked 

filenames have the same inode number. A symbolic link contains the pathname of another 

file or directory and is created with ln -s. The file pointed to can reside on another file 

system. rm removes both types of links.

Hard links provide protection against accidental deletion, but removing the file 

pointed to by a symlink can be dangerous. Both links enable you to write program code 

that does different things depending on the name by which the file is invoked.

chown and chgrp are used to transfer ownership and group ownership, respectively. 

They can be used by the owner of the file on AT&T systems. On BSD systems, chown 

can be used only by the superuser, and a user can use chgrp to change her group to 

another to which she also belongs.

A file has three time stamps, including the time of last modification and access.

find looks for files by matching one or more file attributes. A file can be specified 

by type (-type), name (-name), permissions (-perm), or by its time stamps (-mtime and 

-atime). The -print option is commonly used, but any UNIX command can be run on 

the selected files with or without user confirmation (-ls, -exec, and -ok).

S E L F - T E S T

4.1 What do you understand by the listing of a file? How will you save the complete 

listing of all files and directories (including the hidden ones) in the system?

4.2 Show the octal representation of these permissions: (i) rwxr-xrw- , 

(ii) rw-r----- , (iii) --x-w-r--.

4.3 What will the permissions string look like for these octal values? (i) 567, 

(ii) 623, (iii) 421
4.4 What does a group member require to be able to remove a file?

4.5 If a file’s permissions are 000, can the superuser still read and write it?

das76205_Ch04_092-121.indd   118das76205_Ch04_092-121.indd   118 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 119

4.6 You removed the write permission of a file from group and others, and yet they 

could delete your file. How could that happen?

4.7 Try creating a directory in the system directories /bin and /tmp, and explain 

your observations.

4.8 Copy a file with permissions 444. Copy it again and explain your observations.

4.9 How do you ensure that all ordinary files created by you have rw-rw---- as the 

default permissions?

4.10 How do you display the inode number of a file?

4.11 What does the inode store? Which important file attribute is not maintained in 

the inode? Where is it stored then?

4.12 What do you mean by saying that a file has three links?

4.13 How do you remove (i) a hard link, (ii) a symbolic link pointing to a directory?

4.14 How do you link all C source files in the current directory and place the links in 

another directory, bar?

4.15 A symbolic link has the same inode number as the file it is linked to. True or 

false?

4.16 How do you link foo1 to foo2 using (i) a hard link, (ii) a symbolic link? If you 

delete foo1, does it make any difference?

4.17 Copy the file /etc/passwd to your current directory and then observe the listing 

of the copy. Which attributes have changed?

4.18 Where are the UID and GID of a file stored?

4.19 How is chown different from chgrp on a BSD-based system when it comes to 

renouncing ownership?

4.20 Explain with reference to the dot and * what the following commands do: 

(i) chown -R project . , (ii) chgrp -R project * .

4.21 When you invoke ls -l foo the access time of foo changes. True or false?

4.22 View the access time of a file with ls -lu foo before appending the date com-

mand output to it using date >> foo. Observe the access time again. What do 

you see?

4.23 Devise a find command to locate in /docs and /usr/docs all filenames that 

(i) begin with z,  (ii) have the extension .html or .java.

E X E R C I S E S

4.1 A file in a file system with a block size of 1024 bytes contains 1026 bytes. How 

many bytes of disk space does it occupy?

4.2 Does the owner always belong to the same group as the group owner of a file?

4.3 Explain the significance of the following commands: (i) ls -ld ., (ii) ls -l .. .

4.4 Create a file foo. How do you assign all permissions to the owner and remove 

all permissions from others using (i) relative assignment and (ii) absolute assign-

ment? Do you need to make any assumptions about foo’s default permissions?

4.5 From the security viewpoint, explain the consequences of creating a file with 

permissions (i) 000, (ii) 777.

das76205_Ch04_092-121.indd   119das76205_Ch04_092-121.indd   119 12/13/11   10:44 AM12/13/11   10:44 AM



120 Your UNIX/Linux: The Ultimate Guide

4.6 Examine the output of the following two commands on a BSD-based system. 

Explain whether romeo can (i) edit, (ii) delete, (iii) change permissions, 

(iv) change ownership of foo:

$ who am i ; ls -l foo
romeo
-r--rw----    1 sumit    romeo          78 Jan 27 16:57 foo

4.7 Assuming that a file’s current permissions are rw-r-xr--, specify the 

chmod expression required to change them to (i) rwxrwxrwx, (ii) r--r-----, 

(iii) ---r--r-- , (iv) ---------, using both relative and absolute methods of 

assigning permissions.

4.8 Use chmod -w . and then try to create and remove a file in the current directory. 

Can you do that? Is the command the same as chmod a-w foo?

4.9 You tried to copy a file foo from another user’s directory, but you got the error 

message cannot create file foo. You have write permission in your own 

directory. What could be the reason, and how do you copy the file?

4.10 What do you do to ensure that no one is able see the names of the files you have?

4.11 The command cd bar failed where bar is a directory. How can that happen?

4.12 If a file has the permissions 000, you may or may not be able to delete the file. 

Explain how both situations can happen. Does the execute permission have any 

role to play here?

4.13 If the owner doesn’t have write permission on a file but her group has, can she 

(i) edit it, (ii) delete it?

4.14 If umask shows the value (i) 000, (ii) 002, what implications do they have from 

the security viewpoint?

4.15  The UNIX file system has many root directories even though it actually shows 

one. True or false?

4.16  What change takes place in the inode and directory when a filename is connected 

by a hard link?

4.17  If ls -li shows two filenames with the same inode number, what does that 

indicate?

4.18  What happens when you invoke the command ln foo bar if (i) bar doesn’t 

exist, (ii) bar exists as an ordinary file, (iii) bar exists as a directory?

4.19  How can you make out whether two files are copies or links?

4.20  Explain two application areas of hard links. What are the two main disadvantages 

of the hard link?

4.21  You have a number of programs in $HOME/progs which are called by other programs. 

You have now decided to move these programs to $HOME/internet/progs. How 

can you ensure that users don’t notice this change?

4.22  Explain the significance of fast symbolic links and dangling symbolic links.

4.23  Explain how ls obtains the (i) filename, (ii) name of owner, (iii) name of group 

owner when displaying the listing.

4.24  How will you determine whether your system uses the BSD or AT&T version 

of chown and chgrp?

das76205_Ch04_092-121.indd   120das76205_Ch04_092-121.indd   120 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 4: File Attributes 121

4.25  The owner can change all attributes of a file on a BSD-based system. Explain 

whether the statement is true or false. Is there any attribute that can be changed 

only by the superuser?

4.26  What are the three time stamps maintained in the inode, and how do you display 

two of them for the file foo?

4.27  How can you find out whether a program has been executed today?

4.28  Explain the difference between (i) ls -l and ls -lt, (ii) ls -lu and ls -lut.

4.29  Use find to locate from your home directory tree all (i) files with the extension 

.html or .HTML, (ii) files having the inode number 9076,  (iii) directories having 

permissions 666, (iv) files modified yesterday. Will any of these commands fail?

4.30 Use find to (i) move all files modified within the last 24 hours to the posix 

directory under your parent directory, (ii) locate all files named a.out or core 
in your home directory tree and remove them interactively, (iii) locate the file 

login.sql in the /oracle directory tree, and then copy it to your own direc-

tory, (iv) change all directory permissions to 755 and all file permissions to 644 
in your home directory tree.

das76205_Ch04_092-121.indd   121das76205_Ch04_092-121.indd   121 12/13/11   10:44 AM12/13/11   10:44 AM



122

5 
C H A P T E R  5

The vi/vim Editor

No matter what work you do with the UNIX system, you’ll eventually write some 

C programs or shell (or perl) scripts. You may have to edit some of the system 

files at times. For all of this you must learn to use an editor, and UNIX provides a very 

old and versatile one—vi. Bill Joy created this editor for the BSD system. The program 

is now standard on all UNIX systems. Bram Moolenaar improved it and called it vim (vi 
improved). In this text, we discuss vi and also note the features of vim, available in Linux.

Like any editor including pico, vi supports a number of internal commands 

for navigation and text editing. It also permits copying and moving text both within a 

file and from one file to another. The commands are cryptic but often mnemonic. vi 

makes complete use of the keyboard where practically every key has a function. There 

are numerous features available in this editor, but a working knowledge of it is all you 

are required to have initially. The advanced features of vi are taken up in Appendix D.

  Objectives
 • Know the three modes in which vi operates for sharing the workload.

 • Repeat a command multiple times using a repeat factor.

 • Insert, append, and replace text in the Input Mode.

 • Save the buffer and quit the editor using the ex Mode.

 • Perform navigation in a relative and absolute manner in the Command Mode.

 • The concept of a word as a navigation unit for movement along a line.

 • Learn simple editing functions like deleting characters and changing the case of text.

 • Understand the use of operator–command combinations to delete, yank (copy), and 

move text.

 • Copy and move text from one file to another.

 • Undo the last editing action and repeat the last command.

 • Search for a pattern, and repeat the search both forward and back.

 • Replace one string with another.

 • Master the three-function sequence to (i) search for a pattern, (ii) take some action, 

and (iii) repeat the search and action.

 • Customize vi using the :set command and the file ~/.exrc.

 • Become familiar with two powerful features available in vim—word completion and 

multiple undoing.

 • Map your keys and define abbreviations (Going Further).

das76205_Ch05_122-155.indd   122das76205_Ch05_122-155.indd   122 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 123

 5.1 vi Basics

vi is unlike other editors. It operates in three modes, and specific functions are assigned 

to each mode. We can see these modes at work when we add some text to a file. Invoke 

vi with the name of a nonexistent file, say sometext:

vi sometext

vi presents you a full screen with the filename shown at the bottom with the qualifier, 

[New File]. The cursor is positioned at the top, and all remaining lines of the screen 

(except the last) show a ~. You can’t take your cursor there yet; they are nonexistent 

lines. The last line is used for running some commands and displaying system-generated 

messages.

You are now in the Command Mode. In this mode you pass commands to act on text. 

Pressing a key doesn’t show it on screen but could perform a function like moving the cursor 

to the next line or deleting a line. You can’t use the Command Mode to enter or replace text.

Now press the key marked i, and you are in the Input Mode, ready to input text. 

Subsequent key depressions will now show up on the screen as text input. Insert a few 

lines of text, each line followed by [Enter], as shown in Fig. 5.1. If you see something 

that shouldn’t be there, backspace to wipe it out. If a word has been misspelled, use 

[Ctrl-w] to erase the entire word.

The current line is the one on which the cursor is now located (like the current 

directory). At this moment, the last line is the current line. Now press the [Esc] key to 

revert to Command Mode. Press it again, and you’ll hear a beep; a beep in vi indicates 

that a key has been pressed unnecessarily.

Now that you are in Command Mode, you can move horizontally along the current 

line using the keys h and l (el). Press h to take the cursor left and l to take it right. Use 

a repeat factor and try 5h and 3l to see whether the cursor moves five spaces left and 

three spaces right. The repeat factor is explained in Section 5.2. Simple navigation in 

the four directions is discussed in Section 5.6.1.

F I G U R E  5 . 1  Inserting Some Text

You started text insertion by pressing i.[Enter]
Don’t forget to press [Esc] after keying in text.[Enter]
Then use the h and l keys to move the cursor horizontally.[Enter]
Also try using j and k for moving up and down.[Enter]
Note that your text is still in the buffer and not on disk.[Enter]
Finally, use :x[Enter] to save the buffer to disk and quit vi.
~
~
~
~
~
:x[Enter]                                Saves work and quits editor

das76205_Ch05_122-155.indd   123das76205_Ch05_122-155.indd   123 12/13/11   10:44 AM12/13/11   10:44 AM



124 Your UNIX/Linux: The Ultimate Guide

The entered text hasn’t been saved on disk yet but exists in some temporary storage 

called a buffer. To save this buffer, you must switch to the ex Mode or Last Line Mode 

(the third mode) by entering a : (colon), which shows up in the last line. Next enter an 

x and press [Enter]:

:x[Enter] Must be in Command Mode first

“sometext” 6 lines, 232 characters
$ _ Quits editor—back to shell prompt

The file is saved on disk, and vi returns the shell prompt. To modify this file, you’ll have to 

invoke vi sometext again. But before moving ahead, let’s summarize the modes used by vi:

 • Command Mode—The default mode where every key pressed is interpreted as a 

command to run on text. Navigation, copying, and deleting text are performed in 

this mode. You used h and l in this mode to move the cursor along a line.

 • Input Mode— This mode is invoked by pressing one of the keys shown in Table 5.1. 

Every key pressed subsequently shows up as text. Pressing [Esc] in this mode takes 

vi to Command Mode. We used i as an Input Mode command.

 • ex Mode or Last Line Mode—This mode is used for file handling and performing 

substitution. vi was originally hard-linked to a line editor named ex; that’s where this 

mode got its name from. A : in the Command Mode invokes this mode, and is then 

followed by an ex Mode command. vi normally switches to the Command Mode 

after the ex Mode command is run, though we used :x to save the buffer and quit vi.

Much of the chapter deals with Command Mode commands where most of the action is. 

Some of these commands also have ex Mode equivalents which are sometimes easier to 

use. But all three modes also have their own exclusive features, and an editing session 

in vi involves constant switching between modes as depicted in Fig. 5.2.

 5.1.1 The File .exrc
The default behavior of vi is adequate for novices, but as you get comfortable with it, 

you’ll feel the need to customize it. vi reads the file $HOME/.exrc (same as ~/.exrc 

i Inserts text to left of cursor (Existing text shifted right)

a Appends text to right of cursor (Existing text shifted right)

I Inserts text at beginning of line (Existing text shifted right)

A Appends text at end of line

o Opens line below

O Opens line above

rch Replaces single character under cursor with ch (No [Esc] required)

R Replaces text from cursor to right (Existing text overwritten)

s Replaces single character under cursor with any number of characters 

S Replaces entire line

T A B L E  5 . 1  Input Mode Commands

Command Function

das76205_Ch05_122-155.indd   124das76205_Ch05_122-155.indd   124 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 125

in some shells) on startup. If ls -a doesn’t show this file in your home directory, then 

you can create or copy one. Linux users must note that vim generally doesn’t use .exrc, 

but only .vimrc.

Many ex Mode commands can be placed in this file so they are available in every 

session. You can create abbreviations, redefine your keys to behave differently, and make 

variable settings. Your .exrc will progressively develop into an exclusive “library” 

containing all shortcuts and settings that you use regularly. It could be your most prized 

possession, so always keep a backup of this file.

 5.2 A Few Tips First

We are about to take off, but before we do, a few tips at this stage will stand you in 

good stead. You must keep them in mind at all times when you are doing work with vi:

 • Make use of the repeat factor. Like more (3.16), vi also supports the use of 

a repeat factor as a command prefix to repeat the command as many times as 

the prefix. So if the Command Mode command k moves the cursor up one line, 

then 10k moves it up 10 lines. Use the repeat factor wherever you can to speed 

up operations.

F I G U R E  5 . 2  The Three Modes

Command
Mode 

Shell

Input Mode ex Mode

i,I,a,A,o,O,
r,R,s,S
and c operator

[Esc]

:

vi foo

:x, :wq, :q,
and  ZZ

[Enter]

das76205_Ch05_122-155.indd   125das76205_Ch05_122-155.indd   125 12/13/11   10:44 AM12/13/11   10:44 AM



126 Your UNIX/Linux: The Ultimate Guide

 • Undo whenever you make a mistake. If you have made a mistake in editing, ei-

ther by wrongly deleting text or inserting it at an incorrect location, then as a first 

measure, just press [Esc] and then u to undo the last action. If that makes matters 

worse, use u again. Linux users should instead use [Ctrl-r].

 • Use [Ctrl-l] to clear the screen. If the screen gets garbled, enter this control se-

quence in the Command Mode to redraw the screen. If you hit [Ctrl-l] in the Input 

Mode, you’ll see the symbol ^L on the screen. Use the backspace key to wipe it 

out, press [Esc], and then hit [Ctrl-l].

 • Don’t use [CapsLock] on most occasions. vi commands are case-sensitive; a and 

A are different Input Mode commands. Even if you have to activate [CapsLock] 

to enter a block of text in uppercase, make sure you deactivate it after text entry 

is complete.

 • Don’t use the PC navigation keys Avoid using the keys marked Up, Down, Left, 

and Right, [PageUp] and [PageDown]. Many of them could fail when you use 

vi over a network connection. vi provides an elaborate set of keys for navigation 

purposes.

 • vi reads the TERM variable to determine the file that contains the terminal’s charac-

teristics. As discussed later (8.3), vi actually reads a file in a specific directory to 

know the control sequences that apply to the terminal name assigned to TERM. You 

should always check TERM whenever vi behaves in an awkward manner.

Only the keys g, K, q, v, V, and Z have no function in the standard vi implementation. Some 
of them are defined, however, in vim.

 5.3 Input Mode—Entering and Replacing Text

In this section, we take up all the commands that let you enter the Input Mode from the 

Command Mode. When a key of the Input Mode is pressed, it doesn’t appear on the 

screen, but subsequent key depressions do. We’ll consider the following commands:

 • Insert and append (i, a, I, and A)

 • Replace (r, R, s, and S)

 • Open a line (o and O)

Always keep in mind that after you have completed text entry using any of these com-

mands (except r), you must return to the Command Mode by pressing [Esc]. Most of 

these commands can also be used with a repeat factor, though you’ll need to use it with 

only some of them.

Before you start using the Input Mode commands, enter this ex Mode command:

:set showmode[Enter]

Enter a : (the ex Mode prompt), and you’ll see it appearing in the last line. Follow it with 
the two words and press [Enter]. showmode sets one of the parameters of the vi environment. 
Messages like INSERT MODE, REPLACE MODE or CHANGE MODE, etc. will now appear in the last line 
when you run an Input Mode command. We’ll learn later to make the setting permanent by 
placing it in $HOME/.exrc.

Note

Tip

das76205_Ch05_122-155.indd   126das76205_Ch05_122-155.indd   126 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 127

 5.3.1 Inserting and Appending Text (i and a)
The simplest type of input is the insertion of text. Just press

i Existing text will be shifted right

Pressing this key changes the mode from Command to Input. Since the showmode setting 

was made at the beginning (with :set showmode), you’ll see the words INSERT MODE
at the bottom-right corner of the screen. You can now input as much text as you like.

If the i command is invoked with the cursor positioned on existing text, text on 

its right will be shifted further without being overwritten. The insertion of text with i is 

shown in Fig. 5.3. All figures in this chapter use this shaded box  to represent the cursor 

and the  to signify a space (when its presence isn’t all that obvious).

There are other methods of inputting text. To append text to the right of the 

cursor, use

a Existing text will also be shifted right

followed by the text you wish to key in (Fig. 5.4). After you have finished editing, press 

[Esc]. With i and a, you can input several lines of text.

 5.3.2 Inserting and Appending Text at Line Extremes (I and A)
I and A behave somewhat like i and a except that they work at line extremes by also 

performing the necessary navigation to move there:

I Inserts text at beginning of line.

A Appends text at end of line.

F I G U R E  5 . 3  Inserting Text with i

Original Text vi Commands Transformed Text

printf(No entry); i”[Esc] printf(“No entry);

printf(“No entry); i\n”[Esc] printf(“No entry\n”);

if (x < 5) {  if (x < 5) {
break; i[Tab][Esc] break;

N “

) ”

b

F I G U R E  5 . 4  Appending Text with a

Original Text vi Commands Transformed Text

echo “Filename:” a\c[Esc] echo “Filename:\c”

if [$x -gt 5 ] a [Esc] if [ $x -gt 5 ]

case a $# in[Esc] case $# in

echo “” 10a*[Esc] echo “**********”

: c

[  

e n

“ *

das76205_Ch05_122-155.indd   127das76205_Ch05_122-155.indd   127 12/13/11   10:44 AM12/13/11   10:44 AM



128 Your UNIX/Linux: The Ultimate Guide

These two commands are suitable for converting code to comment lines in a C program 

(Fig. 5.5). A comment line in C is of the form /* comment */. Use I on an existing line 

that you now wish to convert to a comment, and then enter the symbols /*. After pressing 

[Esc], use A to append */ at the end of the line and press [Esc] again. A document author 

often needs to use A to add a sentence to a paragraph.

C language programmers sometimes precede a block of comment lines with a pattern like this:

/**********************************************************************

It seems that there are 70 asterisks here, and to draw them you should use a repeat factor. 
After you have entered / in the Input Mode, press [Esc], and then enter 70a*[Esc]. You’ll see 
70 asterisks appended to the /.

 5.3.3 Opening a New Line (o and O)
Often it has been observed that people migrating from a word-processing environment 

use a convoluted sequence to open a new line below the current line. They move the 

cursor past the end of the current line and then press [Enter]. In vi, you are better off 

using o and O instead. To open a line below from anywhere in a line, simply press

o Opens a new line below the current line

This inserts an empty line below the current line (Fig. 5.6). O also opens a line but above 

the current line. Note that to insert a line before the first line, you need O and not o. Press 

[Esc] after completing text input.

Tip

Original Text vi Commands Transformed Text

#count.sh: Counts patterns o#[Esc] #count.sh: Counts patterns
  #

#count.sh: Counts patterns O#!/bin/sh[Esc] #!/bin/sh
#  #count.sh: Counts patterns
  #

F I G U R E  5 . 6  Opening a New Line with o and O

F I G U R E  5 . 5  Using I and A

Original Text vi Commands Transformed Text

Set up an infinite loop I/* [Esc] /* Set up an infinite loop

/* Set up an infinite loop A */[Esc] /* Set up an infinite loop */

exit(0) A;[Enter]}[Esc] exit(0);

  }

/

das76205_Ch05_122-155.indd   128das76205_Ch05_122-155.indd   128 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 129

 5.3.4 Replacing Text (r, s, R, and S)
To change existing text, vi provides mainly four commands (actually, more) as shown 

in the heading. To replace a single character with another, you should use

r No [Esc] required

followed by the character that replaces the one under the cursor (Fig. 5.7). You can replace 

a single character only in this way. vi momentarily switches from Command Mode to 

Input Mode when r is pressed. It returns to the Command Mode as soon as the new 

character is entered. There’s no need to press [Esc] when using r and the replacement 

character, since vi expects a single character anyway.

When you want to replace the letter d with 10f in a printf statement in C, you 

need to replace one character with three. In that case, press

s Replaces one character with many

vi deletes the character under the cursor and switches to Input Mode (Fig. 5.8). It may 

also show a $ at that location to indicate that replacement will not affect text on its right. 

Now enter 10f and press [Esc]. To replace multiple characters, use a repeat factor. 3s
replaces three characters with new text.

R and S act in a similar manner compared to their lowercase versions except that 

they act on a larger group of characters:

R Replaces all text on the right of the cursor position.

S Replaces the entire line irrespective of the cursor position. (Existing line disappears)

Using R in vi is like using [Insert] to activate the overwrite mode in Windows. Try using 

the repeat factor with R and S, and see whether you can take advantage of this feature. 

Use of R and S is shown in Fig. 5.9.

Original Text vi Commands Transformed Text

printf(“Enter filename/c”); r\ printf(“Enter filename\c”);

printf(“Filename: %d\n”, fname); rs printf(“Filename: %s\n”, fname)

F I G U R E  5 . 7  Replacing a Single Character with r

F I G U R E  5 . 8  Replacing Text with s and S

Original Text vi Commands Transformed Text

printf(“CPU Time: %d\n”, ct); s10f printf(“CPU Time: %10f\n”, ct);

while (x -gt 5) 3s>[Esc] while (x > 5)

while(1) 3s true[Esc] while true

fd

- > 

e(

das76205_Ch05_122-155.indd   129das76205_Ch05_122-155.indd   129 12/13/11   10:44 AM12/13/11   10:44 AM



130 Your UNIX/Linux: The Ultimate Guide

Linux

You have now been able to enter the Input Mode in 10 ways. The functions of 

these 10 keys are summarized in Table 5.1.

Remember to switch to the Command Mode from Input Mode by pressing [Esc]. If you forget to 
do that, all Command Mode commands will show up as text input, in which case you have to 
backspace to erase the text. Repeated pressing of [Esc] won’t make any difference to vi except 
that it has a built-in capability to indicate with a beep if a key has been pressed unnecessarily. 
Try this by pressing [Esc] several times. You are now in the Command Mode.

A superb text completion feature is available in vim. If the string printf is available 

in the file, you don’t need to enter the entire string ever. Just key in as much as is 

necessary to make the string unique (say, up to pr), and then press

[Ctrl-p] vim attempts to complete string

vim expands pr to printf if this is the only word beginning with pr. In case there are 

other words, repeated pressing of [Ctrl-f] shows all matching words in turn. In case 

you have to view the list backwards, use [Ctrl-n].

 5.3.5 Entering Control Characters ([Ctrl-v])
If you write shell scripts to send some escape sequences to your printer or terminal, then 

you need to enter control characters. In vi, some of these characters are directly enterable, 

but generally a control character has to be preceded by [Ctrl-v] to be interpreted properly.

For instance, to enter [Ctrl-h], you have to first press [Ctrl-v] and then [Ctrl-h]. 

You’ll then see this on the screen:

^H Just one character here

Even though you feel you are seeing a ^ (caret) and an H, there’s only a single character 

out there. You can position the cursor only on the ^ and not on the H; that’s how you 

identify control characters anyway.

The same technique can be adopted for entering the [Esc] character. Press [Ctrl-v][Esc], 
and you’ll see the [Esc] character looking like this:

^[ Just one character here

This too is a single character. Insertion of a control character is shown in Fig. 5.10. If 

[Ctrl-v][Esc] doesn’t work, then use this: [Ctrl-v][Ctrl-[] (Control with [).

Caution

F I G U R E  5 . 9  Replacing Text with R and S

Original Text vi Commands Transformed Text

while (1) Rtrue[Esc] while true

echo “Error” Sprintf “Command failed\n”[Esc] printf “Command failed\n”

(

”

e

das76205_Ch05_122-155.indd   130das76205_Ch05_122-155.indd   130 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 131

 5.4 Saving Text and Quitting—The ex Mode

When you edit a file using vi—or, for that matter, any editor—the original file isn’t 

disturbed as such, but only a copy of it that is placed in a buffer (a temporary form of 

storage). These are the three operations that we commonly perform with the buffer:

• Save and continue editing (:w).

• Save and exit (:x and :wq).

• Abandon all changes and quit (:q and :q!).

The associated ex Mode commands are shown in parentheses. From time to time, you 

should save your work by writing the buffer contents to disk to keep the disk file cur-

rent (or, as we say, in sync). When we talk of saving a file, we actually mean saving this 

buffer. The essential save and exit commands are shown in Table 5.2.

F I G U R E  5 . 1 0  Insertion of a Control Character

Original Text vi Commands Transformed Text

:map #1 :w A[Ctrl-v][Ctrl-m][Esc] :map #1 :w^M

echo “Time up” i[Ctrl-v][Ctrl-g] echo “Time up^G”

T A B L E  5 . 2  Save and Exit Commands of the ex Mode

Command Action

:w Saves file and remains in editing mode

:x Saves file and quits editing mode

:wq As above

:w n2w.pl Like Save As ..... in Microsoft Windows

:w! n2w.pl As above, but overwrites existing file

:q Quits editing mode when no changes are made to file

:q! Quits editing mode after abandoning changes

:n1,n2w build.sql Writes lines n1 to n2 to file build.sql

:3,10w build.sql Writes lines 3 to 10 to file build.sql

:.w build.sql Writes current line to file build.sql

:$w build.sql Writes last line to file build.sql

:!cmd Runs cmd command and returns to Command Mode

:sh Escapes to UNIX shell (use exit to return to vi)

[Ctrl-z] Suspends current session and escapes to UNIX shell (only for shells 

 supporting job control; use fg to return to vi)

:e note1 Stops editing current file and edits file note1

:e! Loads last saved edition of current file (Like Revert in 

 Microsoft Windows)

:e# Returns to editing most recently edited file

das76205_Ch05_122-155.indd   131das76205_Ch05_122-155.indd   131 12/13/11   10:44 AM12/13/11   10:44 AM



132 Your UNIX/Linux: The Ultimate Guide

 5.4.1 Saving Your Work (:w)
You know how to save the buffer and exit the editor (5.1). For extended sessions with 

vi, you must be able to save the buffer and remain in the editor. Enter a : and w:

:w[Enter]
“sometext”, 8 lines, 275 characters

You can now continue your editing work normally; only make sure that you execute 

this command regularly. You may want to keep a backup of your work by using :w with 

a filename:

:w anotherfile anotherfile must not exist

“anotherfile” [New File] 8 lines, 275 characters written

Attention! Even though you have just written to anotherfile, your current file continues 

to be sometext. Windows users should note that this alternate file saving facility is 

different from the Save As . . . option of the File menu, which saves to a different file 

but also makes the new file the current one.

It’s common practice to ignore the readonly label when opening a file that doesn’t have the 
write permission bit set. When you attempt to save the file with :w, vi retorts with the message 
File is read only. You should have been careful in the first place, but there’s hope: Just save 
the file with a different name (say, :w foo) after making sure that foo doesn’t exist. Look up 
Table 5.2 for the command to use when foo also exists.

 5.4.2 Saving and Quitting (:x and :wq)
You know how to save and quit the editor (i.e., return to the shell); use :x:

:x[Enter]
“sometext”, 8 lines, 303 characters
$ _

You can also use :wq as a synonym to :x. But that requires an additional keystroke, and 

this author doesn’t use it.

The best way to save and quit the editor is to use ZZ, a Command Mode command, instead 
of :x or :wq. But there’s a danger that you might hit [Ctrl-z] instead and suspend the process. 
If that happens, turn to Section 7.11 for remedial action.

 5.4.3 Aborting Editing (:q)
It’s also possible to abort the editing process and quit the editing mode without saving 

the buffer. The q (quit) command is used to do that:

:q[Enter] Won’t work if buffer is unsaved

$ _

Tip

Tip

das76205_Ch05_122-155.indd   132das76205_Ch05_122-155.indd   132 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 133

vi also has a safety mechanism that prevents you from aborting accidentally if you 

have modified the file (buffer) in any way. The following message is typical when you 

try to do so:

No write since last change (:quit! overrides)

You haven’t saved the changes and are trying to quit; that’s what the message says. If 

you still want to abandon the changes, then use

:q! Ignores all changes made and quits

to return you to the prompt irrespective of the status of the buffer—no questions asked. 

The ! makes its appearance in the editor’s message every time vi feels that you could 

be doing something that is potentially unsafe.

In general, any ex Mode command used with a ! signifies an abort of some type. It can be 
used to switch to another file without saving the current one, or reload the last saved version 
of a file. You can even use it to overwrite a separate file.

 5.4.4 Writing Selected Lines
The :w command is an abbreviated way of executing the ex Mode instruction :1,$w. 

The w command can be prefixed by one or two addresses separated by a comma. The 

following two ex Mode commands write a single line and 41 lines, respectively, to a 

separate file:

:5w n2words.pl Writes fifth line to another file

:10,50w n2words.pl Writes 41 lines to another file

There are two symbols used with w that have special significance—the dot and $. The 

dot represents the current line while $ represents the last line of the file. You can use 

them singly or in combination:

:.w tempfile Saves current line (where cursor is positioned)

:$w tempfile Saves last line

:.,$w tempfile Saves current line through end

If tempfile exists and is writable by you, vi issues yet another warning:

“tempfile” File exists - use “w! tempfile” to overwrite

You know what vi is saying: Use :w! tempfile to overwrite tempfile. The ! is the 

universal overriding operator in the ex Mode, and you’ll be using it often.

In the ex Mode, the current line number is represented by . (dot) and the last line is denoted 
by $. The command w is the same as 1,$w. Both commands address the entire buffer.

Note

Note

das76205_Ch05_122-155.indd   133das76205_Ch05_122-155.indd   133 12/13/11   10:44 AM12/13/11   10:44 AM



134 Your UNIX/Linux: The Ultimate Guide

 5.4.5 Escape to the Shell (:sh and [Ctrl-z])
How do you edit and compile your C program repeatedly? You need to make a temporary 

escape to the shell to run the cc command. There are two ways; the first method is to 

use the ex Mode command, sh:

:sh
$ _ You haven’t quit vi yet

This returns a shell prompt. Execute cc or any UNIX command here and then return to 

the editor using [Ctrl-d] or exit. Don’t make the mistake of running vi once again, as 

you’ll then have two instances of vi—an undesirable situation. Table 5.2 shows how 

you can run a single command using :! and remain in the editor.

The shell that shows its presence by the $ or % prompt is determined by the setting of your 
SHELL variable. This is the last field in /etc/passwd and is assigned when the account is opened 
(19.3.2). Even though sh actually represents the Bourne shell, :sh is a generic shell escape 
command. Just run echo $SHELL to find out the shell you are using.

The second method will work if your shell supports job control (which most shells do). 

You can then suspend the current vi session. Just press [Ctrl-z] and you’ll be returned a 

shell prompt. Run your commands and then use the fg command to return to the editor. 

Job control is discussed in Section 7.11.

 5.5 Recovering from a Crash (:recover and -r)

Accidents can and will happen. The power will go off, leaving work unsaved. However, 

don’t panic; vi stores most of its buffer information in a hidden swap file. Even though 

vi removes this file on successful exit, a power glitch or an improper shutdown proce-

dure lets this swap file remain on disk. vi will then complain the next time you invoke 

it with the same filename.

The complaint usually also contains some advice regarding the salvage operation. 

You’ll be advised to use either the ex Mode command :recover, or vi -r foo to re-

cover as much of foo as possible. After you have done that, have a look at the buffer’s 

contents and satisfy yourself of the success of the damage control exercise. If everything 

seems fine, save the buffer and remove the swap file if vi doesn’t do that on its own.

You can’t be assured of complete recovery every time. You may see junk when using vi -r (or 
:recover), in which case, don’t save the file and simply quit (with :q!). Start vi again normally; 
recovery is not possible here. Linux users should note that in these situations, they may be 
required to delete the file .foo.swp if foo has recovery problems.

 5.6 Navigation

We’ll now consider the functions of the Command Mode. This is the mode you come 

to when you have finished entering or changing text. We begin with navigation whose 

Note

Caution

das76205_Ch05_122-155.indd   134das76205_Ch05_122-155.indd   134 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 135

T A B L E  5 . 3  Navigation and Scrolling Commands

Command Function

Relative Motion

h (or [Backspace]) Moves cursor left

l (or spacebar) Moves cursor right

5l Moves five characters right

k Moves cursor up

10k Moves 10 lines up

j Moves cursor down

Scrolling

[Ctrl-f] Scrolls full page forward

5[Ctrl-f] Scrolls five full pages forward

[Ctrl-b] Scrolls full page back

[Ctrl-d] Scrolls half page forward

[Ctrl-u] Scrolls half page back

[Ctrl-l] Redraws the screen (no repeat factor)

Word Navigation

b Moves back to beginning of word

4b Moves back four words to beginning of word

e Moves forward to end of word

w Moves forward to beginning of word

8w Moves forward to beginning of 8th word

Line Navigation and Absolute Movement

0 (zero) or | Moves to beginning of line

30| Moves to column 30

^ Moves to first word in line

$ Moves to end of line

1G Moves to beginning of buffer

40G Moves to line 40

G Moves to end of buffer

commands are listed in Table 5.3. Don’t forget to avoid the cursor control keys for 

navigation as advised in Section 5.2.

 5.6.1 Relative Movement in the Four Directions (h, j, k, and l)
vi provides the h, j, k, and l commands to move the cursor in the four directions. These 

keys are placed adjacent to one another in the middle row of the keyboard. Without a 

repeat factor, they move the cursor by one position. Use these commands for moving 

the cursor vertically:

k Moves cursor up

j Moves cursor down

das76205_Ch05_122-155.indd   135das76205_Ch05_122-155.indd   135 12/13/11   10:44 AM12/13/11   10:44 AM



136 Your UNIX/Linux: The Ultimate Guide

To move the cursor along a line, you have already used these commands in the prelimi-

nary session:

h Moves cursor left

l (el) Moves cursor right

The repeat factor can be used as a command prefix with all of these four commands. 

Thus, 4k moves the cursor 4 lines up, and 20h takes it 20 characters to the left. Note 

that this motion is relative; you can’t move to a specific line number with these keys. 

Navigation with the four keys is shown in Fig. 5.11.

To remember the keys that move the cursor left or right, observe these four keys on your key-
board. The left-most key, h, moves the cursor to the left, and the right-most key, l, moves it right.

 5.6.2 Scrolling ([Ctrl-f], [Ctrl-b], [Ctrl-d] and [Ctrl-u])
Faster movement can be achieved by scrolling text in the window using the control keys. 

The two commands for scrolling a page at a time are

[Ctrl-f] Scrolls forward

[Ctrl-b] Scrolls back

You can use the repeat factor, as in 10[Ctrl-f], to scroll 10 pages and navigate faster in 

the process. You can scroll by a half page as well:

[Ctrl-d] Scrolls half page forward

[Ctrl-u] Scrolls half page back

The repeat factor can also be used here.

 5.6.3 Word Navigation (b, e, and w)
Moving by one character is not always enough, and you’ll often need to move faster 

along a line. vi understands a word as a navigation unit which can be defined in two 

Tip

F I G U R E  5 . 1 1  Relative Navigation with h, j, k and l

j takes you down

k takes you up

l takes you right and h takes you left

3l

j

13h

2k

das76205_Ch05_122-155.indd   136das76205_Ch05_122-155.indd   136 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 137

ways, depending on the key pressed. If your cursor is a number of words away from 

your desired position, you can use the word-navigation commands to go there directly. 

There are three basic commands:

b Moves back to beginning of word

w Moves forward to beginning of word

e Moves forward to end of word

A repeat factor speeds up cursor movement along a line. For example, 5b takes the 

cursor five words back, while 3w takes the cursor three words forward. A word here is 

simply a string of alphanumeric characters and the _ (underscore). Bash is one word; so 

is sh_profile. tcp-ip is three words; the hyphen by definition becomes a word too.

The commands B, E and W perform functions similar to those of their lowercase 

counterparts except that they skip punctuation. The word definition also gets changed 

here, but we’ll ignore these minor details.

 5.6.4 Moving to Line Extremes (0, |, and $)
Moving to the beginning or end of a line is a common requirement. This is handled by 

the keys 0, |, and $. To move to the first character of a line, use

0 (zero) or | 30| moves the cursor to column 30

The | takes a repeat factor and by using it, you can position the cursor on a certain 

column. To position the cursor on column 30, use 30|.

We used $ as the line address in the ex Mode to represent the last line of the file. 

The same symbol in the Command Mode represents the end of line. To move to the end 

of the current line, use

$ Moves to end of line

The use of these two commands along with those that use units of words (b, e, and w) 

is shown in Fig. 5.12.

 5.6.5 Absolute Movement (G)
Upon startup, vi displays the total number of lines in the last line. At any time, you can 

press [Ctrl-g] to know the current line number:

“/etc/passwd” [Read only] line 89 of 179 --49%--

The cursor is on line 89 (49% of 179), and this write-protected file has 179 lines in all. 

Compilers also indicate line numbers in their error messages. You need to use the G command 

with the line number as repeat factor to locate the offending lines. To move to the 40th line, use

40G Goes to line number 40

and to move to the beginning of the buffer, use

1G Goes to line number 1

das76205_Ch05_122-155.indd   137das76205_Ch05_122-155.indd   137 12/13/11   10:44 AM12/13/11   10:44 AM



138 Your UNIX/Linux: The Ultimate Guide

The end of the buffer is reached by simply using

G Goes to end of file

The ex Mode offers equivalent commands for moving between lines. The previous three com-
mands can be replaced by :40, :1 and :$, respectively (along with [Enter]).

 5.7 Editing Text without Operators

Editing operations change the contents of the buffer. These operations are performed 

with commands of both the Input and Command Modes. Having seen the Input Mode 

commands, let’s turn our attention to the ones used in the Command Mode. The simple 

ones don’t use operators, but the powerful ones do. Let’s first use the simple ones before 

we take up operator-based editing.

 5.7.1 Deleting Text (x, X, and dd)
The x and X commands are used to delete one or more contiguous characters. Move the 

cursor to any location and press

x Deletes a single character

The character under the cursor gets deleted and text on the right shifts left to fill up the 

space. A repeat factor also applies here, so 4x deletes the current character as well as 

three characters from the right (Fig. 5.13).

A Windows Notepad or Wordpad user would be surprised to note that when the 

cursor is at the end of a line, x doesn’t pull up the following line. Instead, it deletes text 

on the left of the cursor.

Text deletion to the left is otherwise handled by the X command. Keep it pressed, 

and you’ll see that you have erased all text to the beginning of the line.

Note

F I G U R E  5 . 1 2  Finer Navigation with b, e, w, 0 and $

0 or |

$

b

e 4e 4w

You can move to beginning or end of line and also in units of words

das76205_Ch05_122-155.indd   138das76205_Ch05_122-155.indd   138 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 139

How about deleting a line? The command to use is a two-character string named 

dd. Move the cursor to any point on a line and then use

dd

to delete the current line. Even though we are not discussing operators in this section (dd
is actually a special use of an operator), you need to know this special command because 

line deletion is a frequent editing operation. The topic actually belongs to Section 5.9.1.

 5.7.2 Moving Text (p)
Text movement requires you to perform an additional task: Put the deleted text at the 

new location with p or P. vi uses these two commands for all “put” operations that fol-

low delete or copy operations (even when using operators). The significance of p and P
depends on whether they are used on parts of lines or complete lines.

For instance, to correct sdtio.h to stdio.h, you’ll have to transpose the characters 

d and t, i.e., delete the d and put it after the t. Move your cursor to the d in sdtio.h
and then use x and p as shown Fig. 5.14. The sequence xp is easily remembered as a 

mnemonic for transpose.

Since we worked on parts of lines, associate the word “right” with p and “left” 

with P. P places text on the left of the cursor.

 5.7.3 Joining Lines (J)
In word processors, you join the current and next line by moving the cursor to the end 

of line and pressing [Delete]. This technique won’t work in vi. To join the current line 

and the line following it, use

J 4J joins following 3 lines with current one

J removes the newline character between the two lines to pull up the line below the 

current line (Fig. 5.15). Joining, however, is restricted to the maximum line size that your 

vi editor can support. It could be around 2000 (as in Solaris) or unlimited (in Linux).

F I G U R E  5 . 1 3  Deleting Text with x

Original Text vi Commands Transformed Text

$x=5 x x=5

#! /usr/bin/sh x #!/usr/bin/sh

#!/usr/bin/sh 4x #!/bin/sh

$ x

/ 

/ /

F I G U R E  5 . 1 4  Transposing Characters with x and p

Original Text vi Commands Transformed Text

sdtio.h x stio.h

stio.h p stdio.h

d t

t d

das76205_Ch05_122-155.indd   139das76205_Ch05_122-155.indd   139 12/13/11   10:44 AM12/13/11   10:44 AM



140 Your UNIX/Linux: The Ultimate Guide

 5.7.4 Changing Case (~)
vi uses the ~ (tilde) command to toggle the case of text. To reverse the case of a section 

of text, move the cursor to the first character of the section and then press

~ Upper becomes lower, lower becomes upper

If you have to do this for a string of a hundred characters, use a repeat factor: 100~. 

The ~ is not suitable for changing an entire line to uppercase if some characters in the 

line are already in uppercase; those characters then turn to lowercase. The changing of 

case is shown in Fig. 5.16.

 5.8 Correcting a C Program

With so many commands at our disposal, let’s go through an editing session that cor-

rects some common mistakes found in C programs. Though the changes required seem 

to underestimate the programmer, it’s a great way to learn vi. Fig. 5.17 shows the file 

foo.c both before and after correction.

Except for line 2, all of the other lines need to be corrected. Beginners of C pro-

gramming tend to drop the < and > around the include filename. Single quotes are used 

when double quotes are required. It’s common folly both to forget to include the \n in 

the printf statement and the ; as the statement terminator. The exit function must be 

used with an argument, and the closing brace has to be inserted at the end. Table 5.4 

lists the vi sequences that perform this transformation.

Try the commands in the specified sequence after downloading foo.c from the 

Web site. If you make a mistake, don’t forget to press u (after [Esc]) to undo the last 

editing action. If there are multiple mistakes, simply reload the last saved version with 

:e! and then start all over again.

F I G U R E  5 . 1 5  Joining Lines with J

Original Text vi Commands Transformed Text

int main(void) J int main(void) {
{

while true A ;[Esc]J while true ; do
do

  

  

F I G U R E  5 . 1 6  Changing Case with ~

Original Text vi Commands Transformed Text

if [ “$answer” = “Y” ] ~ if [ “$answer” = “y” ]

mail=/var/mail/romeo 4~ MAIL=/var/mail/romeo

das76205_Ch05_122-155.indd   140das76205_Ch05_122-155.indd   140 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 141

F I G U R E  5 . 1 7  foo.c with Errors (Left), after Correction (Right)

#include stdio.h #include <stdio.h>

#include <errno.h> #include <errno.h>

int quit(char *message) { void quit(char* message) {

   printf(‘Error number %10d’, errno)    printf(“Error number %d\n “, errno);

   exit;    exit(1);

 }

 5.9 Editing Text with Operators

Arguably, vi’s strongest feature is its ability to combine an operator with a command to 

handle any type of deletion or copying task. This opens up a new domain of commands 

for you to work with. In this text, we consider the following operators:

d —Delete

y —Yank (copy)

c —Change

An operator alone can’t perform any function unless it is combined with a command 

or itself. When used with itself (i.e., twice), it can handle a very specialized function. 

T A B L E  5 . 4  vi Commands Required to Correct Program in Fig. 5.17

Command Action

1G Moves to line 1

2w Moves to s in stdio.h

i<[Esc] Inserts <; shows <stdio.h

A>[Esc] Appends >; shows <stdio.h>

2j Move two lines below

3svoid[Esc] Replaces int with void

j2e Moves to first ‘ on next line

r” Replaces ‘ with “

4w Moves to 1 in 10

2x Deletes 10 ; shows %d

a\n  [Esc] Appends \n and a space to %d

l Moves to closing ‘

r” Replaces ‘ with “

A;[Esc] Appends ; at end of line

j$ Moves to end of next line; at ; in exit;

i(1)[Esc] Inserts (1) after t in exit

o}[Esc] Opens line below and inserts }

:x Saves and quits vi

das76205_Ch05_122-155.indd   141das76205_Ch05_122-155.indd   141 12/13/11   10:44 AM12/13/11   10:44 AM



142 Your UNIX/Linux: The Ultimate Guide

T A B L E  5 . 5  A Few Specimen Operator-Command Combinations

Command Function

d$ or D Deletes from cursor to end of line

5dd Deletes five lines

d/} Deletes from cursor up to first occurrence of }

d30G Deletes from cursor up to line number 30

y$ or Y Yanks from cursor to end of line

3yw or y3w Yanks three words from cursor position

5yy Yanks five lines

yG Yanks from cursor to end of file

y?case Yanks from cursor up to first occurrence of string case in reverse direction

c0 Changes from cursor to beginning of line

3cw or c3w Changes three words

cc Changes current line

These operators also take a repeat factor. Table 5.5 lists the various ways these operators 

are used in combination with other Command Mode commands.

An operator, when doubled by itself (like dd, yy, and cc), acts only on the current line.

 5.9.1 Deleting and Moving Text (d, p, and P)
We used x and X for deletion; now let’s see how deletion is performed with operators. 

Let’s assume that you have to delete text from the present cursor position to the end of 

the line. You can frame the command yourself if you recall that the $ takes the cursor 

to end of a line. The answer is simple:

d$ Deletes rest of line

d$ is a combination of an operator and a navigation command. w moves forward 

one word, and G takes the cursor to the end of file, so we can confidently use these 

commands:

dw Deletes one word

3dw Deletes three words

dG Deletes from current cursor position to end of file

Note how we could easily devise specialized functions by following a simple set of rules. 

The operator-command theory, however, takes a backseat when deleting lines. Entire 

lines are removed with the dd “command” (rather a doubled operator), which can also 

be used with a repeat factor. Move the cursor to any line and then press:

dd Deletes a single line

6dd Deletes current line and five lines below

Note

das76205_Ch05_122-155.indd   142das76205_Ch05_122-155.indd   142 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 143

How do we move text? Use the p and P commands in the same way we used them with 

x and X (5.7.1) except that there are four possibilities this time:

 • When we delete entire lines, we have to think in terms of “below” and “above” the 

current line. p places text below the current line, and P places text above.

 • When we delete a partial line, say, a word with dw, we can put the deleted word 

only to the left (with p) or right (with P) of the cursor position, and not above or 

below the current line.

Fig. 5.18 illustrates the use of the d operator for line deletion and movement.

 5.9.2 Yanking Text (y, p and P)
The y operator yanks (or copies) text. It is used in the same way the d operator is com-

bined with another command or used by itself. You can yank a word, a group of words, 

line segments, or even entire lines with this operator. Moreover, the p and P commands 

act in the same way for putting the copied text at its destination.

For instance, to yank five lines of text, move the cursor to the first of these lines 

and press

5yy

Next, move the cursor to the new location, and press

p or P

to put the copied text below the current line. Adopting the same logic used for the d 

operator, one can say that y$ yanks text from current position to end of line, and y1G  

F I G U R E  5 . 1 8  Deleting and Moving Text with the d Operator and p

Original Text vi Commands Transformed Text

case $# in     #Check arguments d$ case $# in

echo “Enter the filename\c” 2dw echo “filename\c”

close(fd1); dd close(fd2);

close(fd2);

if (access(“foo”, R_OK) == -1) 2dd if (access(“foo”, F_OK) == -1)

   printf(“Not readable  “);     quit(“File not found”, 1);

if (access(“foo”, F_OK) == -1)

   quit(“File not found”, 1);

Now put the two deleted lines here:

if (access(“foo”, F_OK) == -1) p if (access(“foo”, F_OK) == -1)

   quit(“File not found”, 1);     quit(“File not found”, 1);

  if (access(“foo”, R_OK) == -1)

     printf(“Not readable  “);

 

E

 

e 

i

i

f

c(

das76205_Ch05_122-155.indd   143das76205_Ch05_122-155.indd   143 12/13/11   10:44 AM12/13/11   10:44 AM



144 Your UNIX/Linux: The Ultimate Guide

F I G U R E  5 . 1 9  Copying Lines with the y Operator and p

Original Text vi Commands Transformed Text

close(fd1); yy close(fd1);  (No change)

close(fd1); p close(fd1);
  close(fd1);

e

c
e

e

F I G U R E  5 . 2 0  Changing Text with the c Operator

Original Text vi Commands Transformed Text

#!/bin/sh c$usr/bin/bash[Esc] #!/usr/bin/bash

fprintf(STDOUT, “Error\n”); cwstderr[Esc] fprintf(stderr, “Error\n”);

if grep stderr foo foo1 foo2 3cwfoo*[Esc] if grep stderr foo*

bi h

r(S

f *

(or 1yG) copies text from current cursor position to the beginning of the buffer. See for 

yourself where p places the copied text—right or below. Copying lines is illustrated in 

Fig. 5.19.

 5.9.3 Changing Text (c)
The c operator changes text, but in the Input Mode. cw changes a word, and c$ changes 

text to the end of the line. This time, the boundary limiting your area of operation could 

be indicated by a $, but you may not see the $ on all systems.

If you change three words with 3cw, a $ may appear at the end of the third word 

(vim excepted). The inserted text overwrites the characters delimited by the $ that 

temporarily appears on the screen. If the replaced text is larger, then once the cursor 

moves up to the $ marker, further insertion shifts existing text to the right. You must use 

[Esc] to terminate the change operation. Changing text is shown in Fig. 5.20.

 5.10 Copying and Moving Text from One File to Another

You can perform cut-and-paste and copy-and-paste operations between two files using 

modified forms of the preceding techniques. You need to be familiar with these addi-

tional features:

 • vi uses the :e foo command to switch to another file. But this operation will only 

work if the current file is saved.

 • You can toggle between the current and the previous file using either :e# or 

[Ctrl-^].

 • To copy or move text between two files, the standard buffer that we restore from 

using p or P won’t do. We have to use a special buffer that can have any letter as 

its name. The buffer a is accessed with “a. So, to copy a line to this buffer, we 

need to use “ayy.

das76205_Ch05_122-155.indd   144das76205_Ch05_122-155.indd   144 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 145

Linux

Space constraints don’t permit discussion of these features in this edition, but this 

knowledge is adequate to copy or move a block of text from one file to another. Just 

follow these steps for moving text:

1. Delete the text into a buffer a. If you are deleting four lines, then use “a4dd, where 

the normal delete command is preceded by the string “a.

2. Save the current file with :w.

3. Open a new file using the ex Mode command :e foo.

4. Navigate to the desired location, press “, the buffer name (a) and p to place the 

copied text below the current line: “ap (the normal put command preceded by “a).

5. You can now go back to the previous file using :e# or [Ctrl-^].

To copy text, replace the delete command with the yank command. To copy four words 

from one file to another, just use 4yw instead of 4dd; everything else remains the same, 

except that you don’t need to save the original file this time. The filling up of a buffer 

named a is a special case of a general vi feature—the ability to copy or move up to 26 

sections of text.

The sequence :e# or [Ctrl-^] may not work if the current buffer is unsaved. For this to work at 
all times, make the ex Mode setting :set autowrite or :set aw. This ensures that the file is 
saved automatically before the switch occurs.

To copy or move a block of text, vim doesn’t need to use the “a symbols at all. Just 

delete or copy the text, save the file with :w if necessary, switch to the next file with 

:e foo, and then paste the text with p. vim requires the buffer symbols only when 

multiple sections are copied or moved.

 5.11 Undoing Last Editing Instructions (u and U)

vi’s most notable weakness is its undo feature, which uses the u and U commands. Unlike 

the Windows-based word processors, the u command permits only single-level undoing. 

You can only reverse your previous editing instruction by pressing

u Must use in Command Mode; press [Esc] if necessary

Another u at this stage will undo this too, i.e., restore the original status. So, if you have 

used 10dd at the wrong location, then before you do anything else, just press u. The 

command undoes changes made in the Input Mode also. If you have wrongly inserted 

a block of text, press [Esc] and then u.

When a number of editing changes have been made to a single line, vi allows 

you to discard all of the changes before you move away from the line. The command

U Don’t move away from current line

reverses all changes made to the current line, i.e., all modifications that have been made 

since the cursor was moved to this line.

Tip

das76205_Ch05_122-155.indd   145das76205_Ch05_122-155.indd   145 12/13/11   10:44 AM12/13/11   10:44 AM



146 Your UNIX/Linux: The Ultimate Guide

Linux

Make sure the cursor has not been moved to another line before invoking U; otherwise it 
won’t work.

Multiple Undoing and Redoing vim supports multilevel undoing. u behaves 

differently here; repeated use of this key progressively undoes your previous actions. 

You could even have the original file in front of you! Further, 10u reverses your last 

10 editing actions. The function of U remains the same.

You may overshoot the desired mark when you keep u pressed, in which case 

use [Ctrl-r] to redo your undone actions. Further, undoing with 10u can be completely 

reversed with 10[Ctrl-r]. The undoing limit is set by the ex Mode command 

:set undolevels=n, where n is set to 1000 by default.

 5.12 Searching for a Pattern (/ and ?)

vi is extremely strong in search and replacement activities. Searching can be made in 

both forward and reverse directions and can be repeated. It is initiated from the Command 

Mode by pressing a /, which shows up in the last line. For example, if you are looking 

for the string printf, enter this string after the /:

/printf[Enter] Searches forward

The search begins forward to position the cursor on the first instance of the word. vi 

searches the entire file, so if the pattern can’t be located until the end of file is reached, 

the search wraps around to resume from the beginning of the file. If the search still fails, 

vi responds with the message Pattern not found.

Likewise, the sequence

?pattern[Enter]

searches backward for the previous instance of the pattern. The wraparound feature also 

applies here but in the reverse manner.

 5.12.1 Repeating the Last Pattern Search (n and N)
The n and N commands repeat a search where n and N don’t exactly play the roles you’d expect 

them to. For repeating a search in the direction the previous search was made with / or ?, use

n Repeats search in same direction of original search

The cursor will be positioned at the beginning of the pattern. You can then carry out 

some editing function, say, change a word with cw. You can press n repeatedly to scan 

all instances of the string and then repeat the change wherever you want.

N reverses the direction pursued by n, which means you can use it to retrace your 

search path. The search and repeat actions are illustrated in Fig. 5.21, and the commands 

are summarized in Table 5.6.

What makes searching in vi powerful is that the search pattern is not confined 

to a simple string. You can also use a regular expression that comprises some special 

Caution

das76205_Ch05_122-155.indd   146das76205_Ch05_122-155.indd   146 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 147

T A B L E  5 . 6  Search and Replace Commands

Command Function

/pat Searches forward for pattern pat

?pat Searches backward for pattern pat

n Repeats search in same direction along which previous search 

 was made (no repeat factor)

N Repeats search in direction opposite to that along which previous 

 search was made (no repeat factor)

:n1,n2s/s1/s2/ Replaces first occurrence of string or regular expression s1 with

 string s2 in lines n1 to n2

:1,10s/find/look/g Replaces all occurrences of find with look in lines 1 to 10

:.,$s/find/look/gc Interactively replaces find with look from current line through end

:s Repeats last substitution on current line (Linux only)

characters similar to the way wild cards are used for matching filenames. There’s a 

separate chapter devoted almost exclusively to regular expressions (Chapter 10), and 

most of what is discussed there applies to vi too.

n doesn’t necessarily repeat a search in the forward direction; the direction depends on the 
search command used. If you used ?printf to search in the reverse direction in the first place, 
then n also follows the same direction. In that case, N will repeat the search in the forward 
direction, and not n.

 5.13 Repeating the Last Command (.)

Most editors don’t have the facility to repeat the last editing instruction, but vi has. The . (dot) 

command is used for repeating both Input and Command Mode commands. The principle is: 

Use the actual command only once, and then repeat it at other places with the dot command.

Note

F I G U R E  5 . 2 1  Search and Repeat with / and n

/echo [Enter]

n

n

N

if [ -z "$pname" ]

then

    echo "You have not entered the string"

    exit 1

else

    echo "Enter the file to be used: \c"

    read flname

    if [ ! -n "$flname" ] ; then

        echo "You have not entered the filename" ; exit 2

    else

das76205_Ch05_122-155.indd   147das76205_Ch05_122-155.indd   147 12/13/11   10:44 AM12/13/11   10:44 AM



148 Your UNIX/Linux: The Ultimate Guide

To take a simple example, if you have deleted two lines of text with 2dd, then to 

repeat this operation elsewhere, all you have to do is to position the cursor at the desired 

location and press

. Use u to undo this repeat

This will repeat the last editing instruction performed; i.e., it will also delete two lines 

of text.

The . command is indeed a very handy tool. As another example, consider that 

you have to indent a group of lines by inserting a tab at the beginning of each line. You 

need to use i[Tab][Esc] only once, say on the first line. You can then move to each line 

in turn by hitting [Enter] and simply pressing the dot. A group of lines can be indented 

in no time.

The three commands, / (search), n (repeat search), and . (repeat last editing command), form 
a wonderful trio of search—search-repeat—edit-repeat commands. You’ll often be tempted 
to use this trio in many situations where you want the same change to be carried out at a 
number of places.

For instance, if you want to replace some occurrences of int with double, then first search 
for int with /int, change int to double with cw, repeat the search with n, and press the 
. wherever you want the replacement to take place. Yes, you wouldn’t like printf to also 
show up (int is embedded there), which means you need to use regular expressions to throw 
printf out.

 5.14 Substitution—Search and Replace (:s)

vi offers yet another powerful feature, that of substitution, which is achieved with the 

ex Mode’s s (substitute) command. It lets you replace a pattern in the file with something 

else. The / serves as the delimiter of the syntax components:

:address/source_pattern/target_pattern/flags

The source_pattern here is replaced with target_pattern in all lines specified by address. 

The address can be one or a pair of numbers, separated by a comma. For instance, 1,$ 

addresses all lines in a file. The most commonly used flag is g, which carries out the 

substitution for all occurrences of the pattern in a line. The following example shows a 

typical substitution command:

:1,$s/double/float/g Can also use % instead of 1,$

Here, double is replaced with float globally throughout the file. If you leave 

out the g, then the substitution will be carried out for the first occurrence in each 

addressed line.

The target pattern is optional. If you leave it out, then you’ll delete all instances 

of the source pattern in all lines matched by the address:

:1,50s/unsigned//g Deletes unsigned everywhere in lines 1 to 50

Tip

das76205_Ch05_122-155.indd   148das76205_Ch05_122-155.indd   148 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 149

Linux

F I G U R E  5 . 2 2  Interactive Substitution with :s

message=”has scheduled the $1 command” msg=”has scheduled the $1 command”
^^^^^^y e_message=”are not using the $1 command”
e_message=”are not using the $1 command” if grep “$1” $crondir/henry ; then 
 ^^^^^^n   echo “henry $msg”
if grep “$1” $crondir/henry ; then elif grep “$1” $crondir/julie ; then 
   echo “henry $message”   echo “julie $msg” 
         ̂ ^^^^^y else
elif grep “$1” $crondir/julie ; then   echo “The three users $e_message” 
   echo “julie $message” fi 
        ^^^^^^y     
else 
   echo “The three users $e_message” 
              ^^^^^^n
fi 
 Before Substitution  After Substitution 
 

As shown above, you can choose the range of lines that are to be affected by the 

substitution. The following examples should make addressing clear:

:3,10s/msg/message/g All occurrences in lines 3 through 10

:$s/msg/message/g All occurrences in last line

:.s/echo/printf/ Only first occurrence in current line

Interactive Substitution Sometimes you may want to selectively replace a string. In 

that case, add the c (confirmatory) parameter as the flag at the end:

:1,$s/message/msg/gc

Each line is selected in turn, followed by a sequence of carets in the next line, just below 

the pattern that requires substitution (Fig. 5.22). A y performs the substitution; any other 

response doesn’t. This sequence is repeated for each of the matched lines in turn. In the 

present case, the substitution is performed for only three of the five lines.

The interactive substitution feature in vim is both friendlier and more powerful than its 

UNIX counterpart. The string to be replaced is shown in reverse video, and a prompt 

appears in the last line of the screen:

replace with fprintf (y/n/a/q/^E/^Y)?

Apart from responding with y or n, you have the option of aborting (q) the substitution 

process or making it noninteractive (a). [Ctrl-e] and [Ctrl-y] are meant for scrolling.

 5.15 set: Customizing vi

vi can be tailored by redefining keys or abbreviating frequently used strings, but in 

this section we examine some of the variable settings that benefit the programmer. 

das76205_Ch05_122-155.indd   149das76205_Ch05_122-155.indd   149 12/13/11   10:44 AM12/13/11   10:44 AM



150 Your UNIX/Linux: The Ultimate Guide

These settings (Table 5.7) can be made at the ex Mode prompt, but they become 

permanent only when they are placed in ~/.exrc (or ~/.vimrc in Linux).

The :set command is used to set vi variables, and we have used some of them 

already (like :set showmode, :set autowrite, etc.). Many of these variables can 

have the string no prefixed to their names, in which case the setting is deactivated. For 

instance, noautowrite (or noaw) negates autowrite (or aw). Other variables are of the 

form variable=value. Let’s take a look at some of these variables.

Automatic Indentation (autoindent) Programmers need to provide indentation to 

their code for easier readability. Nested if statements along with their corresponding 

fis should appear at the right indentation. This aspect is taken care of when you use 

the following set statement:

:set autoindent Or :set ai

When this option is set, an [Enter] in the Input Mode places the cursor in the next line 

at the current indentation.

Numbering Lines (number) The number setting shows all lines duly numbered. This 

makes it easier to debug programs. To reverse this setting (i.e., to switch back to the 

nonumber option), you simply have to prefix the string no to the option:

:set nonumber

Ignoring Case in Pattern Searches (ignorecase) The search commands (not the 

substitution ones) may or may not pursue a case-insensitive search. That depends on 

the ignorecase setting. By default, this is generally off, but you can turn it on with 

:set ignorecase.

T A B L E  5 . 7  set Options

Option Abbreviation Significance

autoindent ai Next line starts at previous indented level

autowrite aw Writes current file automatically whenever switching 

  files with :e

ignorecase ic Ignores case when searching for patterns

magic - Treats regular expression characters as special when

  searching for patterns

number nu Displays line numbers on screen

showmatch sm Shows momentarily match to a ) and }

showmode - Displays a message when vi is in Input Mode

tabstop ts Sets tabs for display (default: eight spaces)

wrapscan ws Continues pattern search by moving to other end of 

  a file so that entire file is scanned

das76205_Ch05_122-155.indd   150das76205_Ch05_122-155.indd   150 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 151

See Matching } or ) (showmatch) Another option, especially useful for C, Java, and 

perl programmers, enables the programmer to see momentarily the matching bracket 

to a ) or }. The showmatch option helps you locate matching brackets:

:set showmatch

When text is entered in the Input Mode, the moment a ) or } is entered, the cursor will 

jump to its matching counterpart and stay there for a fraction of a second before returning 

to its current location. If a match is not found, the system responds with a beep.

Setting Tab Stops (tabstop=n) Too many nested programming constructs often cause 

a line to wrap around. To some extent, this can be alleviated by changing the default tab 

setting (eight spaces). You can reduce this value, say, to four, with :set tabstop=4.

All settings made with set are displayed with the :set all command. If you find 

these settings useful, then save them in ~/.exrc (~/.vimrc in vim). vi reads this file only 

once, upon startup, so you have to restart vi after you have modified the configuration file.

 ➤ G O I N G  F U R T H E R

 5.16 map: Mapping Keys of Keyboard

The map command lets you assign a set of keystrokes to a key. Take, for instance, the 

key sequence :w[Enter] that saves your buffer. You can map the key g to this sequence 

by using map in the ex Mode:

:map g :w^M ^M signifies the [Enter] key

This mapping also includes the [Enter] key, which vi understands as [Ctrl-m] (shown 

as ^M). This character is entered by first pressing [Ctrl-v] and then [Ctrl-m] (5.3.5). You 

can now press g in the Command Mode to save your buffer. To map a function key, say 

[F1], use #1 to signify the key.  On some systems like Solaris, you’ll have to first press 

[Ctrl-v] and then the actual function key itself.

You can also map keys in the Input Mode using the ! as suffix to map. This sequence 

maps the function key [F2] in the Input Mode:

:map! #2 ̂ [:w^M Function key [F2] is #2

The string ^[ is actually the [Esc] character which switches vi to the Command Mode 

before :w saves the buffer.

The :map command displays the mapped environment. :unmap cancels a Command 

Mode map, and :unmap! cancels an Input Mode map.

Did you know that you can compile your C program or execute a shell or perl script from 
inside the editor with a single keystroke? vi understands the current file as %, so cc % compiles 
the current file. Let’s map the function key [F3] to invoke this function:

:map #3 :!cc %^M [F3] now compiles current C program

Tip

G
O

IN
G

 FU
R

T
H

E
R

das76205_Ch05_122-155.indd   151das76205_Ch05_122-155.indd   151 12/13/11   10:44 AM12/13/11   10:44 AM



152 Your UNIX/Linux: The Ultimate Guide

The ex Mode command :! invokes a temporary shell escape (Table 5.2) which is used to run cc 
(the C compiler). To invoke a shell or perl script, make this mapping of the function key [F4]:

:map #4 :!%^M [F4] now executes current script

These are two important mappings used by this author. Note that scripts need to have execute 
permission, so you should first use :!chmod 755 % to assign this permission. You don’t have 
to leave vi for this task either.

 5.17 abbr: Abbreviating Text Input

The abbreviate command (itself abbreviated to ab) is used to expand short strings 

to long words. The syntax is similar to map except that the string that is mapped can 

consist of more than one character. Here are some important abbreviations that benefit 

C and Java programmers:

:ab pf printf
:ab incstd #include <stdio.h>
:ab sopl System.out.println
:ab psvm public static void main (String args[ ])

To consider the first example, when you enter the word pf, followed by a key 

which is neither alphanumeric nor _ (underscore), pf gets expanded to printf.

Store all sets, maps, and abbreviations in $HOME/.exrc ($HOME/.vimrc for vim). 

Carry this file with you wherever you go; it could be your most precious possession. 

The other features of vi are taken up in Appendix D.

S U M M A R Y

vi operates in three modes. The Command Mode is used to enter commands that operate 

on text or control cursor motion. The Input Mode is used to enter text. The ex Mode (or 

Last Line Mode) is used for file handling and substitution.

Most of the Input and Command Mode commands also work with a repeat factor, 

which generally performs the command multiple times.

The Input Mode is used to insert (i and I), append (a and A), replace (r and R), and 

change (s or S) text and to open a line (o and O). The mode is terminated by pressing [Esc].

You can enter control characters (using [Ctrl-v] first) and then the character. The 

[Esc] character is inserted using [Ctrl-v][Ctrl-[].

The ex Mode is invoked by pressing a : in the Command Mode. You can save your 

work (:w), exit the editor after saving (:x), and quit without saving (:q and :q!). You 

can write selected lines to a separate file by using  line addresses with :w. Sometimes 

you’ll need to escape to a shell (:sh) without quitting the editor.

Navigation is performed in the Command Mode. You can move in the four directions 

(h, j, k, and l) or move along a line, using a word as a navigation unit. You can move 

back (b) and forward (w) to the beginning of a word. The beginning of a line is reached 

G
O

IN
G

 F
U

R
T

H
E
R

das76205_Ch05_122-155.indd   152das76205_Ch05_122-155.indd   152 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 153

with 0 and the end of line with $. You can know your current line number ([Ctrl-g]) and 

go to a specific line number (G). You can use the control keys to page forward and back.

You can delete characters (x and X) without using operators. Deleted text can be 

put at another location (p and P).

vi’s editing power lies in its operators. By combining an operator with a Command 

Mode command, you can delete (d), yank (y), and change (c) text in practically any 

manner. When the operator is used doubly, the operation affects the current line only.

vi can repeat (.) and undo (u) the last editing instruction. You can undo all changes 

made to the current line (U). vim in Linux can perform multiple levels of undo and redo 

with u and [Ctrl-r], respectively.

You can search for a pattern (/ and ?) and repeat (n and N) the search in both direc-

tions. The /, n and . commands form a very useful trio for interactive replacement work.

The ex Mode is also used for substitution (:s). Substitution can be global (g flag) 

or confirmatory (c flag). Both search and replace operations also use regular expressions 

for matching multiple patterns.

With the :set command, lines can be numbered (number) and automatically in-

dented (autoindent). You can ensure that a file is saved before switching (autowrite). 

Searches can be made case-insensitive (ignorecase). The no prefix reverses a setting.

All :set commands should be placed in $HOME/.exrc (or  $HOME/.vimrc for 

vim) so  they are always available on startup.

S E L F - T E S T

5.1 How will you insert a line (i) above the current line, (ii) below the current line?

5.2 How will you (i) replace has with have in the current line, (ii) change the current 

line completely?

5.3 Your screen shows junk. How do you clear it?

5.4 Name three ways of exiting a vi session after saving your work. How do you 

abort an editing session?

5.5 You pressed 50k to move the cursor 50 lines up, but you see 50k input as text. 

What mistake did you make, and how do you remove the three characters?

5.6 In the current line, how do you take your cursor to the (i) 40th character, 

(ii) beginning, (iii)  end?

5.7 Name the commands required to move quickly to the fifth word of a line and 

replace its four characters with the string counter.

5.8 Find out the number of words in this string as interpreted by (i) vi and 

(ii) wc—29.02.2000 is_last_day_of_February.

5.9 Explain which of the following commands can be repeated or undone: (i) 40k, 

(ii) [Ctrl-f], (iii) 5x, (iv) J.

5.10 You have incorrectly entered the word Comptuer. How will you correct it to 

Computer?

5.11 Five contiguous lines contain only lowercase letters. How do you combine them 

into a single line and then convert the entire line to uppercase?

5.12 How will you compile a C program without leaving the editor?

5.13 What is the significance of the n and N commands?

das76205_Ch05_122-155.indd   153das76205_Ch05_122-155.indd   153 12/13/11   10:44 AM12/13/11   10:44 AM



154 Your UNIX/Linux: The Ultimate Guide

5.14 Every time you press a . (dot), you see a blank line inserted below your current 

line. Why does that happen?

5.15 How do you save the current line to a separate file? What do you do if the file exists?

5.16 How do you (i) delete text from the current line to the beginning of the file, 

(ii) copy 10 characters, (iii) copy 10 words?

5.17 How will you copy five lines of text from one file to another? How do you then 

toggle between the two files?

5.18 How do u and U differ? When will U fail to work?

5.19 Fundamentally, how are d and y different from Command Mode commands like 

j and $?

5.20 How do you noninteractively and globally replace Internet with Web in all lines 

of a file?

5.21 How will you revert to the last-saved version of a file?

5.22 How will you ensure that vi automatically saves a file when moving from one 

file to another?

E X E R C I S E S

5.1 Name the three modes of vi, and explain how you can switch from one mode 

to another.

5.2 How will you add /* at the beginning of a line and */ at the end?

5.3 How do you remove the characters that you inserted in Exercise 5.2?

5.4 vi refuses to quit with :q. What does that indicate, and how do you exit anyway?

5.5 Explain what the following commands do: (i) :.,10w foo, (ii) :$w! foo. In 

which mode are the commands executed, and what difference does it make if 

foo already exists?

5.6 In the midst of your work, how can you see the list of users logged in? If you 

have a number of UNIX commands to execute, which course of action will you 

take?

5.7 Name the commands required to move to the line containing the string #include, 

delete four lines there, and then place the deleted lines at the beginning of the 

file.

5.8 Name the commands required to replace (i) echo ‘Filename: \c’ with 

echo -n “Filename: “ (ii) printf(“File not found\n); with 

fprintf(stderr, “File not found\n”); (iii) echo “1234567890” with 

echo “12345678901234567890”.

5.9 How do you copy text from the current cursor position to the following: (i) the 

character under the cursor, (ii) the beginning of line, (iii) 10 words, (iv) following 

text up to the string esac.

5.10 What commands will you use to delete (i) text from the current cursor position 

to end of file, (ii) entire contents of file?

5.11 How do you move to line number 100 and then write the remaining lines (includ-

ing that line) to a separate file?

5.12 Name the commands required to interactively replace printf(  with 

fprintf(stderr,. How will you repeat the action globally? 

das76205_Ch05_122-155.indd   154das76205_Ch05_122-155.indd   154 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 5: The vi/vim Editor 155

5.13 How will you search for a pattern printf and then repeat the search in the 

opposite direction from that in which the original search was made?

5.14 Name the commands required to noninteractively replace all occurrences of cnt 

with count in (i) the first 10 lines, (ii) the current line, (iii) all lines. How do you 

repeat the exercise in an interactive manner?

5.15 Name the commands required to delete text delimited by { and } where both 

characters occur after the current cursor position. HINT: Follow the pattern search 

with a terminating / and use a + after the /.

5.16 If the power to the machine is cut off while a vi session is active, how does it 

affect your work? What salvage operation will you try?

5.17 You copied 20 lines with 20yy, then switched to another file with :e foo, but 

when you tried to paste these lines back with p, it didn’t work. Why?

5.18 You made some changes to a read-only file and then found that you can’t save 

the buffer. What course of action will you take without quitting the editor?

5.19 You created a shell script with vi. How will you make the file executable and 

then execute the script without leaving the editor?

5.20 Frame a command to change text from the current position to the first occurrence 

of the pattern Packet Switching.

5.21 You need to shift the first five lines to the right by two spaces. How do you do 

that (i) interactively, (ii) noninteractively?

5.22 How will you ensure that vi (i) automatically saves a file when moving from 

one file to another, (ii) expands each tab to three spaces?

5.23 Copy /etc/passwd to passwd. Name the vi commands required to save the first 

10 lines in passwd1, the next 10 in passwd2, and the rest in passwd3.

5.24 List the editing and navigation commands required to convert the following text:

# include<errno.h>
void quit (char *message)
{
   printf(“Error encountered\n”);
   printf(“error number %d, “, errno);
   printf(“quitting program\n”);
   exit(1);
}

to this:

#include <stdio.h>
#include <errno.h>
void quit (char *message, int exit_status) {
   /* printf(“Error encountered\n”); */
   fprintf(stderr, “Error number %d, quitting program\n”, errno);
   exit(exit_status);
}

das76205_Ch05_122-155.indd   155das76205_Ch05_122-155.indd   155 12/13/11   10:44 AM12/13/11   10:44 AM



156

6 
C H A P T E R  6
The Shell

This chapter introduces the agency that sits between the user and the UNIX 

system. It is called the shell. All of the wonderful things that we can do with 

UNIX are possible because the shell does a lot of work on our behalf that could be tedi-

ous for us to do on our own. The shell looks for special symbols in the command line, 

performs the tasks associated with them, and finally executes the command. For example, 

it opens a file to save command output whenever it sees the > symbol.

The shell is both a command interpreter and a programming language. It is also 

a process that creates an environment to work in. All of these features deserve separate 

chapters for discussion, and you’ll find the shell discussed at a number of places in this 

book. In this chapter, we focus on the shell’s basic interpretive activities. We have seen 

some of these activities in previous chapters (like rm * or ls | more), but it is here 

that we need to examine them closely.

  Objectives
 • Gain an overview of the shell’s interpretive cycle.

 • Learn the significance of metacharacters and their use in wild cards for matching 

multiple filenames.

 • Know the use of escaping and quoting to remove the meaning of a metacharacter.

 • Learn the difference between the use of double and single quotes.

 • Discover the significance of the three standard files (streams) that are available to 

every command.

 • Learn how the shell manipulates the default source and destination of these streams 

to implement redirection and pipelines.

 • Understand what filters are and why they are so important in UNIX.

 • Learn the significance of the files /dev/null and /dev/tty.

 • Know the importance of making the command ignorant of the source of its input and 

destination of its output.

 • Know the use of command substitution to obtain the arguments of a command from 

the standard output of another.

 • Understand shell variables and why they are so useful.

das76205_Ch06_156-187.indd   156das76205_Ch06_156-187.indd   156 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 157

 • Learn additional wild cards used by the Korn shell and Bash (Going Further).

 • Learn about passing a list of filenames down a pipeline for use by xargs (Going 
Further).

 6.1 The Shell as Command Processor

When you log on to a UNIX machine, you first see a prompt. Even though it may appear 

that nothing is happening there, a UNIX command is in fact running at the terminal. But 

this command is special; it starts functioning the moment you log in and withers away 

when you log out. This command is the shell. If you run the ps command (that shows 

processes), you’ll see it running:

$ ps
   PID TTY      TIME CMD
   526 pts/6    0:00 bash Bash shell running

When you key in a command, it goes as input to the shell. The shell first scans the 

command line for metacharacters. These are special characters that mean nothing to 

the command, but mean something special to the shell. The previous example (ps) had 

none of these characters, but we did encounter these characters before (section numbers 

shown in parentheses):

echo date > date.sh (4.2)

rm * (3.14)

ls | more (3.16)

When the shell sees metacharacters like the >, |, *, etc. in its input, it translates these 

symbols to their respective actions before the command is executed. It replaces the * with 

almost all filenames in the current directory (but skips hidden files) so that rm ultimately 

runs with these names as arguments. On seeing the >, the shell opens the file date.sh 

and connects echo’s output to it. The shell re-creates the command line by removing all 

metacharacters and finally passes on the command to the kernel for execution.

Note that the shell has to interpret these metacharacters because they usually mean 

nothing to the command. To sum up, the following activities are typically performed by 

the shell in its interpretive cycle:

 • It issues the prompt and waits for you to enter a command.

 • After a command is entered, the shell scans the command line for metacharacters and 

expands abbreviations (like the * in rm *) to re-create a simplified command line.

 • It then passes on the command line to the kernel for execution.

 • The shell waits for the command to complete and normally can’t do any work 

while the command is running.

 • After command execution is complete, the prompt reappears and the shell returns to 

its waiting role to start the next cycle. You are now free to enter another command.

You can change this default behavior and instruct the shell not to wait so you can run 

multiple commands. We’ll examine the technique of doing that in Chapter 7.

das76205_Ch06_156-187.indd   157das76205_Ch06_156-187.indd   157 12/13/11   10:44 AM12/13/11   10:44 AM



158 Your UNIX/Linux: The Ultimate Guide

 6.2 Shell Offerings

Your UNIX system offers a variety of shells for you to choose from. Over time, shells 

have become more powerful by the progressive addition of new features. The shells we 

consider in this text can be grouped into two categories:

 • The Bourne family comprising the Bourne shell (/bin/sh) and its derivatives—the 

Korn shell (/bin/ksh) and Bash (/bin/bash).

 • The C Shell (/bin/csh) and its derivative, Tcsh (/bin/tcsh).

To know the shell you are using, invoke the command echo $SHELL. The output could be 

one of the absolute pathnames of the shell’s command file shown in parentheses above.

In this chapter, we discuss the common features of the Bourne family. Korn and 

Bash are supersets of Bourne, so anything that applies to Bourne also applies to them. A 

few of them don’t apply to the C shell and are noted as and when they are encountered. 

You may not want to know all this now, but it does pay to know the shell you are using 

at this stage.

 6.3 Pattern Matching—The Wild Cards

In previous chapters, you used commands with more than one filename as arguments 

(e.g., cp chap01 chap02 chap03 progs). Often, you’ll need to use a command with 

similar filenames:

ls chap chap01 chap02 chap03 chap04 chapx chapy chapz

The common substring here is chap, and the shell offers a facility to represent these 

filenames with a single pattern. For instance, chap* represents all filenames beginning 

with chap. You can use this pattern as an argument to a command rather than supply 

a long list of filenames which the pattern represents. The shell will expand it suitably 

before the command is executed.

The metacharacters used to match filenames belong to a category called wild 
cards (something like the joker that can match any card). In the following sections, 

we’ll discuss the significance of the various metacharacters in the wild-card set that are 

listed in Table 6.1.

 6.3.1 The * and ?
The * Now let’s get into the specifics. The * (a metacharacter) is one of the characters 

of the shell’s special set, and we have used it before (rm * in Section 3.14). This character 

matches any number of characters including none. When it is appended to the string 

chap, the pattern chap* matches filenames beginning with the string chap—including 

the file chap. You can now use this pattern as an argument to ls:

$ ls -x chap*
chap  chap01  chap02  chap03  chap04  chap15  chap16  chap17  chapx  chapy
chapz

das76205_Ch06_156-187.indd   158das76205_Ch06_156-187.indd   158 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 159

When the shell encounters this command line, it immediately identifies the * as a 

metacharacter. It then creates a list of files from the current directory that match this 

pattern. It reconstructs the command line as follows, and then hands it over to the kernel 

for execution:

ls -x chap chap01 chap02 chap03 chap04 chap15 chap16 chap17 chapx chapy chapz

What happens when you use echo with the * as argument?

$ echo *
array.pl back.sh calendar cent2fah.pl chap chap01 chap02 chap03 chap04 chap15 ch
ap16 chap17 chapx chapy chapz count.pl date_array.pl dept.lst desig.lst n2words.
pl name.pl name2.pl odfile operator.pl profile.sam rdbnew.lst rep1.pl

T A B L E  6 . 1  The Shell’s Wild Cards and Application

Wild Card Matches

* Any number of characters including none
? A single character
[ijk] A single character—either an i, j, or k
[x-z] A single character that is within the ASCII range of the 

characters x and z
[!ijk] A single character that is not an i, j, or k (Not in C shell)
[!x-z] A single character that is not within the ASCII range of the 

characters x and z (Not in C shell)

{pat1,pat2...} pat1, pat2, etc. (Not in Bourne Shell; see Going Further)

!(flname) All except flname (Korn and Bash; see Going Further)

!(fname1|fname2) All except fname1 and fname2 (Korn and Bash; see Going Further)

Examples

Command Significance

ls *.lst Lists all files with extension .lst
mv * ../bin Moves all files to bin subdirectory of parent directory
gzip .?*.?* Compresses all files beginning with a dot, followed by one or 

more characters, then a second dot followed by one or more 

characters
cp chap chap* Copies file chap to file chap* (* loses meaning here)
cp ?????? progs Copies to progs directory all six-character filenames
cmp rep[12] Compares files rep1 and rep2
rm note[0-1][0-9] Removes files note00, note01 . . . through note19
lp *.[!o] Prints all files having extensions except C object files
cp ?*.*[!1238] .. Copies to the parent directory files having extensions with at 

least one character before the dot, but not having 1, 2, 3, or 8 as 

the last character

das76205_Ch06_156-187.indd   159das76205_Ch06_156-187.indd   159 12/13/11   10:44 AM12/13/11   10:44 AM



160 Your UNIX/Linux: The Ultimate Guide

You simply see a list of files! All filenames (except those beginning with a dot) in the 

current directory match a solitary *, so you see all of them in the output. If you use 

rm * in this directory, all of these files will be deleted.

Windows users may be surprised to know that the * may occur anywhere in the pattern and 
not merely at the end. Thus, *chap* matches all the following filenames—chap newchap chap03 
chap03.txt.

Be careful when you use the * with rm to remove files. You could land yourself in a real mess 
if, instead of typing rm *.o, which removes all the C object files, you inadvertently introduce 
a space between * and .o:

$ rm * .o Very dangerous!

rm: .o: No such file or directory

The error message here masks a disaster that has just occurred; rm has removed all files in this 
directory! Whenever you use a * with rm, you should pause and check the command line before 
you finally press [Enter]. A safer bet would be to use rm -i.

The ? The ? matches a single character. When used with the same string chap (as chap?), 

the shell matches all five-character filenames beginning with chap. Place another ? at 

the end of this string, and you have the pattern chap??. Use both of these expressions 

separately, and the meaning of the ? becomes obvious:

$ ls -x chap?
chapx  chapy  chapz
$ ls -x chap??
chap01  chap02  chap03  chap04  chap15  chap16  chap17

Both the * and ? operate with some restrictions that are examined in Section 6.3.4.

 6.3.2 The Character Class
The patterns framed in the preceding examples are not very restrictive. With the knowl-

edge we have, it’s not easy to list only chapy and chapz. Nor is it easy to match only 

the first four chapters from the numbered list. You can frame more restrictive patterns 

with the character class.

The character class comprises a set of characters enclosed by the rectangular 

brackets [ and ], but it matches a single character in the class. The pattern [abcd] is 

a character class, and it matches a single character—an a, b, c, or d. This pattern can 

be combined with any string or another wild-card expression so that selecting chap01, 

chap02, and chap04 now becomes a simple matter:

$ ls chap0[124]
chap01  chap02  chap04

Range specification is also possible inside the class with a - (hyphen); the two characters 

on either side of it form the range of the characters to be matched. Here are two examples:

Note

Caution

das76205_Ch06_156-187.indd   160das76205_Ch06_156-187.indd   160 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 161

C Shell

ls chap0[1-4] Lists chap01, chap02, chap03 and chap04

ls chap[x-z] Lists chapx, chapy and chapz

A valid range specification requires that the character on the left have a lower ASCII 

value than the one on the right.

The expression [a-zA-Z]* matches all filenames beginning with a letter, irrespective of case. 
You can match a word character by including numerals and the underscore character as well: 
[a-zA-Z0-9_].

Negating the Character Class (!) The solution that we prescribe here unfortunately 

doesn’t work with the C shell, but with the other shells, you can use the ! as the first 

character in the class to negate the class. The two examples that follow should make 

this point amply clear:

*.[!co] Matches all filenames with a single-character extension but

 not the .c or .o files.

[!a-zA-Z]* Matches all filenames that don’t begin with a letter.

Even though the character class is meant to be used with a group of characters, it’s the 

only way you can negate a match for a single character. Thus, to match all files with 

single-character extensions except those ending with .o (i.e., C object files), you have 

to use a character class as a “dummy class”:

*.[!o] Not the .o files

The ! can’t be used to negate a character class at all. In fact, the C shell has no mechanism 

for doing so.

The Mystery of the find Command
It’s true that a command doesn’t perform wild-card expansion on its own and runs 

only after the shell has expanded the wild cards. The find command is an excep-

tion. It supports wild cards (probably the only UNIX command having this feature) 

in the filename that’s used as a parameter to the -name option:

find / -name “*.[hH][tT][mM][lL]” -print        All .html and .HTML files

find . -name “note??” -print                Two characters after note

Here, we are using the same wild-card characters, but this time they are a feature 

of find and not of the shell. find supports only the Bourne shell set. By providing 

quotes around the pattern, we ensured that the shell can’t even interpret this pattern. 

In fact, allowing the shell to do that could be disastrous! You’ll learn about this 

insulating feature shortly.

Note

das76205_Ch06_156-187.indd   161das76205_Ch06_156-187.indd   161 12/13/11   10:44 AM12/13/11   10:44 AM



162 Your UNIX/Linux: The Ultimate Guide

 6.3.3 Matching the Dot
The behavior of the * and ? in relation to the dot isn’t as straightforward as it may seem. 

The * and ? don’t match

 • all filenames beginning with a . (dot).

 • the / of a pathname.

If you want to list all hidden filenames in your directory having at least three characters 

after the dot, then the dot must be matched explicitly:

$ ls .???*
.bash_profile   .exrc   .netscape  .profile

However, if the filename contains a dot anywhere but at the beginning, it need not be 

matched explicitly. For example, the expression *c also matches all C programs:

$ ls *c
access.c
check_permissions.c
runc
shell.c
toc

There are two things that the * and ? can’t match. First, they don’t match a filename beginning 
with a dot, although they can match any number of embedded dots. For instance, apache*gz 
matches apache_1.3.20.tar.gz. Second, these characters don’t match the / in a pathname. 
You can’t use cd /usr*local to switch to /usr/local. 

 6.3.4 Rounding Up
Some of the wild-card characters have different meanings depending on where they are 

placed in the pattern. The * and ? lose their meaning when used inside the class, and 

they are matched literally. Similarly, - and ! also lose their significance when placed at 

other locations. There are other restrictions, but we can ignore them for now.

What if the shell fails to match a single file with the expression chap*? There’s 

a surprise element here; the shell also looks for a file named chap*. You should avoid 

using metacharacters when choosing filenames, but if you have to handle one, then you 

have to turn off the meaning of the * so that the shell treats it literally. This deactivation 

feature is taken up in the next section.

The expression [!!] matches a single character filename that is not a !. This doesn’t work in 
the C shell and Bash, which use the ! for a different purpose. Bash needs to use [!\!] here, 
but the C shell can’t negate a character class at all.

When organizing information in files that need to be accessed as a group, choose the filenames 
with care so you don’t need to use too many patterns to match them.

Note

Note

Tip

das76205_Ch06_156-187.indd   162das76205_Ch06_156-187.indd   162 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 163

 6.4 Escaping and Quoting

You might well think that since the shell transforms the wild-card characters, filenames 

musn’t contain these characters. That’s correct thinking, but the real world is far from 

perfect. One of the examples featured in Table 6.1 shows how easy it is to actually cre-

ate a file named chap* (cp chap chap*). This creates problems as the pattern chap* 

also matches the filename chap*:

$ ls chap*
chap   chap*  chap01  chap02  chap03  chap04  chap15  chap16  chap17  chapx
chapy  chapz

This file can be a great nuisance and should be removed immediately, but that won’t be 

easy. rm chap* removes all of these files. We must be able to protect all special characters 

(including wild cards) so the shell is not able to interpret them. The shell provides two 

solutions to prevent its own interference:

 • Escaping—Providing a \ (backslash) before the wild card to remove (escape) its 

special meaning.

 • Quoting—Enclosing the wild card, or even the entire pattern, within quotes (like 

“chap*”). Anything within these quotes (barring few exceptions) is left alone by 

the shell and not interpreted.

In most cases you can use either mechanism, but some situations warrant the use of 

quotes. Sometimes you also need to make a distinction between single and double 

quotes, but more on that later.

 6.4.1 Escaping
When the \ precedes a metacharacter, its special meaning is turned off. In the pattern 

\*, the \ tells the shell that the asterisk has to be treated and matched literally instead 

of being interpreted as a metacharacter. Using this feature, we can now remove only 

the file named chap*:

rm chap\* Doesn’t remove chap1, chap2

This feature is known as escaping. You have seen stty using this feature (2.14), and 

you’ll see other application areas also. Here’s another example:

rm chap0\[1-3\] Removes only chap0[1-3]

Escaping the Space Apart from metacharacters, there are other characters that are 

special—like the space. The shell uses the space to delimit command-line arguments. 

So, to remove the file My Document.doc, which has a space embedded, a similar rea-

soning should be followed:

rm My\ Document.doc Without the \ rm would see two files

das76205_Ch06_156-187.indd   163das76205_Ch06_156-187.indd   163 12/13/11   10:44 AM12/13/11   10:44 AM



164 Your UNIX/Linux: The Ultimate Guide

Escaping the \ Itself Sometimes you may need to interpret the \ itself literally. You 

need another \ before it, that’s all:

$ echo \\
\
$ echo The newline character is \\n
The newline character is \n

Ignoring the Newline Character Command lines that use several arguments often 

overflow to the next line. To ensure better readability, split the wrapped line into two 

lines, but make sure that you input a \ before you press [Enter]:

$ find /usr/local/bin /usr/bin -name “*.pl” -mtime +7 -size +1024 \[Enter]
> -size -2048 -atime +25 -print Note the >

The \ here ignores [Enter]. It also produces the second prompt (which could be a > or 

a ?), which indicates that the command line is incomplete. For better readability, you 

should split long pipelines (6.8) into multiple lines wherever possible.

The space, \, and LF (the newline character generated by [Enter]) are also special and need to 
be escaped if the shell is to be prevented from interpreting them in the way it normally does.

 6.4.2 Quoting
There’s another way to turn off the meaning of a metacharacter. When a command argu-

ment is enclosed in quotes, the meanings of all enclosed special characters are turned 

off. Here’s how we can run some of the previous commands, using a mix of single- and 

double-quoting this time:

echo ‘\’ Displays a \

rm ‘chap*’ Removes file chap*

rm “My Document.doc” Removes file My Document.doc

Escaping also turns out to be a tedious affair when there are just too many characters to 

protect. Quoting is often a better solution. The following example shows the protection 

of four special characters using single quotes:

$ echo ‘The characters |, <, > and $ are also special’ 
The characters |, <, > and $ are also special

We could have used escaping here, but then we would need to use a \ in front of each 

of these four metacharacters. We used single quotes because they protect all special 

characters (except the single quote). Double quotes are more permissive; they don’t 

protect (apart from the double quote itself) the $ and the ` (backquote):

$ echo “Command substitution uses `` while TERM is evaluated using $TERM”
Command substitution uses  while TERM is evaluated using vt100

Note

das76205_Ch06_156-187.indd   164das76205_Ch06_156-187.indd   164 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 165

Observe that the pair of backquote characters (``) and the variable $TERM have been in-

terpreted by the shell inside double quotes. The value of $TERM is vt100 for this terminal, 

and `` evaluated to a null command. Now try out the same example using single quotes:

$ echo ‘Command substitution uses `` while TERM is evaluated using $TERM’
Command substitution uses `` while TERM is evaluated using $TERM

It’s often crucial to select the right type of quote, so bear in mind that single quotes protect 
all special characters except the single quote and \. Double quotes, however, allow a pair of 
backquotes (``) to be interpreted as command substitution characters, and the $ as a variable 
prefix. There is also a reciprocal relationship between the two types of quotes; double quotes 
protect single quotes, and single quotes protect the double.

 6.4.3 Escaping in echo
We used echo in Section 2.6 with escape sequences like \n and \t. The \ has a reverse 

meaning there; it treats the characters n and t as special rather than removing their 

special meaning because n and t don’t have special meaning. These escape sequences 

are always used within quotes to keep the shell out. But what is echo?

$ type echo
echo is a shell builtin

We have a funny situation here. We quoted echo’s arguments to keep the shell out of the 

picture only to learn that echo is built into the shell! For this purpose, the shell treats 

echo as an external command (which it once was).

 6.5 Redirection

Before we commence our discussions on redirection, let’s first understand what the term 

terminal means since we’ll be using it often. In the context of redirection, the terminal 

is a generic name that represents the screen, display, or keyboard (or even an X window 

that emulates a terminal). Just as we refer to a directory as a file, we’ll also sometimes 

refer to the keyboard as a terminal.

We see command output and error messages on the terminal (display), and we 

sometimes provide command input through the terminal (keyboard). The shell associates 

three files with the terminal—two for the display and one for the keyboard. Even though 

our terminal is also represented by a specific device name, commands don’t usually read 

from or write to this file. They perform all terminal-related activity with the three files 

that the shell makes available to every command.

These special files are actually streams of characters that many commands see as 

input and output. A stream is simply a sequence of bytes. When a user logs in, the shell 

makes available three files representing three streams. Each stream is associated with a 

default device, and—generically speaking—this device is the terminal:

 • Standard input—The file (or stream) representing input, which is connected to 

the keyboard.

 • Standard output—The file (or stream) representing output, which is connected 

to the display.

Note

das76205_Ch06_156-187.indd   165das76205_Ch06_156-187.indd   165 12/13/11   10:44 AM12/13/11   10:44 AM



166 Your UNIX/Linux: The Ultimate Guide

 • Standard error—The file (or stream) representing error messages that emanate 

from the command or shell. This is also connected to the display.

A group of UNIX commands reads from and writes to these files. A command is usually 

not designed to send output to the terminal but to this file. Likewise, it is not designed 

to accept input from the keyboard either, but only from a standard file which it sees as a 

stream. Every command that uses streams will always find these files open and available.

Even though the shell associates each of these files with a default physical device, 

this association is not permanent. The shell can easily unhook a stream from its default 

device and connect it to a disk file (or to any command) the moment it sees some special 

characters in the command line. You, as user, have to instruct the shell to do that by 

using symbols like > and < in the command line. This means that instead of input and 

output coming from and to the terminal, they can be redirected to come from or go to 

any disk file.

 6.5.1 Standard Input
We have used the cat and wc commands to read disk files. These commands have an 

additional method of taking input. When they are used without arguments, they read the 

file representing the standard input. This file is indeed special; it can represent three 

input sources (Fig. 6.1):

 • The keyboard, the default source.

 • A file using redirection with the < symbol (a metacharacter).

 • Another program using a pipeline (to be taken up later).

When you use wc without an argument and have no special symbols like the < and | in 

the command line, wc obtains its input from the default source. You have to provide this 

input from the keyboard and mark the end of input with [Ctrl-d]:

$ wc
Standard input can be redirected
It can come from a file
or a pipeline
[Ctrl-d]
       3      14      71

F I G U R E  6 . 1  Three Sources of Standard Input

command

Pipe

Keyboard
(Default)

File The quick brown fox jumbed 
over the lazy dog. The quick 
brown fox jumbed over the 
lazy dog. The quick brown fox 
jumbed over the lazy dog. The 
quick brown fox jumbed over 
the lazy dog. 

das76205_Ch06_156-187.indd   166das76205_Ch06_156-187.indd   166 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 167

The wc command, which takes the stream from standard input, immediately counts 3 

lines, 14 words, and 71 characters. Now run wc with a filename as argument:

$ wc /etc/passwd
     21      45    1083 /etc/passwd

There’s a fourth column here; wc prints the filename because it opened the file itself. 

In the other example, no filename was specified, so no filename was output. wc simply 

read the standard input file that was opened by the shell when you logged in.

The shell’s manipulative nature is useful here. It can reassign or redirect the 

standard input to originate from a file on disk. This redirection requires the < symbol:

$ wc < /etc/passwd
     21      45    1083

The filename is missing once again, which means that wc didn’t open /etc/passwd. It 

read the standard input file as a stream but only after the shell made a reassignment of 

this stream to a disk file. The sequence works like this:

1. On seeing the <, the shell opens the disk file, /etc/passwd, for reading.

2. It unplugs the standard input file from its default source and assigns it to 

/etc/passwd.

3. wc reads from standard input that has previously been reassigned by the shell to 

/etc/passwd.

The important thing here is that wc has no idea where the stream came from; it is not 

even aware that the shell had to open the file /etc/passwd on its behalf!

You may have already framed your next question. Why bother to redirect the 

standard input from a file if the command can read the file itself? After all, wc can also 

use a filename as argument! The answer is that there are times when you need to keep 

the command ignorant of the source of its input. This aspect, representing one of the 

most deep-seated features of the system, will gradually expose itself as you progress 

through this text.

When the standard input is redirected to come from a file (with <), it’s the shell that opens the 
file. The command here is totally ignorant of what the shell is doing to provide it with input. 
However, when you invoke a command with a filename as argument, it’s the command that 
opens the file and not the shell.

Taking Input Both from File and Standard Input When a command takes input 

from multiple sources—say, a file and standard input—the - symbol must be used to 

indicate the sequence of taking input. The meaning of the following sequences should 

be quite obvious:

cat - foo First from standard input and then from foo

cat foo - bar First from foo, then standard input, and then bar

Use /dev/stdin in case the - doesn’t work. The third source of standard input is the 

pipe, which is discussed later (6.8). There’s a fourth form of standard input that we have 

Note

das76205_Ch06_156-187.indd   167das76205_Ch06_156-187.indd   167 12/13/11   10:44 AM12/13/11   10:44 AM



168 Your UNIX/Linux: The Ultimate Guide

not mentioned here. It’s the here document, which has application in shell programming 

and hence is discussed in Chapter 13.

 6.5.2 Standard Output
All commands displaying output on the terminal actually write to the standard output 
file as a stream of characters, and not directly to the terminal as such. There are three 

possible destinations for this stream (Fig. 6.2):

 • The terminal, the default destination.

 • A file, using the redirection symbols > and >>.

 • As input to another program using a pipeline (to be taken up later).

The shell can effect redirection of this stream when it sees the > or >> symbols in the 

command line. You can replace the default destination (the terminal) with any file by 

using the > (right chevron) operator, followed by the filename:

$ wc /etc/passwd > newfile 
$ cat newfile
     21      45    1083 /etc/passwd

The first command sends the word count of /etc/passwd to newfile; nothing appears 

on the terminal screen. The sequence works like this:

1. On seeing the >, the shell opens the disk file, newfile, for writing.

2. It unplugs the standard output file from its default destination and assigns it to 

newfile.

3. wc (and not the shell) opens the file /etc/passwd for reading.

4. wc writes to standard output, which was previously reassigned by the shell to 

newfile.

And all of this happens without wc knowing that it is in fact writing to newfile! Any 

command that uses standard output is also ignorant of the destination of its output. 

Consider this sequence that uses cat to create a file:

F I G U R E  6 . 2  The Three Destinations of Standard Output

command

Pipe

Terminal
(Default)

File
The quick brown fox jumbed 
over the lazy dog. The quick 
brown fox jumbed over the 
lazy dog. The quick brown fox 
jumbed over the lazy dog. The 
quick brown fox jumbed over 
the lazy dog. 

das76205_Ch06_156-187.indd   168das76205_Ch06_156-187.indd   168 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 169

$ cat > foo
cat without an argument takes input from standard input.
In this case, the keyboard input makes its way to redirected standard output.
[Ctrl-d]

When you enter cat > foo, the shell associates cat’s standard output with the file foo. 

Because the command was used without an input filename, cat looks for input from the 

standard input. Enter these two lines as shown above and terminate standard input with 

[Ctrl-d]. The file foo, which was created by the shell, now contains these two lines. 

If the output file doesn’t exist, the shell creates it before executing the command. If 

it exists, the shell overwrites it, so use this operator with caution. The shell also provides 

the >> symbol (the right chevron used twice) to append to a file:

wc sample.txt >>newfile Doesn’t disturb existing contents

Redirection can also be used with multiple files. The following example saves all C 

programs:

cat *.c > c_progs_all.txt

The standard output of one command can also be used by another command as its 

standard input. This is the third destination of standard output and is taken up in the 

discussion on pipes (6.8).

When the output of a command is redirected to a file, the output file is created or truncated 
by the shell before the command is executed. Any idea what cat foo > foo does?

 6.5.3 The File Descriptor
Before we proceed any further, you should know that each of the three standard files 

is represented by a number, called a file descriptor. A file is opened by referring to its 

pathname, but subsequent read and write operations identify the file by this file descriptor. 

The kernel maintains a table of file descriptors for every process running in the system. 

The first three slots are generally allocated to the three standard streams in this manner:

0—Standard input

1—Standard output

2—Standard error

These descriptors are implicitly prefixed to the redirection symbols. For instance, > 

and 1> mean the same thing to the shell, while < and 0< also are identical. We need to 

explicitly use one of these descriptors when handling the standard error stream. If your 

program opens a file, in all probability, the file will be allocated the descriptor 3.

Note

das76205_Ch06_156-187.indd   169das76205_Ch06_156-187.indd   169 12/13/11   10:44 AM12/13/11   10:44 AM



170 Your UNIX/Linux: The Ultimate Guide

How Redirection Works
The concepts related to redirection are pretty simple. A command like ls writes to 

fi le descriptor 1, and this remains true even when you use ls > foo. To save the ls 

output in foo, the shell has to manipulate this fi le descriptor before running ls. It 

closes the standard output and then opens foo. Since the kernel allocates the lowest 

unallocated integer in the fi le descriptor table, foo is assigned the value 1. The ls 

output is thus captured in foo.

Even though the concept appears simple, its implementation requires two processes. 

After all, if the shell closes its own standard output fi le, how does it display its own 

messages? In reality, the shell creates a copy of its own process, performs the de-

scriptor manipulation in the copied process, and even runs the ls command in that 

process. The shell’s own fi le descriptors are then left undisturbed. Chapter 18 dis-

cusses how the dup, dup2, and fcntl system calls are used to implement redirection.

 6.5.4 Standard Error
When a command runs unsuccessfully, diagnostic messages often show up on the screen. 

This is the standard error stream whose default destination is the terminal. Trying to 

“cat” a nonexistent file produces the error stream:

$ cat foo
cat: cannot open foo

cat fails to open the file and writes to the standard error. If you are not using the C shell, 

you can redirect this stream to a file. Using the symbol for standard output obviously 

won’t do; you need to use the 2> symbols:

$ cat foo > errorfile
cat: cannot open foo Error stream can’t be captured with >

$ cat foo 2> errorfile
$ cat errorfile
cat: cannot open foo

Even though standard output and standard error use the terminal as the default destination, 

the shell possesses a mechanism for capturing them individually. You can also append 

standard error in the same way you append standard output:

cat foo 2>> errorfile

or redirect them separately:

foo.sh > bar1 2>bar2

What about saving both streams in the same file? The descriptor replicating mechanism, 

which does this job, is taken up shortly.

das76205_Ch06_156-187.indd   170das76205_Ch06_156-187.indd   170 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 171

C Shell

The standard error is handled differently by the C shell, so the examples of this section 

won’t work with it. In fact, the C shell merges the standard error with the standard 

output; it has no separate symbol for handling standard error only. The command 

cat foo >& bar saves both standard output and standard error in bar.

If you have a program that runs for a long time and is not error-free, you can direct the stan-
dard error to a separate file and then stay away from the terminal. On return, you can examine 
this file for errors.

 6.5.5 Filters—Using Both Standard Input and Standard Output
We return to the input and output streams to ask ourselves this question: Do all com-

mands use the features of standard input and standard output? No, certainly not. From 

this viewpoint, the UNIX commands can be grouped into four categories:

Commands Standard Input Standard Output

mkdir, rmdir, cp, rm No No

ls, pwd, who No Yes

lp, lpr Yes No

cat, wc, gzip Yes Yes

Commands in the fourth category are called filters, and the dual stream-handling feature 

makes filters powerful text manipulators. Note that most filters can also read directly from 

files whose names are provided as arguments. Chapters 9, 10, 12, and 14 are earmarked 

for filters in this text. Some of the commands discussed in previous chapters can also 

be made to behave as filters.

Since wc is a filter, you can redirect wc’s standard input to come from a file and 

save the output in yet another. This can be done in any of these ways:

wc < calc.txt > result.txt Using both standard input and output

wc > result.txt < calc.txt
wc>result.txt<calc.txt No whitespace!

> result.txt < calc.txt wc As above, but command at end

The last example illustrates a departure from the statement made previously (2.2) that 

the first word in the command line is the command. In the last example, wc is the last 

word in the command line. Rather than use these combinations, you’ll find it more 

convenient to stick to the first form.

The indifference of a command to the source of its input and destination of its 

output is one of the most profound features of the UNIX system. It raises the possibil-

ity of commands “talking” to one another so that the output of one command can be 

used as input to another. Very soon we’ll discuss pipes, and you’ll see how two or more 

commands communicate with one another.

Tip

das76205_Ch06_156-187.indd   171das76205_Ch06_156-187.indd   171 12/13/11   10:44 AM12/13/11   10:44 AM



172 Your UNIX/Linux: The Ultimate Guide

 6.6 Collective Manipulation

So far, we have used the > to handle a single stream of a single command. But the shell 

also supports collective stream handling. This can happen in these two ways:

 • Handle two standard streams as a single one using the 2>&1 and 1>&2 symbols.

 • Form a command group by enclosing multiple commands with the ( and ) symbols 

or { and } symbols. You can then use a single instruction to control all commands 

in the group.

Both concepts have important applications. We must understand them now because these 

features will be recalled when discussing processes, shell programming, and systems 

programming.

 6.6.1 Replicating Descriptors
Though standard output and standard error are two separate streams, you can manipulate 

them collectively. It’s like redirecting a single stream. The symbols required are a little 

cryptic to look at but quite intuitive:

1>&2    Send the standard output to the destination of the standard error.

2>&1    Send the standard error to the destination of the standard output.

In either case, both streams are associated with a single file. The first set is often used 

inside shell scripts in this way:

echo “Filename not entered” 1>&2 Same as >&2

Note that the echo statement has not been redirected here. If a script containing this state-

ment is redirected, then the output of echo won’t go the file but will be sent to the standard 

error, the terminal. To save this message in a file, you have to provide redirection separately:

$ echo “Filename not entered” 2>error.txt 1>&2 
$ cat errror.txt
Filename not entered

The 2> symbol reassigns standard error to error.txt and 1>&2 sends the standard output 

of echo to the standard error. Note the sequence: first we redirect and then we specify 

the replication of the descriptor.

Some programs (like perldoc) are designed to write to the standard error. Piping the output to 
more doesn’t help. To use the pager with these programs also, use 2>&1 to send standard error 
to the standard output. If you run perldoc perlop 2>&1 | more, you’ll be able to separately  
view each page of the perl documentation. However, this may not work on all systems.

 6.6.2 Command Grouping
Sometimes, we need to manipulate a group of commands collectively: redirect them, 

run them in the background, and so on. The () and {} handle a command group. 

Tip

das76205_Ch06_156-187.indd   172das76205_Ch06_156-187.indd   172 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 173

We can use the first set to redirect the standard output of a command group using a 

single >:

( ls -x *.c ; echo ; cat *.c ) > c_progs_all.txt

This saves all C program sources in a file preceded by a multicolumn list of programs 

acting as a table of contents. The echo command serves to insert a blank line between 

them. The {} can also be used for this purpose:

{ ls -x *.c ; echo ; cat *.c ; } > c_progs_all.txt

Note the ; at the end of the cat command that is required if the opening and closing curly 

braces are placed in the same line. You don’t need it when the } is located in a separate line.

Though we could use the two sets of symbols interchangeably here, there are 

distinct differences between them. After we study processes, we’ll be able to identify 

those situations where one group applies and not the other. We’ll use the curly braces 

extensively when programming with the shell.

 6.7 /dev/null and /dev/tty: Two Special Files

/dev/null Quite often, and especially in shell programming, you’ll want to check 

whether a program runs successfully without seeing its output or saving it in a file. You 

have a special file that accepts any stream without growing in size—the file /dev/null:

$ cat /etc/passwd >/dev/null
$ cat /dev/null 
$ _ Size is always zero

Check the file size; it’s always zero. /dev/null simply incinerates all output written to 

it. This facility is also useful in redirecting error messages. Consider the find command 

that was used in the Tip in Section 4.11.1:

find / -name typescript -print 2>/dev/null

The file /dev/null is actually a pseudo-device because, unlike all other device files, 

it’s not associated with any physical device. 

The file /dev/null can also be used as a “dummy” file when we  need a command to work 
with two files but only one is available. Consider the grep command (10.2), which displays lines 
containing a pattern. The command also displays filenames when used with multiple filenames 
as arguments. But since the command used with the -exec operator of find (4.11.3) works 
with a single file at a time, we can use /dev/null to provide an additional argument to grep:

find . -name “*.c” -exec grep printf {} /dev/null \;

This command now shows the filename prepended to every line containing printf. Without 
/dev/null, grep would output only the line containing the pattern, and you wouldn’t know 
which file the line comes from.

Tip

das76205_Ch06_156-187.indd   173das76205_Ch06_156-187.indd   173 12/13/11   10:44 AM12/13/11   10:44 AM



174 Your UNIX/Linux: The Ultimate Guide

/dev/tty The second special file in the UNIX system is the one indicating one’s 

terminal—/dev/tty. But make no mistake: This is not the file that represents standard 
output or standard error. Commands generally don’t write to this file, but you’ll be 

required to redirect some statements in shell scripts to this file.

Consider, for instance, that romeo is working on terminal /dev/pts/1 and juliet 

on /dev/pts/2. Both romeo and juliet, however, can refer to their own terminals with 

the same filename—/dev/tty. Thus, if romeo issues the command

who >/dev/tty

the list of current users is sent to the terminal he is currently using—/dev/pts/1. 

Similarly, juliet can use an identical command to see the output on her terminal, 

/dev/pts/2. Like /dev/null, /dev/tty can be accessed by several users without conflict.

You may ask why one would need to specifically redirect output to one’s own 

terminal since the default output goes to the terminal anyway. Sometimes, you need to 

specify that explicitly. Apart from its use in redirection, /dev/tty can also be used as 

an argument to some UNIX commands. Section 6.9 makes use of this feature, while 

some situations are presented in Chapter 13 (featuring shell programming).

The size of /dev/null is always zero, and all terminals can be represented by /dev/tty.

 6.8 Pipes

To understand pipes, we’ll set ourselves the task of counting the number of users currently 

logged in. We’ll first attempt the task using the knowledge we possess already. The who 

command produces a list of users—one user per line, and we’ll save this output in a file:

$ who > user.txt
$ cat user.txt
root console Aug 1 07:51 (:0)
romeo pts/10 Aug 1 07:56 (pc123.heavens.com)
juliet pts/6 Aug 1 02:10 (pc125.heavens.com)
project pts/8 Aug 1 02:16 (pc125.heavens.com)

If we now redirect the standard input of the wc -l command (3.18) to come from 

user.lst, we will have effectively counted the number of users:

$ wc -l < user.txt
      4 Counts the number of users

This method of running two commands separately has two obvious disadvantages:

 • For long-running commands, this process can be slow. The second command can’t 

act unless the first has completed its job.

 • You require an intermediate file that has to be removed after completion of the job. 

When you are handling large files, temporary files can build up easily and eat up 

disk space in no time.

Note

das76205_Ch06_156-187.indd   174das76205_Ch06_156-187.indd   174 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 175

Here, who’s standard output was redirected, as was wc’s standard input, and both used 

the same disk file. The shell can connect these streams using a special operator—the | 

(pipe)—and avoid the creation of the disk file. You can make who and wc work in tandem 

so that one takes input from the other:

$ who | wc -l No intermediate files created

      4

The output of who has been passed directly to the input of wc, and who is said to be piped 
to wc. When a sequence of commands is combined together in this way, a pipeline is 

formed. The shell sets up this interconnection; the commands have no knowledge of it.

The pipe is the third source and destination of standard input and standard output, 

respectively. You can now use one to count the number of files in the current directory:

$ ls | wc -l
    15

Note that no separate command was designed to count files, though the designers could 

easily have provided another option to ls to perform this operation. And because wc 

uses standard output, you can redirect this output to a file:

ls | wc -l > fkount

You can run a large number of commands in a pipeline, the number being restricted to 

the maximum number of processes that can be run by a non-root user. But you must 

know the behavioral properties of these commands to place them there. Consider this 

command sequence, which prints the man page of grep on the printer:

man grep | col -b | lp Don’t print these pages!

The online man pages of a command often show the keywords in boldface. These 

pages contain a number of control characters which are removed here by the col -b 

command. Like col, lp also reads its standard input from col’s output and prints the 

file. For a pipeline like this to be feasible, the leftmost command (here, man) must be 

able to write to standard output while the rightmost command (here, lp) must be able to 

read from standard input. Intermediate commands (here, col) must be able to do both, 

i.e., behave like a filter.

 6.8.1 When a Command Needs to Be Ignorant of Its Source
We’ve made several references to a command being ignorant of its source and destina-

tion. When and why is this ignorance essential for us? To appreciate this point, let’s use 

the wc command to display the total size of all C programs:

$ wc -c *.c
   2078 backtalk.c
    231 beyond_array.c
     ....... Output trimmed here

   1944 dog.c

das76205_Ch06_156-187.indd   175das76205_Ch06_156-187.indd   175 12/13/11   10:44 AM12/13/11   10:44 AM



176 Your UNIX/Linux: The Ultimate Guide

     884 hexdump.c
     214 swap.c
940101 total

The display shows the total usage at 940,101 bytes, but it also shows the usage for each 

file. We are not interested in individual statistics this time; what we need is a single 

figure representing the total size. To do that, you must make wc ignorant of its input 

source. You can accomplish this by feeding the concatenated output stream of all these 

files to wc -c as its input:

$ cat *.c | wc -c
940101

When do we need a single figure? We can use this command sequence as a control com-

mand in a shell script to determine whether the files will fit on a diskette:

if [ ̀ cat *.c | wc -c` -lt 1474560 ] ; then
   echo ‘These files will fit in a single 3.5” diskette’
fi

Note how the single quotes protect the double quote in the echo statement. We’ll learn 

to use the if construct in Chapter 13, which features shell programming. The two back-

quotes (``) denote command substitution, which is discussed shortly.

In a pipeline, the command on the left of the | must use standard output, and the one on the 
right must use standard input.

 6.9 tee: Creating a Tee

tee is an external command and not a feature of the shell. It duplicates its input, saves 

one copy in a file, and sends the other to the standard output. Since it is also a filter, 

tee can be placed anywhere in a pipeline. The following command sequence uses tee 

to display the output of who and save the output in a file as well:

$ who | tee user.txt
romeo pts/2 Sep 7 08:41 (pc123.heavens.com)
juliet pts/3 Sep 7 17:58 (pc122.heavens.com)
sumit pts/5 Sep 7 18:01 (mercury.heavens.com)

tee doesn’t perform any filtering action on its input; it gives out exactly what it takes. 

You can crosscheck the display with the contents of the file user.txt:

$ cat user.txt
romeo pts/2 Sep 7 08:41 (pc123.heavens.com)
juliet pts/3 Sep 7 17:58 (pc122.heavens.com)
sumit pts/5 Sep 7 18:01 (mercury.heavens.com)

Note

das76205_Ch06_156-187.indd   176das76205_Ch06_156-187.indd   176 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 177

You can pipe tee’s output to another command, say wc:

$ who | tee user.txt | wc -l
      3

How do you use tee to display both the list of users and its count on the terminal? Since 

the terminal is also a file, you can use the device name /dev/tty as an argument to tee:

$ who | tee /dev/tty | wc -l /dev/tty used as command argument

romeo pts/2 Sep 7 08:41 (pc123.heavens.com)
juliet pts/3 Sep 7 17:58 (pc122.heavens.com)
sumit pts/5 Sep 7 18:01 (mercury.heavens.com)
      3

The advantage of treating the terminal as a file is apparent from the preceding example. 

You couldn’t have done so if tee (or, for that matter, any UNIX command) had placed 

restrictions on the type of file it could handle. Here the terminal is treated in the same 

way as any disk file.

 6.10 Command Substitution

The shell enables the connection of two commands in yet another way. While a pipe 

enables a command to obtain its standard input from the standard output of another 

command, the shell enables one or more command arguments to be obtained from the 

standard output of another command. This feature is called command substitution.

To consider a simple example, suppose you need to display today’s date with a 

statement like this:

The date today is Sat Sep  7 19:01:16 GMT 2002

The last part of the statement (beginning from Sat) represents the output of the date 

command. How does one incorporate date’s output into the echo statement? With com-

mand substitution it’s a simple matter. Use the expression ̀ date` as an argument to echo:

$ echo The date today is `date`
The date today is Sat Sep  7 19:01:56 GMT 2002

When scanning the command line, the ̀  (backquote or backtick) is another metacharacter 

that the shell looks for. There’s a special key on your keyboard (generally at the top-left) 

that generates this character, and it should not be confused with the single quote (‘). 

The shell executes the enclosed command and replaces the enclosed command line with 

the output of the command. For command substitution to work, the command so “back-

quoted” must use standard output. date does; that’s why command substitution worked.

Commands that use filenames as arguments can use command substitution to 

obtain their arguments from a list:

ls ̀ cat filelist`

das76205_Ch06_156-187.indd   177das76205_Ch06_156-187.indd   177 12/13/11   10:44 AM12/13/11   10:44 AM



178 Your UNIX/Linux: The Ultimate Guide

KORN Shell

BASH Shell

Here, filelist contains a list of filenames. You can also use this feature to generate 

useful messages. For example, you can use two commands in a pipeline and then use 

the output as the argument to a third:

$ echo “There are ̀ ls | wc -l` files in the current directory”
There are 58 files in the current directory

The command worked properly even though the arguments were double-quoted. It’s a 

different story altogether when single quotes are used:

$ echo ‘There are ̀ ls | wc -l` files in the current directory’
There are ̀ ls | wc -l` files in the current directory

This was to be expected because we had already tried out a similar exercise earlier (6.4.2). 

The ` is one of the few characters interpreted by the shell when placed within double 

quotes. If you want to echo a literal `, you have to use single quotes.

Command substitution has interesting application possibilities in shell scripts. It 

speeds up work by letting you combine a number of instructions in one. You’ll see more 

of this feature in subsequent chapters.

Command substitution is enabled when backquotes are used within double quotes. If you use 
single quotes, it’s not.

POSIX recommends the use of the form $(command) rather than the archaic ̀ command` 

for command substitution. The Korn and Bash shells offer both forms. The POSIX form 

requires you to place the command inside parentheses and have a $ before them:

$ echo The date today is $(date)
The date today is Sat Sep  7 19:15:33 GMT 2002

Whether or not you should use the POSIX notation is something you have to decide 

for yourself. Make sure that you don’t have to run your shell scripts with the Bourne 

shell before you decide to adopt this form.

 6.11 Shell Variables

The shell supports variables that are useful both in the command line and shell scripts. 

You have already encountered some of them like HOME and SHELL. Variable usage in 

the Bourne family differs from that in the C shell. In this section and elsewhere, we 

discuss Bourne-type variables. The features of C shell variables are noted in the aside 

at the end of this section.

A variable assignment is of the form variable=value (no spaces around =), but its 

evaluation requires the $ as prefix to the variable name:

$ count=5 No $ required for assignment

$ echo $count but needed for evaluation

5

Note

das76205_Ch06_156-187.indd   178das76205_Ch06_156-187.indd   178 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 179

C Shell

A variable can also be assigned the value of another variable:

$ total=$count Assigning a value to another variable

$ echo $total
5

Programmers should note that there must not be any whitespace on either side of the = 
symbol. The command line x =5 is interpreted by the shell as the x command running with 
the =5 argument!

Variable concatenation is simple; no special operators or symbols are needed. Simply 

place the variables side by side:

$ ext=.avi
$ moviename=holmes
$ filename=$moviename$ext
$ echo $filename
holmes.avi

Variable names begin with a letter but can contain numerals and the _ as the other char-

acters. Names are case-sensitive; x and X are two different variables. Unlike in program-

ming languages, shell variables are not typed; you don’t need to use a char, int, or long 

prefix when you define them. In fact, you don’t even have to declare them before you can 

use them. All shell variables are of the string type, which means that even a number like 

123 is stored as a string rather than in binary. (This may not remain true in the future.)

All shell variables are initialized to null strings by default. While explicit assign-

ment of null strings with x=”” or x=’’ is possible, you can also use this as a shorthand:

x= A null string 

A variable can be removed with unset and protected from reassignment by readonly. 

Both are shell internal commands:

unset x x is now undefined

readonly x x can’t be reassigned

By convention, variable names used by the UNIX system and software packages are in upper-
case. You are advised to use lowercase variable names in your shell scripts simply to distinguish 
them from system variables.

The C shell uses the set statement to set variables. There either has to be whitespace 

on both sides of the = or none at all:

set count = 1 Both statements are valid

set count=1 but set count= 1 won’t work

The evaluation is done in the normal manner (echo $count). The C shell uses another 

statement, setenv, to set an environment variable. These variables are discussed in 

Chapter 8.

Caution

Tip

das76205_Ch06_156-187.indd   179das76205_Ch06_156-187.indd   179 12/13/11   10:44 AM12/13/11   10:44 AM



180 Your UNIX/Linux: The Ultimate Guide

 6.11.1 Effects of Quoting and Escaping
To assign a multiword string to a variable, you can escape each space character, but 

quoting (single or double) is the preferred solution:

message=You\ didn’t\ enter\ the\ filename
message=”You didn’t enter the filename”

Now that you have another special character ($) that is gobbled up by the shell, you may 

still need to interpret it literally without it being evaluated. This time we have escaping 

and single-quoting as our options:

$ echo The average pay is \$1000
The average pay is $1000
$ echo ‘The average pay is $1000’
The average pay is $1000

Like the backquote, the $ is also evaluated by the shell when it is double-quoted. Here 

are two examples:

$ echo “The PATH is $PATH and the current directory is `pwd`” 
The PATH is /bin:/usr/bin:. and the current directory is /home/romeo/workc
$ echo “The average pay is $1000”
The average pay is 000

The first example shows both command substitution and variable evaluation at work; 

but have a look at the second example. Here, the shell evaluated a “variable” $1. It is 

not defined, so a null string was output. $1 belongs to a set of parameters that are called 

positional parameters (13.3), signifying the arguments that you pass to a script.

Whether you use double or single quotes depends on whether you want command substitu-
tion and variable evaluation to be enabled or not. Double quotes permit their interpretation, 
but single quotes don’t.

 6.11.2 Where to Use Shell Variables
Setting Pathnames If a pathname is used several times in a script, you should assign 

it to a variable. You can then use it as an argument to any command. Let’s use it with 

cd in this manner:

$ progs=’/home/romeo/c_progs’
$ cd $progs ; pwd
/home/romeo/c_progs

A shell script would generally contain this definition at the beginning, and then it could 

be used everywhere—both in the script and in other scripts run from that script. This 

assignment means less typing, but there’s another advantage. In a later reorganization, 

if the location of c_progs changes to, say, /export/home/romeo/c_progs, then you 

Note

das76205_Ch06_156-187.indd   180das76205_Ch06_156-187.indd   180 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 181

simply need to change the variable definition, and everything will work in the same 

way as before.

Using Command Substitution You can also use the feature of command substitu-

tion to set variables:

$ mydir=`pwd` ; echo $mydir
/home/romeo/c_progs

You can store the size of a file in a variable too:

size=`wc -c < foo.txt`

We used the < symbol to leave out the filename in the value assigned to size. If we had 

used foo.txt as an argument instead, then size would have contained a two-word string.

The UNIX system also uses a number of variables to control its behavior. There 

are variables that tell you the type of terminal you are using, the prompt string that 

you use, or the directory where incoming mail is kept. These variables are often called 

environment variables because they are available in all processes owned by a user. (The 

variable mydir or size is not.) A detailed discussion on the significance of the major 

environment variables will be taken up in Chapter 8.

 6.12 Shell Scripts

The shell offers the facility of storing a group of commands in a file and then executing 

the file. All such files are called shell scripts. You’ll also find people referring to them 

as shell programs and shell procedures. The instructions stored in these files are executed 

in the interpretive mode—much like the batch (.BAT) files of Windows.

The following shell script has a sequence of three commands stored in a file 

script.sh. You can create the file with vi or pico, but since this takes only three lines, 

you can use cat instead:

$ cat > script.sh
directory=`pwd` Beginning of standard input

echo The date today is `date`
echo The current directory is $directory
[Ctrl-d] End of standard input

$ _

The extension .sh is used only for the purpose of identification; it can have any exten-

sion or even none. Try executing the file containing these commands by simply invoking 

the filename:

$ script.sh
script.sh: execute permission denied

das76205_Ch06_156-187.indd   181das76205_Ch06_156-187.indd   181 12/13/11   10:44 AM12/13/11   10:44 AM



182 Your UNIX/Linux: The Ultimate Guide

Executable permission is usually necessary for any shell script to run, and by default, a 

file doesn’t have this permission on creation. Use chmod to first accord executable status 

to the file before executing it:

$ chmod u+x script.sh
$ script.sh
The date today is Thu Feb 17 11:30:53 EST 2000
The current directory is /home/romeo/project5

The script executes the three statements in sequence. Even though we used the shell as 

an interpreter, it is also a programming language. You can have all the standard con-

structs like if, while, and for in a shell script. The behavior of the UNIX system is 

controlled by many preinstalled shell scripts that are executed during system startup and 

those written by the system administrator. We explore shell programming in Chapter 13.

 6.13 The Shell’s Treatment of the Command Line

Now that you have seen the major interpretive features of the shell, it’s time we made a 

summary of these activities. After the command line is terminated by hitting the [Enter] 

key, the shell goes ahead with processing the command line in one or more passes. The 

sequence varies with the shell you use, but broadly assumes the following order:

 • Parsing The shell first breaks up the command line into words using spaces and 

tabs as delimiters, unless quoted. All consecutive occurrences of a space or tab are 

replaced here with a single space.

 • Variable evaluation All words preceded by a $ are evaluated as variables, unless 

quoted or escaped.

 • Command substitution Any command surrounded by backquotes is executed 

by the shell, which then replaces the standard output of the command in the com-

mand line.

 • Redirection The shell then looks for the characters >, <, and >> to open the files 

they point to.

 • Wild-card interpretation The shell finally scans the command line for wild cards 

(the characters *, ?, [ and ]). Any word containing a wild card is replaced with 

a sorted list of filenames that match the pattern. The list of these filenames then 

forms the arguments to the command.

 • PATH evaluation The shell finally looks for the PATH variable to determine the 

sequence of directories it has to search in order to hunt for the command.

The preceding sequence can be considered a simplistic treatment of the shell’s behavioral 

pattern. There are many more characters that the shell looks for that have been ignored 

here. And the shell itself can be viewed from different perspectives. Chapter 7 examines 

the process of the shell. Later chapters describe the shell’s environment (Chapter 8) and 

its programming features (Chapter 13).

das76205_Ch06_156-187.indd   182das76205_Ch06_156-187.indd   182 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 183

G
O

IN
G

 FU
R

T
H

E
R

BASH Shell

 ➤ G O I N G  F U R T H E R

 6.14 More Wild Cards

Matching Totally Dissimilar Patterns This feature, not available in the Bourne 

shell, enables us to match totally dissimilar patterns. How does one copy all the C and 

Java source programs from another directory? Delimit the patterns with a comma, and 

then put curly braces around them (no spaces please!):

cp $HOME/prog_sources/*.{c,java} . Won’t work in Bourne shell

This works in the Korn, Bash and C shells. The Bourne shell would require two sepa-

rate invocations of cp to do this job. Using the curly brace form, you can also access 

multiple directories:

cp /home/romeo/{project,html,scripts}/* . Won’t work in Bourne shell

This copies all files from three directories (project, html, and scripts) to the current 

directory. Isn’t this convenient?

The Invert Selection Feature If you have used Windows Explorer, you would no 

doubt have used the Invert Selection feature. This option reverses the selection you make 

with your mouse and highlights the rest. Bash and Korn also provide a similar feature 

of matching all filenames except those in the expression. For instance, this expression

!(*.exe) All files without .exe extension

matches all except the .exe files. If you want to include multiple expressions in the 

exception list, then use the | as the delimiter:

cp !(*.jpg|*.jpeg|*.gif) ../text

This copies all except the graphic files in GIF or JPEG format to the text directory. Note 

that the parentheses and | can be used to group filenames only if the ! precedes the group.

The exclusion feature won’t work in Bash unless you make the setting 

shopt -s extglob. Even if you don’t understand what this means, simply place 

this statement in .bash_profile or .profile, whichever is your startup file (8.9.1).

 6.15 xargs: Building a Dynamic Command Line

Sometimes, the filenames used by commands can be determined only at runtime. UNIX 

provides a real dark horse—the xargs command—that can run any command but obtains 
the file list from standard input. This feature is often used to handle the problem cre-

ated by find’s -exec operator. If find produces a list of 200 files for removal with 

-exec rm {} \;, the rm command has to be executed 200 times.

das76205_Ch06_156-187.indd   183das76205_Ch06_156-187.indd   183 12/13/11   10:44 AM12/13/11   10:44 AM



184 Your UNIX/Linux: The Ultimate Guide

G
O

IN
G

 F
U

R
T

H
E
R

xargs comes to our rescue here as it lets rm (or, for that matter, any UNIX com-

mand) be used just once with 200 filenames as arguments. The following command lines 

do the same thing except that the second one does it much faster:

find /usr/preserve -mtime +30 -exec rm -f {} \;
find /usr/preserve -mtime +30 -print | xargs rm -f

xargs here obtains the file list from find and supplies a single set of arguments to rm. 

So even if find selects 30 files, rm is executed only once. You could say that command 

substitution can also do the same job, but xargs has other advantages.

Commands usually have limits on the number of arguments they can handle. xargs 

uses the -n option to provide the specified number of arguments for a single invocation 

of the command:

find / -name core -size +1024 -print | xargs -n20 rm -f

If find locates 100 files, rm will be invoked five times—each time with 20 filenames 

as arguments. A useful tool indeed!

S U M M A R Y

The shell is a program that runs when a user logs in and terminates when she logs out. 

It scans the command line for metacharacters and rebuilds it before turning it over to 

the kernel for execution. The shell may or may not wait for the command to terminate.

The shell matches filenames with wild cards. It can match any number of any 

characters (*) or a single one (?). It can also match a character class ([ ]) and negate 

a match ([!]). The * doesn’t match a filename beginning with a dot.

A wild card is escaped with a \ to be treated literally, and if there are a number 

of them, then they should be quoted. Single quotes protect all special characters, while 

double quotes enable command substitution and variable evaluation.

Files are accessed with small integers called file descriptors. The shell makes 

available three files representing standard input, standard output, and standard error to 

every command that it runs. It manipulates the default source and destination of these 

streams by assigning them to disk files.

The file /dev/null never grows in size, and every user can access her own ter-

minal as /dev/tty.

Pipes connect the standard output of one command to the standard input of another. 

Commands using standard output and standard input are called filters. A combination 

of filters placed in pipelines can be used to perform complex tasks that the commands 

can’t perform individually.

The external tee command duplicates its input. It saves one to a file and writes 

the other to the standard output.

Command substitution enables a command’s standard output to become the argu-

ments of another command.

The shell supports variables, which are evaluated by prefixing a $ to the vari-

able name. The variables that control the workings of the UNIX system are known as 

environment variables.

das76205_Ch06_156-187.indd   184das76205_Ch06_156-187.indd   184 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 185

The shell is also a scripting language, and a group of commands can be placed in 

a shell script to be run in a batch.

S E L F - T E S T

6.1 Why does the shell need to expand wild cards? How does it treat the * when 

used as an argument to a command (like echo *)?

6.2 What is the significance of the command ls *.*? Does it match filenames that 

begin with a dot?

6.3 How do you remove only the hidden files of your directory? Does rm * remove 

these files as well?

6.4 Match the filenames chapa, chapb, chapc, chapx, chapy, and chapz with a 

wild-card expression.

6.5 Is the wild-card expression [3-h]* valid?

6.6 Devise a command that copies all files named chap01, chap02, chap03, and 

so forth through chap26 to the parent directory. Can a single wild-card pattern 

match them all?

6.7 Frame wild-card patterns (i) where the last character is not numeric, (ii) that have 

at least four characters.

6.8 When will cd * work?

6.9 Which UNIX command uses wild cards as part of its syntax?

6.10 How do you split a long command sequence into multiple lines?

6.11 Name the three sources and destinations of standard input and standard output.

6.12 Is the output of the command cat foo1 foo2 >/dev/tty directed to the stan-

dard output?

6.13 Is this a legitimate command, and what does it appear to do? >foo <bar bc
6.14 How do you save your entire home directory structure, including the hidden files, 

in a separate file?

6.15 What is the file /dev/null used for?

6.16 The commands cat and wc, when used without arguments, don’t seem to do 

anything. What does that indicate, and how do you return the shell prompt?

6.17 How do you create a filename containing just one space character? How can you 

“see” the space in the ls output?

6.18 How do you find out the number of (i) users logged in, (ii) directories in your 

home directory tree?

6.19 Enter the commands echo “$SHELL” and echo ‘$SHELL’. What difference do 

you notice?

6.20 Command substitution requires the command to use (i) standard input, (ii) stan-

dard output, (iii) both, (iv) none of these.

6.21 Attempt the variable assignment x = 10 (space on both sides of the =). Does it 

work if you are not using the C shell?

6.22 To append .c to a variable x, you have to use the expression (i) $x.c, (ii) $x”.c”, 

(iii) ${x}.c, (iv) any of these, (v) only the first two.

das76205_Ch06_156-187.indd   185das76205_Ch06_156-187.indd   185 12/13/11   10:44 AM12/13/11   10:44 AM



186 Your UNIX/Linux: The Ultimate Guide

E X E R C I S E S

6.1 What happens when you use (i) cat > foo  if foo  contains data, 

(ii) who >> foo if foo doesn’t exist, (iii) cat foo > foo, (iv) echo 1> foo?

6.2 What does the shell do with the metacharacters it finds in the command line? 

When is the command finally executed?

6.3 Devise wild-card patterns to match the following filenames: (i) foo1, foo2, 

and Foo5, (ii) quit.c, quit.o, and quit.h, (iii) watch.htm, watch.HTML, and 

Watch.html, (iv) all filenames that begin with a dot and end with .swp.

6.4 Explain what the commands ls .* and ls *. display. Does it make any differ-

ence if the -d option is added?

6.5 How do you remove from the current directory all ordinary files that (i) are hid-

den, (ii) begin and end with #, (iii) have numerals as the first three characters, 

(iv) have single-character extensions? Will the commands work in all shells?

6.6 Devise wild-card patterns to match all filenames comprising at least three 

characters (i) where the first character is numeric and the last character is not 

alphabetic, (ii) not beginning with a dot, (iii) containing 2004 as an embedded 

string except at the beginning or end.

6.7 Explain what these wild-card patterns match: (i) [A-z]????*, (ii) *[0-9]*, 

(iii) *[!0-9], (iv) *.[!s][!h].

6.8 A directory bar contains a number of files, including one named -foo. How do 

you remove the file?

6.9 You have a file named * and a directory named My Documents in the current 

directory. How do you remove them with a single command using (i) escaping, 

(ii) quoting?

6.10 Explain the significance of single- and double-quoting, including when one is 

preferred to the other. What are the two consequences of using double quotes?

6.11 When will wc < chap0[1-5] work? How can you remove chap0[1-5] if you 

have a file of that name?

6.12 Explain why the error message is seen at the terminal in spite of having used the 

2> symbol:

$ cat < foo 2>bar 
ksh: cannot open foo: No such file or directory

6.13 How do the commands wc foo and wc < foo differ? Who opens the file in each 

case?

6.14 You want to concatenate two files, foo1 and foo2, but also insert some text after 

foo1 and before foo2 from the terminal. How will you do this?

6.15 Execute the command ls > newlist. What interesting observation can you 

make from the contents of newlist?

6.16 How will you add the tags <html> and </html> to the beginning and end, re-

spectively, of foo.html?

6.17 What are file descriptors? Why is 2> used as the redirection symbol for standard 

error?

das76205_Ch06_156-187.indd   186das76205_Ch06_156-187.indd   186 12/13/11   10:44 AM12/13/11   10:44 AM



Chapter 6: The Shell 187

6.18 Create a file foo with the statement echo “File not found” in it. Explain two 

ways of providing redirection to this statement so that the message comes to the 

terminal even if you run foo > /dev/null.

6.19 How do the programs prog1, prog2 and prog3 need to handle their standard 

files so they can work like this: prog1 | prog2 | prog3.

6.20 Use command substitution to print the (i) calendar of the current month, 

(ii) listing of a group of filenames stored in a file.

6.21 Explain the behavior of this command:

 echo ‘`find $HOME -type d -print | wc -l`’ > list. How do you 

modify it to work correctly?

6.22 When will the command cd `find . -type l -name scripts -print` 

work? If it does, what do pwd and /bin/pwd display?

6.23 What is a filter? For the statement `foo` to work, does foo have to be a filter?

6.24 Look up the tar and gzip documentation to find out how a group of files can 

be archived and compressed without creating an intermediate file.

6.25 How will you store in a variable count (i) the total size of all C source files (.c), 

(ii) the total number of lines in a file?

6.26 Interpret these statements and the message displayed (if any): (i) $x=5, 

(ii) directory=’pwd’=`pwd`.

6.27 A file foo contains a list of filenames. Devise a single statement, with suitable 

explanation, that stores in a variable count the total character count of the con-

tents of these files. (HINT: Both command substitution and cat have to be used 

twice.)

das76205_Ch06_156-187.indd   187das76205_Ch06_156-187.indd   187 12/13/11   10:44 AM12/13/11   10:44 AM



188

7 
C H A P T E R  7

The Process

Everything, they say, in UNIX is a file. In this chapter, we look at some of 

these files as originators of processes. A process is a UNIX abstraction that 

enables us to look at files and programs in another way. A file is treated as a simple file 

when it lies in a dormant state on disk. It can also be understood as a process when it is 

executed. Like living organisms, processes are born; they give birth to other processes 

and also die. Processes make things “happen” in UNIX.

Since UNIX is multitasking, hundreds or even thousands of processes can run on 

a large system. Processes belong to the domain of the kernel, which is responsible for 

their management. In this chapter, we’ll examine the process attributes and understand 

the process creation mechanism. We’ll learn to control these processes by moving them 

between foreground and background and killing them when they get out of control. We’ll 

also examine the process scheduling facilities offered by UNIX.

  Objectives
 • Learn the kernel’s role in process management.

 • Understand the similarities between files and processes.

 • View process attributes with ps.

 • Learn how a process is created using fork, exec, and wait.
 • Understand the significance of the () and {} operators in running a command group.

 • Know how the export statement affects the inheritance mechanism.

 • Get introduced to signals and to using kill with specific signals.

 • Run a job in the background with & and prevent its termination with nohup.

 • Use the job control commands to switch control from one job to another.

 • Schedule jobs for one-time execution with at and batch.

 • Use the cron scheduler and examine the crontab file to schedule jobs to run 

periodically.

 7.1 Process Basics

A process is simply an instance of a running program. It is said to be born when the 

program starts execution and remains alive as long as the program is active. After execu-

tion is complete, the process is said to die. A process also has a name, usually the name 

of the program being executed. For example, when you execute the grep command, 

das76205_Ch07_188-212.indd   188das76205_Ch07_188-212.indd   188 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 189

a process named grep is created. Most UNIX commands that we execute actually run 

as processes; very few don’t.

Even though a process originates from a program, a process can’t be considered syn-

onymous with a program. There are a number of ways that the two can differ. First, when 

two users run the same program, there’s one program on disk but two processes in memory. 

Second, when you execute a shell script (also a program) containing a pipeline of three 

commands, you have three processes. Finally, a program can itself split into two or more 

processes while it is running; that’s how processes are created anyway, as you’ll learn later.

The shell serves the user, but the kernel handles processes. It manages memory 

and schedules processes so that each process has a fair share of the CPU and other 

resources. It provides a mechanism by which a process is able to execute for a finite 

period of time and then relinquish control to another process. The kernel has to save the 

state of the current process (like the instruction it was currently executing) so that when 

its turn comes up again for execution, the kernel knows where to resume. All of this 

happens more than once a second, making the user oblivious to the switching process.

Files and processes have a few things in common. A process is always created by 

another process, so except for the first process, every process has a parent. Processes 

also are arranged in a hierarchical structure with the first process occupying the top. It’s 

like the root directory of the file system. Just as a directory can have multiple filenames 

in it, the multitasking nature of UNIX permits a process to have multiple children.

Files have attributes and so do processes. Most process attributes are stored in 

the process table, a separate structure maintained in memory by the kernel. You could 

say that the process table is the inode for processes. A process retains an entry in this 

table until it dies “properly.” Because the table is of finite size, there is a limit to the 

maximum number of processes that can run on a system. We’ll have to understand what 

“proper” death actually means.

Most process attributes are inherited by the child from its parent, and we discuss 

these attributes in Section 7.6. However, there are some attributes that are not inherited 

and are allocated by the kernel when a process is born:

 • The Process-id (PID) Each process is identified by a unique integer called the 

Process-id (PID). We need the PID to control a process, for instance, to kill it. The 

first process has the PID 0.

 • The Parent PID (PPID) The PID of the parent is also available in the process 

table. When several processes have the same PPID, it often makes sense to kill the 

parent rather than all of its children separately.

Things do go wrong at times. A process may go berserk and multiply rapidly, bring-

ing the system to a complete standstill. However, UNIX provides us with the tools to 

understand the process hierarchy and control processes.

 7.2 The Shell and init

When you log in, the process representing the shell starts running at your terminal. This 

process may be sh, ksh, csh, or bash. The shell maintains a set of environment variables, 

and you have already encountered some of them like PATH and HOME. The shell’s own 

das76205_Ch07_188-212.indd   189das76205_Ch07_188-212.indd   189 12/13/11   10:45 AM12/13/11   10:45 AM



190 Your UNIX/Linux: The Ultimate Guide

pathname is stored in SHELL, but its PID is stored in a special “variable”, $$. To know 

the PID of your current shell, type

$ echo $$ The PID of the current shell

1078

The PID of your login shell obviously can’t change as long as you are logged in. When 

you log out and log in again, your login shell will be assigned a different PID. Knowledge 

of the PID is often necessary to control the activities at your terminal, especially when 

things go wrong.

The PPID of every login shell is always 1. This is the init process: the second 

process of the system. init is a very important process and, apart from being the par-

ent of users’ shells, it is also responsible for giving birth to every service that’s running 

in the system—like printing, mail, Web, and so on. We’ll examine init in Section 7.4 

and also in Chapter 19.

Commands like cat and ls run as separate processes. The shell executes a shell script by cre-
ating an extra shell process that runs each of the commands in the script. However, built-in 
commands of the shell like echo, pwd and cd don’t create a process at all. In an aside entitled 
“How cd Works” near Section 7.7, you’ll learn why cd can’t work in a separate process.

 7.3 ps: Displaying Process Attributes

Let’s now use the ps (process status) command to display some process attributes. ps 

fetches these attributes from the process table. Compare this to ls, which looks up the 

inode to retrieve a file’s attributes. By default, ps displays the processes owned by the 

user invoking the command:

$ ps
   PID TTY TIME CMD
  1078 pts/4 0:00 bash The login shell of this user

Your login shell is bash (CMD) and has the PID 1078, the same number echoed by the 

special variable, $$. It is running at the terminal /dev/pts/4 (TTY). The cumulative 

processor time (TIME) that has been consumed since the process started is negligible. 

That is to be expected because the shell is mostly sleeping—waiting for a command 

to be entered and waiting for it to finish. This process has a controlling terminal, but 

you’ll come across a group of processes that don’t have one. You’ll then know what a 

controlling terminal is.

ps presents a snapshot of the process table. This picture gets outdated by the 

time it is displayed. On some systems, you might see ps itself in the output. ps is a 

highly variant command; its actual output varies across different UNIX flavors. BSD 

and System V are at war here: there are hardly any options common to both systems 

(Table 7.1). Solaris uses the System V version while Linux accepts both options. The 

POSIX specification closely resembles the System V options.

Note

das76205_Ch07_188-212.indd   190das76205_Ch07_188-212.indd   190 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 191

T A B L E  7 . 1  Options to ps

POSIX Option BSD Option Significance

-f f Full listing showing the PPID of each process

-e or -A aux All processes including user and system processes

-u usr U usr Processes of user usr only

-a - Processes of all users excluding processes not associated 

with terminal

-l l Long listing showing memory-related information

-t term t term Processes running on terminal term (say, /dev/console)

-j j Displays PGID also

Displaying the PPID (-f) Since knowing the parentage is often important, the -f 

option displays a fuller listing that includes the PPID:

$ ps -f
 UID PID PPID C STIME TTY TIME CMD
 sumit 1081 1078 0 19:03:39 pts/4 0:00 vi create_user.sh
 sumit 1082 1081 0 19:03:41 pts/4 0:00 /usr/bin/bash -i
 sumit 1078 1 0 19:01:53 pts/4 0:00 -bash

Apart from the vi editor, there are two shells running here, and the -f option easily 

identifies a login shell by the hyphen preceding the command name. Note that init is 

the parent of the login shell (PID 1078, PPID 1). Here, we have an unusual hierarchy. 

The vi process is the child of the login shell, and the second shell is the child of vi. 

How did that happen? Remember that we can escape to the shell using :sh (5.4.5)?

We’ll ignore the C header for the time being. STIME shows the time the process 

started. CMD this time displays the full command line, an advantage when you don’t 

remember the exact options you have used. But others can easily know the name of the 

file you are working on, and sometimes you don’t want that to happen.

Other Options ps -u followed by a user-id displays the processes owned by the 

user-id. The -a option displays processes run by all users, irrespective of their owner-

ship. We’ll discuss two important options (-e and -l) after we have studied the process 

creation mechanism.

 7.4 System Processes and init

Even though no one may be using the system, a number of system processes keep running 

all the time. They are spawned during system startup by init (PID 1), the parent of the login 

shell. The ps -e command lists them all, and Fig. 7.1 shows a trimmed and annotated list.

System processes that have no controlling terminal are easily identified by the ? 

in the TTY column. A process that is disassociated from the terminal can neither write 

to the terminal nor read from it. You can’t press [Ctrl-c] to interrupt the process either. 

das76205_Ch07_188-212.indd   191das76205_Ch07_188-212.indd   191 12/13/11   10:45 AM12/13/11   10:45 AM



192 Your UNIX/Linux: The Ultimate Guide

$ ps -e
 PID TTY TIME CMD
 0 ? 0:01 sched Takes care of swapping

 1 ? 0:00 init Parent of all shells

 2 ? 0:00 pageout Part of the kernel—not exec’d

 3 ? 4:36 fsflush Part of the kernel—not exec’d

 194 ? 0:00 syslogd Logs all system messages

 170 ? 0:00 inetd Server side of FTP and TELNET

 231 ? 0:00 lpsched The printer daemon

 200 ? 0:00 cron Schedules your jobs

 247 ? 0:00 sendmail Handles your mail

 2931 ? 0:00 in.telne Serves your TELNET requests

 292 ? 0:00 dtlogin
 1436 ? 0:00 in.rlogi Serves your RLOGIN requests

 3054 pts/2 0:00 bash
 3006 ? 0:01 dtwm Handles windows on X Window

 2908 pts/4 0:00 vi
 2993 pts/6 0:00 bash

F I G U R E  7 . 1  The ps -e Output on Solaris

Linux

Such processes are also known as daemons. Many of these daemons are actually sleep-

ing (a process state) and wake up only when they receive input.

Daemons do important work for the system. The lpsched daemon controls all print-

ing activity. sendmail handles both your incoming and outgoing mail. Your TCP/IP network 

won’t run FTP and TELNET without the inetd daemon. cron looks at its control file once 

a minute to decide what it should do. You’ll learn about some of these daemons and other 

system processes in subsequent chapters. We’ll consider the cron daemon in this chapter.

Linux uses the BSD version of the ps command, which has notable differences with its 

System V counterpart. ps in Linux supports three types of options—the BSD options 

that don’t use a dash, the POSIX options that use a single dash, and the GNU-style 

options that use -- (two hyphens). We’ll consider the Red Hat Linux implementation 

of the BSD options in this discussion.

Displaying Process Ancestry (ps f) Locating ancestry by matching PIDs and 

PPIDs can be a grueling affair; a visual representation of the process tree is what 

Linux ps offers with the f option. Here’s a section of the output obtained by using 

the U option also:

$ ps f U sumit
 PID TTY STAT TIME COMMAND
 936 pts/0 S 0:00 \_ /bin/bash
 14833 pts/0 S 0:00 |   \_ vim yrunix07

das76205_Ch07_188-212.indd   192das76205_Ch07_188-212.indd   192 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 193

 938 pts/2 S 0:00 \_ /bin/bash
 14835 pts/2 R 0:00 |   \_ ps f -u sumit
   945 pts/4 S 0:00 \_ /bin/bash
 14831 pts/4 S 0:00 \_ rlogin arka
 1047 ? S 22:08 /usr/lib/mozilla-1.0.1/mozilla-bin
 14579 ? S 0:22 |   |   \_ /usr/lib/acroread/Reader/intellinux/bin/a

System Processes (ps ax) A typical Linux system shows a host of system pro-

cesses, but Linux uses the ax option to display them. Here’s a vastly censored display:

$ ps ax
  PID TTY STAT TIME COMMAND
    1 ? S 0:14 init Parent of login shell

    2 ? SW 0:00 (kflushd)
    3 ? SW 0:00 (kpiod)
    4 ? SW 0:02 (kswapd)
    5 ? SW 0:00 (mdrecoveryd)
  115  ?   S 0:00 inetd Internet daemon

  125  ?   S 0:00 sshd Secure shell server

  133  ?   SW 0:00 lpd Printer daemon

  146  ?   SW 0:00 squid -D Proxy server

  148  ?   S 0:00 sendmail: accepting connections on port 25 Mail server

  160  6   SW 0:00 /sbin/mingetty tty6 Process at the terminal

  161  ?   S 0:00 crond System’s chronograph

  162  ?   S 0:03 httpd Web server

By default, Linux comes preconfigured with a number of network services, and the 

ax option should show them all. If users are unable to connect using the secure shell, 

the administrator has to check whether sshd is running. If they can’t print their files, 

the status of lpd needs to be checked.

Full Listing (ps u) The ps u command approximates to ps -l (discussed in 

Section 7.8.1) of POSIX. The output, however, displays a number of new columns:

$ ps u
USER    PID %CPU %MEM  SIZE   RSS TTY STAT START   TIME COMMAND
sumit    192  0.0  3.5  1892  1088   1  S      20:55 0:00 -bash
sumit    216  0.0  1.9  1576    600   5  S      20:59 0:00 sh /usr/X11R6/bin/sta
sumit    237  0.0  2.9  1908    904   5  S      20:59 0:01 fvwm95
sumit    321  0.0  4.1  1904  1260   1  S      21:02 0:03 vi +12 /home/sumit/pr
sumit  3708  0.1     28.4 20732    8728   4  S      09:17 0:04 /opt/netscape/netscap

The percentage CPU and memory usage of each command are shown under %CPU 

and %MEM, respectively. Here, the Web browser netscape has taken up more than 

a quarter of the memory space. If you find degradation in your system’s performance, 

this option will help you locate the possible culprits. The amount of space the program 

occupies in memory (in kilobytes) is shown under SIZE and RSS.

das76205_Ch07_188-212.indd   193das76205_Ch07_188-212.indd   193 12/13/11   10:45 AM12/13/11   10:45 AM



194 Your UNIX/Linux: The Ultimate Guide

The top Command Apart from ps, the top command also shows CPU usage in a 

more humanly readable form. This command also shows ps-like output, but its first 

five lines make most interesting reading:

11:14am  up  3:31,  6 users,  load average: 0.00, 0.00, 0.00
57 processes: 55 sleeping, 1 running, 1 zombie, 0 stopped
CPU states:  0.3% user,  0.9% system,  0.0% nice, 98.8% idle
Mem:   30628K av,  29092K used,   1536K free,  17144K shrd,   1376K buff
Swap:  40088K av,   9868K used,  30220K free                 10636K cached

There’s a whole lot of information here: the free and used memory of the system and 

the state of the CPU. Most of the memory is used up (1536K out of 30,628K avail-

able), but the CPU is idling 98.8 percent of the time. This is a very useful command 

for the system administrator.

 7.5 The Process Creation Mechanism

How is a process created? Knowledge of the process creation cycle will enable you to 

write and debug shell scripts and programs that create processes (Chapter 18). A pro-

cess can only be created by another process, and the creation mechanism involves three 

phases. We call them fork, exec, and wait, mostly named after system calls of the same 

name. The three phases work as follows:

 • Fork Forking creates a process by creating a copy of the existing process. The 

new process has a different PID, and the process that created it becomes its parent. 

Otherwise, parent and child have the same process image. If the child doesn’t do 

an exec, both parent and child continue to execute the same code from the point 

forking was invoked.

 • Exec Forking creates a process, but it is not enough to run a new program. To 

do that, the forked child needs to overwrite its own image with the code and data 

of the new program. This mechanism is called exec, and the child process is said 

to exec a new program. No new process is created here; the PID and PPID of the 

exec’d process remain unchanged.

 • Wait While the child is executing a new program, the parent normally waits 

for the child to die. It then picks up the exit status of the child (explained shortly) 

before it does something else.

To use an example, when you run cat from the shell, the shell first forks another shell 

process. The newly forked shell then overlays itself with the executable image of cat, 

which then starts to run. The parent (the original shell) waits for cat to terminate and 

then picks up the exit status of the child. This is a number returned by the child to the 

kernel, and has great significance in both shell programming and systems programming. 

In Chapter 18, we’ll use this three-step mechanism to actually create processes and also 

to implement redirection and piping.

das76205_Ch07_188-212.indd   194das76205_Ch07_188-212.indd   194 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 195

The names fork, exec, and wait are derived from the system calls that perform these functions. 
There’s no exec system call as such; we use the term to refer to a group of six functions that 
perform the exec operation. One of them is a system call; the other five are library functions. 
These system calls are discussed in Chapter 18.

 7.6 Inherited Process Attributes

When a process is forked and exec’d, the new program has a different PID and PPID 

than its parent. However, it inherits most of the environment of its parent. The important 

attributes that are inherited are:

 • The real UID and real GID of the process. These are attributes that we relate to 

a file, but here they represent the UID and GID of the user running the program 

(and not of the file that is executed). These parameters are stored in the entry for 

the user in /etc/passwd.

 • The effective UID and effective GID of the process. These are generally the same 

as their “real” cousins, but some processes behave differently. (See inset.)

 • The current directory from where the process was run. You must remember this 

to understand why you can’t create a process to change your current directory.

 • The descriptors of all files opened by the parent process. Recall that these are 

small integers that are used to identify opened files (6.5.3). Note that normally the 

kernel reserves the first three slots (0, 1, and 2) in the file descriptor table for the 

shell’s standard streams.

 • Environment variables (like HOME and PATH). Every process knows the user’s home 

directory and the path used by the shell to look for commands.

Inheritance here implies that the child has its own copy of these parameters and can 

thus alter the operating environment it has inherited. This also means that the modified 

environment is not available to the parent process.

Note

When Real UID Differs from Effective UID
Why does every process have two UIDs and two GIDs (real and effective) as shown in 

the list of inherited process attributes? Most programs we run have the real UID and GID 

the same as the effective UID and GID. Now consider the listing of these two programs:

$ ls -l /bin/cat /usr/bin/passwd
-rwxr-xr-x    1 root     root        14264 2002-09-10 18:43 /bin/cat
-rwsr-xr-x    1 root     shadow      68680 2002-09-11 00:43 /usr/bin/passwd

When romeo runs cat, the real and effective UIDs of the cat process are the 

same—romeo. As a nonprivileged user, romeo can’t use cat to open a file that is 

readable only by root.

Now notice the bit marked s in the permissions field of passwd. This bit, 

called the set-user-id (SUID), changes the normal ownership scheme. When romeo 

runs passwd, the real UID is still romeo, but the effective UID is root, the owner of 
the program. Because it’s the effective UID, not the real UID, that determines the 

access rights of the process, the passwd process run by romeo can open any file that 

is readable only by root. We have more to say about SUID in Chapters 18 and 19.

das76205_Ch07_188-212.indd   195das76205_Ch07_188-212.indd   195 12/13/11   10:45 AM12/13/11   10:45 AM



196 Your UNIX/Linux: The Ultimate Guide

 7.6.1 When Variables Are Inherited and When They Are Not
Environment variables like HOME and TERM are available to all processes. However, that 

may not be so with all user-defined variables. Let’s define one at the current shell prompt 

and then spawn a second shell:

$ x=5
$ bash Bash child shell

$ echo $x

$ _ x not visible here.

By default, a user-defined variable is not inherited by a child process. To make it vis-

ible to all child processes, we must use the shell’s export statement. Let’s return to the 

parent shell and then repeat the exercise, this time using export:

$ exit Exit child

$ x=5 ; export x Make assignment and export it

$ bash Spawn a child

$ echo $x
5 x visible in child

$ x=10 ; echo $x Now change the value in child

10
$ exit Quit to the parent shell

$ echo $x Is the change visible here?

5 No!

We can summarize our observations in this way:

 • A variable defined in a process is only local to the process and is not available in 

a child process.

 • When you export the variable, its value is available recursively to all child processes.

 • However, when the child alters the value of the variable, the change is not seen in 

the parent. This should not surprise us since the child works with its own copy of 

the environment.

When writing shell scripts that call other scripts, we need to use export in the calling 

script so an exported variable is available in the called script. export is widely used in 

the system’s startup files, and you’ll meet it again in Chapter 8.

How cd Works
How does the cd command work? Unlike pwd and echo, which exist both as external 

and internal commands of the shell, there’s no disk file called cd. In fact, you can’t 

create a program to change a directory. Why? Because the current directory is a 

process attribute that is inherited by the child (7.6).

das76205_Ch07_188-212.indd   196das76205_Ch07_188-212.indd   196 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 197

 7.7 When You Can’t Use a Separate Process

Apart from changing directories, there are other times when you just can’t use a process 

to do a job. Consider this sequence, which displays a message and then attempts to quit:

$ ( echo “You have not keyed in 3 arguments” ; exit )
You have not keyed in 3 arguments
$ _

The sequence meant to terminate the current shell, but it didn’t happen. Commands 

grouped within () are run in a sub-shell. An exit statement in a sub-shell terminates 

the sub-shell (which in any case will happen here) and thus doesn’t affect the parent. 

Now, repeat the exercise using the curly braces:

$ { echo “You have not keyed in 3 arguments” ; sleep 2 ; exit ; }
You have not keyed in 3 arguments
... After two seconds ...
login:

The message is clear: Commands grouped within {} are executed in the current shell. 

Here, the sequence used exit to terminate the login shell. In a shell script, it will ter-

minate the script. That’s what we’ll be doing often in Chapter 13. In Chapter 8, you’ll 

learn the use of the dot command, which executes a shell script but without using a 

separate process.

You can try changing a directory both using () and {}, and you’ll find that 

one form works but not the other:

$ pwd
/home/romeo
$ ( cd progs ; pwd ) cd in () changes directory 

/home/romeo/progs only in sub-shell

$ pwd
/home/romeo but not in parent shell

$ { cd progs ; pwd ; } But cd in {} changes directory 

/home/romeo/progs in the current shell .....

$ pwd and the directory change

/home/romeo/progs is also permanent

If you had to create a child process and then change the directory in the child, the 

change would only be seen in the child and not in the parent. It would then be 

impossible to change directories. That’s why a directory change must take place 

without creating a child.

das76205_Ch07_188-212.indd   197das76205_Ch07_188-212.indd   197 12/13/11   10:45 AM12/13/11   10:45 AM



198 Your UNIX/Linux: The Ultimate Guide

 7.8 Process States and Zombies

At any instant of time, a process is in a particular state. A process after creation is in 

the runnable state before it actually runs (state running). While the process is running, 

it may invoke a disk I/O operation. The process then has nothing to do except wait for 

the I/O to complete. The process then moves to the sleeping state to be woken up when 

the I/O operation is over. A process can also be suspended by pressing a key (usually, 

[Ctrl-z]). Processes whose parents don’t wait for their death move to the zombie state.

When a process dies, its parent picks up the child’s exit status (the reason for wait-

ing) from the process table and frees the process table entry. However, when the parent 

doesn’t wait (but is still alive), the child turns into a zombie. A zombie is a harmless 

dead child that reserves the process table slot. You can’t kill a zombie.

It’s also possible for the parent itself to die before the child dies. The child then 

becomes an orphan and the kernel makes init the parent of all orphans. When this 

adopted child dies, init waits for its death.

 7.8.1 ps -l: Detailed Process Listing
The ps -l command (ps aux in Linux) provides an informative listing of processes. 

Apart from the usual attributes that we are familiar with, the command also displays the 

state, priority, and size of the process in memory:

$ ps -l -u sumit
F S   UID   PID  PPID  C PRI NI     ADDR     SZ    WCHAN TTY      TIME CMD
8 S   102  1081  1078  0  51 20          ?    226          ? pts/4 0:00 vi
8 S   102  1101  1099  0  41 20          ?    297          ? pts/3 0:00 bash
8 T   102  1106  1101  0  49 20          ?    117             pts/3 0:03 find
8 T   102  1108  1106  0  48 20          ?    113             pts/3 0:00 rm
8 R   102  1082  1081  0  51 20          ?    297            pts/4 0:00 bash
8 S   102  1078  1076  0  51 20          ?    297          ? pts/4 0:00 bash

Observe the second column, which shows the process states as single-letter abbrevia-

tions. The list displays three process states (T, S, and R), but this Solaris system can 

display five possible states:

O  Running on the CPU.

S  Sleeping. Process is waiting for an event to take place.

R  Runnable. The process simply needs to be selected for running.

T  Suspended. User pressed [Ctrl-z].

Z  Zombie. Parent didn’t wait for the death of the child.

The ps output shows zombie processes as the string <defunct> in the last column. If 

too many zombie processes develop on a machine, a system reboot may be required to 

clear them.

UID indicates the owner of the process; this should be the user-id of the user 

running the ps command. Column PRI shows the process priority; a high value denotes 

low priority. SZ shows the size of the process in virtual memory. The unit of measure 

is a page, where a page is typically 8192 bytes.

das76205_Ch07_188-212.indd   198das76205_Ch07_188-212.indd   198 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 199

 7.9 Signal Handling

The UNIX system often needs to communicate the occurrence of an event to a process. 

This event could originate from the hardware (like a floating point exception), from the 

keyboard (like [Ctrl-c]), from a program, or from other sources. This communication 

is made by sending a signal to the process. The process can respond by doing one of 

these things:

 • Let the default action take place. Every signal is associated with a default action, 

which in most cases, terminates the process. But there are signals whose default 

action is to suspend the process or even be ignored.

 • Ignore the signal.

 • Trap the signal. The process “catches” the signal by invoking a signal handling func-

tion. This is a user-defined function if the process is associated with a C program, 

and the trap statement if it is a shell script. Your own function might still specify 

termination but may remove some temporary files before it does so.

Each signal, identified by a number, is designed to perform a specific function. The 

commonly used ones are shown in Table 7.2. Because the same signal number may 

represent two different signals on two different machines, signals are better represented 

by their symbolic names having the SIG prefix.

When you press the interrupt key, the SIGINT signal (number 2) is sent to the 

current foreground process. This kills the process if it is not designed to catch or ignore 

that signal. SIGQUIT directs a process to produce a core dump (a file named core in the 

current directory). Chapter 18 discusses how we can develop user-defined code to catch 

a signal. In this chapter, we are concerned with a signal’s default action only.

T A B L E  7 . 2  List of Commonly Used Signals

Signal Number Signal Name Function

Solaris Linux

1 1 SIGHUP Hangup—modem connection is broken; restarts 

a daemon

2 2 SIGINT Terminal interrupt—user hits interrupt key

3 3 SIGQUIT Quit from terminal—process produces a core 

dump file

9 9 SIGKILL Surest kill—can’t be trapped

15 15 SIGTERM Default termination signal used by kill command

24 20 SIGTSTP Suspends process—user hits [Ctrl-z]

18 17 SIGCHLD Child terminates—kernel sends signal to parent

26 21 SIGTTIN Suspends process—background process attempts 

to read from terminal

27 22 SIGTTOU Suspends process—background process attempts 

to write to terminal (with stty tostop)

das76205_Ch07_188-212.indd   199das76205_Ch07_188-212.indd   199 12/13/11   10:45 AM12/13/11   10:45 AM



200 Your UNIX/Linux: The Ultimate Guide

Irrespective of what you do, there are two signals that a process can’t ignore or run 

user-defined code to handle: SIGKILL and SIGSTOP. The SIGKILL signal must terminate 

a process, and SIGSTOP must suspend one. We’ll now learn to use the kill command 

to send specific signals to processes.

 7.9.1 kill: Premature Termination of a Process
The kill command sends a signal usually with the intention of killing the process. kill 

is an internal command in most shells; the external /bin/kill is executed only when 

the shell lacks the kill capability. The command uses one or more PIDs as its arguments, 

and by default uses the SIGTERM (15) signal. Thus,

kill 105 It’s like using kill -s TERM 105

terminates the job having PID 105. To facilitate premature termination, the & operator 

(7.10.1) displays the PID of the process that’s run in the background. If you don’t re-

member the PID, use the ps command to find out and then use kill.

If you run more than one job—either in the background or in different windows in 

the X Window system—you can kill them all with a single kill statement. Just specify 

all of their PIDs with kill:

kill 121 122 125 132 138 144

If all of these processes have the same parent, you may simply kill the parent to kill all 

its children. However, when you use nohup (7.10.2) with a set of commands and log 

out, you can’t kill the parent as init acquires their parentage. You then have to kill the 

processes individually because you can’t kill init.

As with files, you own those processes spawned by commands you execute. It’s natural that 
you can kill only those processes that you own and that you can’t kill processes of other users. 
Moreover, certain system processes having the PIDs 0, 1, 2, 3, and 4 simply can’t be killed in 
this manner.

Using kill with Other Signals By default, kill uses the SIGTERM signal to terminate 

the process. You may have noticed that some programs simply ignore this signal and 

continue execution normally. In that case, the process can be killed with the SIGKILL 

signal (9). This signal can’t be generated at the press of a key, so you must use kill 

with the signal name (without the SIG):

kill -s KILL 121 Recommended way of using kill

kill -9 121 Same as above but not recommended

A simple kill command (with TERM) won’t kill the login shell. You can kill your login 

shell by using any of these commands:

kill -9 $$ $$ stores PID of current shell

kill -s KILL 0 Kills all processes, including the login shell

Note

das76205_Ch07_188-212.indd   200das76205_Ch07_188-212.indd   200 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 201

If your shell supports job control (as most shells do), you can use kill with a slightly 

different syntax to terminate a job. We’ll be discussing job control in Section 7.11.

To view the list of all signal names and numbers that are available on your machine, use the 
command kill -l (list) or view the file /usr/include/sys/signal.h.

At first, kill was used only to terminate a process. Today, with so many signals available, the 
name “kill” has become a misnomer: not all signals kill a process. In Chapter 18, we’ll examine 
the kill system call to learn that kill can also suspend a job or even direct a suspended job 
to continue!

 7.10 Running Jobs in Background

We now turn our attention to jobs and job control. All shells understand a job as a 

group of processes. The pipeline ls | wc is a job comprising two processes. We can 

manipulate a job in shell-independent and shell-dependent ways. This section dwells on 

the former, and Section 7.11 discusses the latter.

UNIX is a multitasking system that allows a user to run more than one job at a 

time. This feature works in all shells, allowing us to relegate time-consuming or low-

priority jobs to the background and to run an important one in the foreground. There 

are two ways of running jobs in the background—with the shell’s & operator and the 

nohup command.

 7.10.1 &: No Logging Out
The & is the shell’s operator used to run a process in the background. The parent in this 

case doesn’t wait for the child’s death. Just terminate the command line with an &; the 

command will run in the background:

$ sort -o emp.lst emp.lst &
550 The job’s PID

$ _ Shell doesn’t wait; prompt returns

The shell immediately returns the PID of the invoked command (550) and then the 

prompt. This means that the shell doesn’t wait for the death of sort (though it will 

eventually pick up its exit status). You can now enter your next command, and using an 

& with each, you can run as many jobs in the background as the system load permits.

Generally, the standard output and standard error of a background job are con-

nected to the terminal. Unless you redirect them properly, they’ll get mixed up with the 

output of other jobs. However, a background job can’t read from the terminal. If it tries 

to do so in the Bourne shell, the job is terminated. In other shells, the job is suspended. 

We’ll have more to say about handling the standard streams when we take up job control.

Because UNIX can’t prevent users from running multiple jobs, you would do 

a disservice to your peers if you didn’t exercise discipline when using the &. It’s also 

important that you don’t idle after using &; otherwise, it makes no sense to have run a 

job in the background in the first place.

Tip

Note

das76205_Ch07_188-212.indd   201das76205_Ch07_188-212.indd   201 12/13/11   10:45 AM12/13/11   10:45 AM



202 Your UNIX/Linux: The Ultimate Guide

BASH Shell

C Shell

For most shells, the system variable $! stores the PID of the last background job. So you can 
kill the last background process using kill $!.

 7.10.2 nohup: Log Out Safely
When a command is run with nohup (no hangup), the process continues to run even after 

the user has logged out. This feature is not required in the Bash and C shells because 

background processes in these shells continue to run even after the user has logged out, 

but it is required for the Bourne and Korn shells. You must use the & with it as well:

$ nohup sort emp.lst &
586 PID of this job

Sending output to nohup.out

Some shells display this message. In the absence of redirection, nohup sends the stan-

dard output of the job to nohup.out. You can now safely log out of the system without 

aborting the command. If you are running the command from a window, then close the 

window. Log in again or run ps from another window or terminal to notice something 

quite significant:

$ ps -f -u romeo
    UID   PID  PPID  C    STIME TTY  TIME COMMAND
  sumit   586     1 45 14:52:09  01  0:13 sort emp.lst

The shell died on logging out but its child (sort) didn’t; it turned into an orphan. As 

discussed previously, all orphans are adopted by init, and this is what has happened 

here. When sort dies, init will perform the necessary “waiting” tasks that will eventu-

ally pick up the exit status from the process table.

Unlike the &, which needs to be affixed only to the end of the command line, nohup 

needs to be used with each command in a pipeline:

nohup grep ‘director’ emp.lst & | nohup sort &

Jobs are not aborted after the user has logged out even if they were run with & and 

without nohup. However, this is not the case with the Bourne and Korn shells. Moreover, 

the nohup command in the C shell doesn’t send the standard output of the command 

to nohup.out. It has to be separately redirected to a file.

 7.11 Job Control

Before we turn to job control, let’s understand process groups. Every process belongs to 

a process group (a Berkeley feature that lets you control a group of processes working 

for a common cause). Each process in the group has the same process group-id (PGID). 

Tip

das76205_Ch07_188-212.indd   202das76205_Ch07_188-212.indd   202 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 203

The C shell, Korn shell, and Bash support job control, where every job has a separate 

PGID. This allows manipulation of process groups separately. A signal sent to a process 

group reaches out to all members of the group.

Job control enables you to move jobs between foreground and background, sus-

pend, continue, and kill them. The commands used in job control are shown in Table 7.3. 

A job is identified by its job-id, which is different from the PID, the process identifier. 

However, a job can also be identified by other means, and job control commands can 

be used both with job-ids and other job identifiers as arguments.

For a quick tour, let’s run this find command and then use the job control com-

mands for manipulating it. We’ll initially run find in the background with standard 

output and standard error redirected suitably:

$ find / -name a.out -print > files_to_remove 2>/dev/null &
[1] 1287 Shows both job-id and PID

Note that both job number and PID are displayed; this shell supports job control. 

Subsequent job control commands can now access this job as %1. You can now use the 

fg command to bring this job to the foreground:

$ fg %1
find / -name a.out -print > files_to_remove 2>/dev/null

Apart from the %job_id form, there are other ways of accessing a job. At this point, you 

can now suspend this foreground job by pressing [Ctrl-z]:

[Ctrl-z]

[1]+  Stopped           find / -name a.out -print >files_to_remove 2>/dev/null

Observe that the job has not been terminated yet; it’s only suspended (“stopped”). [Ctrl-z] is 

stty’s suspend character (2.14.1) and should work if your default stty setting has not been 

disturbed. You can now use the bg command to push this suspended job to the background:

$ bg %1 
[1]+ find / -name a.out -print >files_to_remove 2>/dev/null &

T A B L E  7 . 3  Job Control Commands

Command Significance

fg Brings job to foreground
bg Moves job to background
suspend Suspends a job

[Ctrl-z] Suspends current foreground job
jobs Lists active jobs
kill Kills job

das76205_Ch07_188-212.indd   203das76205_Ch07_188-212.indd   203 12/13/11   10:45 AM12/13/11   10:45 AM



204 Your UNIX/Linux: The Ultimate Guide

The job starts running once again. Before we run the jobs command, let’s run a few 

more jobs in the background:

$ ls -lR / > system_list 2>/dev/list & 
[2] 1288
$ du -s /users1/* > disk_usage &
[3] 1289

The jobs command lists all jobs that are either running or suspended. The output shows 

that none of the three commands has completed execution:

$ jobs
[1]   Running        find / -name a.out -print >files_to_remove 2>/dev/null &
[2]-  Running        ls -lR / >system_list 2>/dev/list &
[3]+  Running        du -s /users1/* >disk_usage &

When a job completes, the shell notifies the user but makes sure that the message doesn’t 

get mixed up with the screen output associated with another job. The shell waits for the 

prompt to appear (after you hit [Enter]) and then issues a message:

[2]-  Exit 1                  ls -lR / >system_list 2>/dev/list

Job 2 has completed execution. You should get a similar message from each of the 

other jobs after you hit [Enter]. If you decide to change your mind, you can kill a job 

with the shell’s built-in kill command, which has a more flexible syntax compared to 

/bin/kill. You can also use a job number with kill:

$ kill %3
[3]+  Terminated              du -s /users1/* >disk_usage

You can use the notify setting of your shell to ensure that job completion is intimated im-
mediately and not at the next prompt. This is discussed in Section 8.8.

Apart from using job_ids, we can also access a job by a string that represents either the 

command name or an embedded string in the command line. These are the three ways 

you identify a job to the system:

%n Job number n
%stg Job name that begins with stg
%?stg Job name that contains an embedded stg

So, fg %find brings to the foreground a job whose name begins with find, while 

kill %?users1 kills the job that has the string users1 embedded in the command 

line (the du command line in the examples used previously).

Note

das76205_Ch07_188-212.indd   204das76205_Ch07_188-212.indd   204 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 205

Make sure that you don’t terminate your session after you have suspended a job. When you 
try to do so, the shell alerts you:

You have stopped jobs.

A second press of the logout sequence will ignore this message and actually log you out of the 
system. This could be dangerous. You may have suspended a vi session with a lot of work unsaved. 
Whenever you get such a message, you should use the jobs command to see how many suspended 
jobs you have, use fg to move each one to the foreground, and then terminate it gracefully.

 7.11.1 Handling Standard Input and Standard Output
In all of these examples, we redirected the standard output and standard error of the 

background jobs because they normally come to the terminal. However, in job control 

shells, you can use the stty tostop setting to ensure that a job is suspended the mo-

ment it tries to write to the terminal:

stty tostop

Now if you run a job that produces a single line of output, say, the command 

du -s /home &, the command will do all the necessary processing before the kernel 

suspends the job when it tries to write the summary information:

[1]+  Stopped                 du -s /home

This is a great convenience with those commands that perform a lot of processing but 

create only summary information. You can view this output any time using fg %1; the 

shell will save this output for you.

Background jobs, however, can’t accept input from the terminal. Try this by run-

ning vi in the background:

$ vi &
[2]+  Stopped                 vi

Whenever a background job tries to read its standard input from the terminal, the kernel 

sends a signal (Table 7.2) and suspends the process. You have no option but to bring the 

job to the foreground to allow data to be input from the keyboard.

If you have access to the superuser account that uses a job control shell, and need to constantly 
switch between privileged and nonprivileged modes, then you can use the suspend command 
in the superuser mode to suspend the root shell and return you to the normal shell:

# suspend
[1]+  Stopped                 su
$ _

You can return to the superuser mode by using any of the identifiers discussed previously 
(like %1, %su, etc.). Note that this won’t work if the superuser is using the Bourne shell.

Caution

Tip

das76205_Ch07_188-212.indd   205das76205_Ch07_188-212.indd   205 12/13/11   10:45 AM12/13/11   10:45 AM



206 Your UNIX/Linux: The Ultimate Guide

 7.12 at and batch: Execute Later

UNIX provides sophisticated facilities to schedule a job to run at a specified time of 

day. If the system load varies greatly throughout the day, it makes sense to schedule less 

urgent jobs at a time when the system overheads are low. The at and batch commands 

make such scheduling possible.

 7.12.1 at: One-Time Execution
at schedules jobs for one-time execution. The command runs with the scheduled date 

and time as arguments. The command to run is specified at the at> prompt:

$ at 14:08
at> empawk2.sh
[Ctrl-d]
commands will be executed using /usr/bin/bash
job 1041188880.a at Sun Dec 29 14:08:00 2002

The jobs are submitted to a queue. The job-id is derived from the number of seconds 

since the Epoch. It’s the most meaningful method of making such numbers unique 

across several years. At 2:08 p.m. today, the program empawk2.sh will be executed. 

Though you know this now, unfortunately, there’s no way you can find out the name of 

the scheduled program later.

Unless redirected, the standard output and error will be mailed to the user. 

Alternatively, you may provide redirection at the at> prompt itself:

at 15:08
empawk2.sh > rep.lst

at also offers keywords like now, noon, today, and tomorrow. It also offers the words 

hours, days, weeks, and so forth to be used with the + symbol. The following forms 

show the use of some of the key words and operators:

at 15 24-hour format assumed

at 3:08pm
at noon At 12:00 hours today

at now + 1 year At the current time after one year

at 3:08pm + 1 day At 3:08 p.m. tomorrow

at 15:08 December 18, 2001
at 9am tomorrow

You can also use the -f option to take commands from a file. To mail job completion to 

the user, use the -m option. Jobs are listed with at -l and removed with at -r.

 7.12.2 batch: Execute in Batch Queue
batch also schedules jobs for later execution, but unlike with at, jobs are executed as 

soon as the system load permits. The command doesn’t take any arguments but uses an 

das76205_Ch07_188-212.indd   206das76205_Ch07_188-212.indd   206 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 207

internal algorithm to determine the execution time. This prevents too many CPU-hungry 

jobs from running at the same time. The response of batch is similar to at otherwise:

$ batch < empawk2.sh
commands will be executed using /usr/bin/bash
job 1041185673.b at Sun Dec 29 13:14:33 2002

Any job scheduled with batch goes to a special at queue, and it can also be removed 

with at -r.

 7.12.3 Restricting Use of at and batch
Not all users may be able to use the at and batch commands. The access to these com-

mands is restricted and controlled by the files at.allow and at.deny. The locations are 

system-dependent; look up the FILES section of the man page of at for the location of 

the files. If they exist at all, they could be in /etc, /etc/cron.d or /usr/lib/cron. 

They can only be edited by the superuser.

at.allow controls the primary level of security. If it is present, only the users 

listed in the file are permitted to use at and batch. If it is not present, the system checks 

at.deny for a list of users who are barred from using these commands. If neither file is 

present, only the system administrator is permitted to invoke at and batch.

 7.13 cron and crontab: Running Jobs Periodically

The ps -e command always shows the cron daemon running. This is the UNIX system’s 

chronograph, ticking away every minute. cron is not a one-time scheduler like at but 

a periodic one. Every minute it wakes up from its sleeping state to look up a crontab 

file for instructions to be performed at that instant. After executing them, it goes back 

to sleep, only to wake up the next minute.

The crontab file is named after the user-id and is typically located in 

/var/spool/cron/crontabs. This location is, however, system-dependent. romeo has 

a file of the same name in this directory. Every scheduled job is specified as a single 

line in this file. The specification can get a little complex, but let’s begin with a simple 

one shown in Fig. 7.2.

F I G U R E  7 . 2  The Components of a crontab Entry

15

Hour(s)

Minute(s)
Day(s)
of month

Day(s) of
week (Sunday: 0) 

Command to
be executed

find /home -mtime +30 -print*63018

Month(s)

das76205_Ch07_188-212.indd   207das76205_Ch07_188-212.indd   207 12/13/11   10:45 AM12/13/11   10:45 AM



208 Your UNIX/Linux: The Ultimate Guide

There are six fields in the line, and the first five completely determine how often 

the command will be executed. The following list shows the significance of the fields 

with their permissible values shown in parentheses:

1    The minute (00 to 59)

2    The hour (0 to 23)

3    The day (0 to maximum number of days in month)

4    The month (1 to 12)

5    The day of the week (0 to 6, 0 being a Sunday)

6    Command to  run

This find command runs at 18:15 hours on June 30 every year. We didn’t make use of the 

fifth field (which doesn’t have much relevance here) and preferred to place a * there. As with 

at, in the absence of redirection, the standard output of the command is mailed to the user.

To create a crontab entry, first use your vi editor to create a file foo with an entry 

of your choice. Then use the crontab command

crontab foo

to place the entry in the directory /var/spool/cron/crontabs. You can see the contents 

of your crontab file with crontab -l and remove it with crontab -r.

If you use crontab -  to provide input through the standard input and then decide to abort it, 
you should terminate it with the interrupt key applicable to your terminal, rather than [Ctrl-d]. 
If you forget to do that, you’ll remove all entries from your existing crontab file!

cron’s strength lies in its unusual number matching system. You can match one or more 

numbers if you keep in mind these rules:

 • A * used in any of the first five fields matches any valid value.

 • A set of numbers is delimited by a comma. 3,6,9 is a valid field specification.

 • Ranges are possible and need not be restricted to a single digit. 00-10 includes all 

integer values between 0 and 10.

Things don’t appear so simple when crontab fields conflict with one another. Take, for 

instance, this entry:

00-10 17 * 3,6,9,12 5  find / -newer .last_time -print > backuplist

The first two fields indicate that the command is to run every minute from 17:00 hours 

to 17:10 hours. The third field (being a *) specifies that it should run every day. The 

fourth field (3,6,9,12), however, restricts the operation to four months of the year. The 

fifth field limits execution to every Friday.

So, who overrides whom? Here, “Friday” overrides “every day.” The find com-

mand will thus be executed every minute in the first 10 minutes after 5 p.m., every Friday 

of the months March, June, September, and December (of every year).

So, what are the rules that determine which fields have the ultimate say? This 

question arises when a * occurs in the third, fourth, or fifth fields. The rules are clearly 

laid down by POSIX and Table 7.4 shows all possible combinations of these fields.

Caution

das76205_Ch07_188-212.indd   208das76205_Ch07_188-212.indd   208 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 209

Linux

Unless you are sure, never use a * in the minute field. You’ll receive a mail every minute, and 
this could completely use up your mail quota if the command produces high-volume output.

cron is mainly used by the system administrator to perform housekeeping chores, like 

removing outdated files or collecting data on system performance. It’s also extremely 

useful to periodically dial up to an Internet mail server to send and retrieve mail.

The number matching system goes beyond POSIX requirements. It allows the use of 

step values which enable us to use compact expressions. You can use 3-12/3 instead 

of 3,6,9,12 that was used in our examples. Moreover, a * comes in handy here; 

*/10 in the minutes field specifies execution every 10 minutes. The crontab file also 

supports a MAILTO variable, which sends mail to the user whose name is assigned to 

the variable. The mail is suppressed if we set MAILTO=””.

cron looks in a control file in /var/spool/cron in Red Hat. It additionally looks up 

/etc/crontab, which specifies the user as an additional field (the sixth). This file 

generally specifies the execution of files in the directories cron.hourly, cron.daily, 

cron.weekly, and cron.monthly (in /etc).

anacron cron assumes that the machine is run continuously, so if the machine is 

not up when a job is scheduled to run, cron makes no amends for the missed op-

portunity. The job will have to wait for its next scheduled run. The anacron com-

mand is often more suitable than cron. anacron periodically inspects its control file 

(/etc/anacrontab) to see if there’s a job which has “missed the bus.” If it finds 

one, it executes the job.

Caution

T A B L E  7 . 4  Sample crontab Entries (First five fields only)

Fields Matches

When a * occurs in any of the third, fourth or fifth fields
00-10 17 * * * Every day
00-10 17 * 3,6,9,12 * Every day but restricted to four months
00-10 17 10,20,30 * * Three days in a month
00-10 17 * * 1,3 Monday and Wednesday
00-10 17 * 3,6,9,12 1,3 Either every day of four months or Monday and Wednesday 

of every month
00-10 17 10,20,30 * 1,3 Either three days of every month or Monday and Wednesday 

of every month

Other Examples

0,30 * * * * Every 30 minutes on the half-hour
0 0 * * * Midnight every day
55 17 * * 4 Every Thursday at 17:55 hours
30 0 10,20 * * 00:30 hours on the tenth and twentieth of every month
00,30 09-17 * * 1-5 On weekdays every half hour between 9 and 17 hours

das76205_Ch07_188-212.indd   209das76205_Ch07_188-212.indd   209 12/13/11   10:45 AM12/13/11   10:45 AM



210 Your UNIX/Linux: The Ultimate Guide

 7.13.1 Controlling Access to cron
Not all users may be able to use cron. As with at and batch, the authorization to use it is 

controlled  by two files, cron.allow and cron.deny. If cron.allow is present, only users 

included in this file are allowed to use this facility. If this file is not present, cron.deny 

is checked to determine the users who are prohibited. In case neither of them is present, 

depending on the system configuration, either the system administrator only is authorized 

to use cron or all users are allowed access.

S U M M A R Y

A process is an instance of a running program. It is identified by the process-id (PID) and 

its parent PID (PPID). Process attributes are maintained in the process table in memory.

Because of multitasking, a process can spawn multiple processes. The login shell 

is a process (PID = $$) that keeps running as long as the user is logged in.

You can list your own processes with ps, view the process ancestry (-f), all us-

ers’ processes (-a), and all system processes (-e). BSD uses a different set of options.

System processes, often called daemons, are generally not attached to a terminal and 

are not invoked specifically by a user. init is the parent of most daemons and all users’ shells.

A process is created by forking, which creates a copy (a child) of itself. The child 

then uses exec to overwrite itself with the image of the program to be run.

The child turns into a zombie on termination. The kernel doesn’t remove its process 

table entry until the parent picks up the exit status of the child. Premature death of the 

parent turns the child into an orphan, and init takes over the parentage of all orphans.

The child’s environment inherits some parameters from the parent, like the real 

and effective UID and GID, the file descriptors, the current directory, and environment 

variables. However, changes in the child are not made available in the parent.

Built-in shell commands like pwd and cd don’t fork a separate process. Shell scripts 

use a sub-shell to run the commands in a script.

The UNIX kernel communicates with a process by sending it a signal. Signals can 

be generated from the keyboard or by the kill command. You can kill a process with 

kill, and use kill -s KILL if a simple kill doesn’t do the job.

A job can be run in the background. nohup ensures that a background job remains 

alive even after the user has logged out.

The C shell, Korn and Bash shells enable job control. You can move jobs between 

foreground and background (fg and bg) and suspend ([Ctrl-z]) them. You can list jobs 

(jobs) and also kill them (kill).

You can schedule a job for one-time execution with at, or run it when the system 

load permits with batch. cron lets you schedule jobs so that they run repeatedly. It 

takes input from a user’s crontab file where the schedule and frequency of execution is 

specified by five fields using a special number matching system.

S E L F - T E S T

7.1 What is the significance of the PID and PPID? Without using ps, how do you 

find out the PID of your login shell?

7.2 How do you display all processes running on your system?

das76205_Ch07_188-212.indd   210das76205_Ch07_188-212.indd   210 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 7: The Process 211

7.3 Which programs are executed by spawning a shell? What does the second shell 

do?

7.4 Name some commands that don’t require a separate process.

7.5 Name the two system calls required to run a program.

7.6 How will you find out the complete command lines of all processes run by user 

timothy?

7.7 Run ps with the appropriate option, and note some processes that have no 

controlling terminal.

7.8 How will you use kill to ensure that a process is killed?

7.9 How will you kill the last background job without knowing its PID?

7.10 How do you display the signal list on your system?

7.11 Should you run a command like this? nohup compute.sh.

7.12 The jobs command displayed the message jobs: not found. When does that 

normally happen?

7.13 In the midst of an editing session with vi, how do you make a temporary exit to 

the shell and then revert to the editor?

7.14 How do you find out the name of the job scheduled to be executed with at and 

batch?

7.15 Frame an at command to run the script dial.sh tomorrow at 8 p.m.

7.16 Interpret the following crontab entry: 

30 21 * * * find /tmp /usr/tmp -atime +30 -exec rm -f {} \;

7.17 You invoked the crontab command to make a crontab entry and then changed 

your mind. How do you terminate the standard input that crontab is now 

expecting?

7.18 How does the system administrator become the exclusive user of at and cron?

E X E R C I S E S

7.1 Explain the significance of the two parameters, $$ and $!. Explain the differing 

behavior of the command echo $$ when run from the shell prompt and inside 

a shell script.

7.2 Describe the similarities that you find between processes and files.

7.3 If two users execute the same program, are the memory requirements doubled?

7.4 What are the two options available to a parent after it has spawned a child? How 

can the shell be made to behave in both ways?

7.5 Explain the significance of this command: ps -e | wc -l.

7.6 Explain the attributes of daemon processes using three examples. How do you 

display and identify them?

7.7 Which process will you look for in the ps output if you are not able to (i) print, 

(ii) send out mail, (iii) log in using the secure shell?

7.8 Unlike the built-in commands pwd and echo, which also exist as separate disk 

files, why is there no file named cd on any UNIX system?

7.9 Which process do you think may have the maximum number of children? What 

is its PID? Can you divide its children into two categories?

das76205_Ch07_188-212.indd   211das76205_Ch07_188-212.indd   211 12/13/11   10:45 AM12/13/11   10:45 AM



212 Your UNIX/Linux: The Ultimate Guide

7.10 How is a process created? Mention briefly the role of the fork and exec system 

calls in process creation.

7.11 Name five important process attributes that are inherited by the child from its 

parent.

7.12 A shell script foo contains the statement echo “$PATH $x”. Now define x=5 at 

the prompt, and then run the script. Explain your observations and how you can 

rectify the behavior.

7.13 What is a zombie, and how is it killed?

7.14 Explain whether the following are true or false: (i) A script can be made to ignore 

all signals. (ii) The parent process always picks up the exit status of its children. 

(iii) One program can give rise to multiple processes. 

7.15 What is the difference between a process run with & and one run with nohup?

7.16 What are signals? Name two ways of generating signals from the keyboard. Why 

should we use kill with signal names rather than their numbers?

7.17 What is the difference between a job and a process? How do you (i) suspend the 

foreground job, (ii) move a suspended job to the background, (iii) bring back a 

suspended job to the foreground?

7.18 Interpret these crontab entries and explain whether they will work:

( i )  *  *  *  *  *  d i a l . sh ,    ( i i )  00 -60  22 -24  30  2  *  f i nd . sh , 

(iii) 30 21 * * * find /tmp /usr/tmp -atime +30  -exec rm -f {} \;.

7.19 Frame a crontab entry to execute the connect.sh script every 30 minutes on 

every Monday, Wednesday, and Friday between the times of 8 a.m. and 6 p.m.

7.20 Create a directory foo, and then run a shell script containing the two commands 

cd foo ; pwd. Explain the behavior of the script.

7.21 What does the exit command do? Why doesn’t it log you out when run in your 

login shell like this? ( exit ).

7.22 The cron facility on your system is not working. How do you check whether the 

process is running at all and whether you are authorized to use cron?

7.23 The administrator has decided that most users will be allowed to use at and 

cron. What should she change that requires minimum effort?

das76205_Ch07_188-212.indd   212das76205_Ch07_188-212.indd   212 12/13/11   10:45 AM12/13/11   10:45 AM



213

8 
C H A P T E R  8

The Shell—Customizing 
the Environment

The shell is different from other programs. Apart from interpreting metacharac-

ters, it presents an environment that you can customize to suit your needs. These 

needs include devising shortcuts, manipulating shell variables, and setting up startup 

scripts. A properly set up shell makes working easier, but the degree of customization 

possible also depends on the shell you use.

This chapter presents the environment-related features of the Bash shell, but it 

also examines its differences from three other shells—Bourne shell, C shell, and Korn 

shell. After reading this chapter, you may want to select your shell. To aid you in this 

task, let it be said right here that you’ll have a headstart over others if you select Bash 

as your login shell.

  Objectives
 • Learn the evolution of the four shells—Bourne shell, C shell, Korn shell, and Bash.

 • Discover the difference between local and environment variables.

 • Examine some environment variables like PATH, SHELL, MAIL, and so forth.

 • Use aliases to invoke commands with short names.

 • Use the history mechanism to recall, edit, and run previously executed commands.

 • Edit any previous command line using the vi-like in-line editing feature.

 • Use the tilde substitution feature to shorten pathnames that refer to the home directory.

 • Prevent accidental overwriting of files and logging out using set -o.

 • Make environment settings permanent using profiles and rc scripts.

 • Manipulate the directory stack (Going Further).

 8.1 The Shells

The UNIX shell is both an interpreter and a scripting language. This is one way of 

saying that a shell can be interactive or noninteractive. When you log in, an interac-
tive shell presents a prompt and waits for your requests. This type of shell supports 

job control, aliases, and history. An interactive shell runs a noninteractive shell when 

executing a shell script.

das76205_Ch08_213-240.indd   213das76205_Ch08_213-240.indd   213 12/13/11   10:45 AM12/13/11   10:45 AM



214 Your UNIX/Linux: The Ultimate Guide

Every feature used in a shell script can also be used in an interactive shell, but 

the reverse is not true. Job control and history have no meaning in a shell script. In this 

chapter, we are mostly concerned with interactive shells.

Steve Bourne developed the first shell for UNIX. The Bourne shell was weak as 

an interpreter but had reasonably strong programming features. The C shell was created 

by Bill Joy at Berkeley to improve the interpretive features of Bourne. But Joy’s shell 

wasn’t suitable for programming. For some time, it was normal to use the C shell for 

interpretive work and the Bourne shell for programming. Had this trend continued until 

this day, this chapter would have focused almost entirely on the C shell.

Things changed when David Korn developed the Korn shell. It combined the best 

of both worlds—the interactive features of the C shell and the programming features of 

Bourne. Korn offered important features likes aliases and command history (which the 

Bourne shell lacked) and offered additional programming constructs not available in 

Bourne. While Korn was a complete superset of Bourne, it lacked some features of the 

C shell like directory stack manipulation. Korn’s alias handling is also somewhat weak.

Bash was created by GNU as a Bourne-again shell. It is a grand superset in that it 

combines the features of the Korn and C shells. Bash was developed to ultimately conform 

to the POSIX shell specification and is arguably the best shell to use. But habits often die 

hard. The C shell still has takers, but many of its devoted users have migrated to the Tcsh 

shell. Many of the C shell features discussed in this chapter will also work with Tcsh.

 8.1.1 Setting Your Shell
Your login shell is set at the time of creation of your account. It is determined by the 

last field of your entry in /etc/passwd and is available in the SHELL variable. Before 

you begin, you need to know the shell you are using:

$ echo $SHELL
/usr/bin/bash

To try out all the examples of this chapter with each of the shells, you should be able 

to change your shell as and when required. Check which one of the following works 

best for you:

 • Run the chsh command to change the entry in /etc/passwd. However, this com-

mand is not available on all non-Linux systems.

 • Make a temporary switch by running the shell itself as a command. This is how 

you can run a C shell as a child of your login shell and then terminate it to move 

back to your login shell:

      $ csh C shell runs as child

      % exit Terminates C shell  

      $ _ Back to login shell

 • Ask the system administrator to change the entry in /etc/passwd. If you own the 

machine, you can do that from the superuser account (19.3.3).

In this chapter, we’ll use Bash as the base shell. Differences with Korn and Bourne are 

pointed out in separate asides. The C shell is covered at the end of the chapter.

das76205_Ch08_213-240.indd   214das76205_Ch08_213-240.indd   214 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  215

 8.2 Environment Variables

Shell variables are of two types—local and environment. PATH, HOME, and SHELL are 

environment variables. They are so called because they are available in the user’s total 

environment—the sub-shells that run shell scripts, and mail commands and editors. Local 

variables are more restricted in scope, as shown by this example:

$ DOWNLOAD_DIR=/home/romeo/download
$ echo $DOWNLOAD_DIR 
/home/romeo/download

DOWNLOAD_DIR is a local variable; its value is not available to child processes. Run a 

Bash sub-shell with bash, and check whether you can see the variable there:

$ bash Create a child shell 

$ echo $DOWNLOAD_DIR Is DOWNLOAD_DIR visible in child?

 It is not!

$ echo $PATH But is PATH visible?

/bin:/usr/bin:.:/usr/ccs/bin It is!

$ exit Terminate child

$ _ and come back to login shell

The set statement displays all variables available in the current shell, but the env com-

mand displays only environment variables. Following is a concise list:

$ env
HOME=/home/romeo
IFS=’ IFS includes newline

‘ So closing quote is on next line

LOGNAME=romeo
MAIL=/var/mail/romeo
MAILCHECK=60
PATH=/bin:/usr/bin:.:/usr/ccs/bin
PS1=’$ ‘
PS2=’> ‘
SHELL=/usr/bin/bash
TERM=xterm

By convention, environment variable names are defined in uppercase, though nothing 

prevents you from using a different scheme. env is an external command and runs in a 

child process. It thus lists only those variables that it has inherited from its parent, the 

shell. But set is a shell builtin and shows all variables visible in the current shell. set 

will display the value of DOWNLOAD_DIR but not env.

Applications often obtain information on the process environment through these 

environment variables. vi reads TERM and mailx looks up MAIL. Applications are not 

designed to run from a specific shell, so environment variables always present information 

in the name=value format. They may, however, be assigned differently in the different 

shells (like the C shell).

das76205_Ch08_213-240.indd   215das76205_Ch08_213-240.indd   215 12/13/11   10:45 AM12/13/11   10:45 AM



216 Your UNIX/Linux: The Ultimate Guide

BOURNE Shell

KORN Shell

C Shell

 8.2.1 export: Creating Environment Variables
To make DOWNLOAD_DIR visible in all child processes, it needs to be exported. We have 

already used the shell’s export statement in Chapter 7 to implement variable inheritance. 

export simply converts a local variable to an environment variable:

export DOWNLOAD_DIR

The export statement can be used before or after the assignment. You can also perform 

both operations in a single statement:

export DOWNLOAD_DIR=/home/romeo/download Won’t work in Bourne 

The reason why we don’t use export with variables displayed by env is that the job has 

already been done. Some variables were made available by the process creation mecha-

nism when the shell was created. Others are made available by the shell itself when it 

executes some initialization scripts. You’ll learn more about these scripts in Section 8.9.

You export a variable only once in a session. You don’t need to export it again just because 
you have reassigned it. PATH is an exported variable, and you don’t need to use export PATH 
after you have modified it.

You can’t export and assign in a single statement. Use separate statements: 

x=5 ; export x.

Everything applies to this shell.

Variables are assigned, exported, and displayed differently by set though not by env. 

There’s no export statement here; this shell uses the setenv statement to both assign 

and export variables. See Section 8.10.1.

 8.3 The Common Environment Variables

Environment variables control the behavior of the system (Table 8.1). If they are not 

set properly, you may not be able to use some commands without a pathname, use vi 

on a remote connection, or obtain notification on receipt of mail. As discussed before, 

many of these variables are exported and made available to the shell by its ancestors.

The Command Search Path (PATH) PATH lists the directories searched by the shell 

to locate an executable command (2.1.1). Its current value, as displayed by env, shows 

a list of four directories:

$ echo $PATH
/bin:/usr/bin:.:/usr/ccs/bin

Note

das76205_Ch08_213-240.indd   216das76205_Ch08_213-240.indd   216 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  217

We often reassign PATH to include one or more directories. To add /usr/xpg4/bin to 

the PATH list, reassign this variable by concatenating the old value with the new:

$ PATH=$PATH:/usr/xpg4/bin Colon to be added

$ echo $PATH
/bin:/usr/bin:.:/usr/ccs/bin:/usr/xpg4/bin

On this Solaris system, you’ll find many commands (like grep) of the same name in both 

/usr/bin and /usr/xpg4/bin (directory for X/Open-compliant programs). Running 

grep will execute /usr/bin/grep (since /usr/bin appears earlier in PATH), so you 

need to use an absolute pathname here for running the X/Open version.

Your Home Directory (HOME) When you log in, UNIX places you in the home direc-

tory named after your user-id. Its pathname is available in the HOME variable:

$ echo $HOME
/home/romeo

The home directory is set by the administrator in /etc/passwd. The line for this user 

shows the home directory in the next-to-the-last field:

romeo:x:208:50::/home/romeo:/usr/bin/bash

You can reassign HOME, but it will not change the home directory as such, only the direc-

tory that cd switches to when used without arguments. This happens because a simple 

cd implies cd $HOME.

Mailbox Location and Checking (MAIL, MAILPATH, and MAILCHECK) It’s not the 

mail software that informs the user that mail has arrived. That job is done by the shell. 

HOME Home directory—the directory in which a user is placed on logging in

PATH List of directories searched by shell to locate a command

LOGNAME Login name of user

USER As above

MAIL Absolute pathname of user’s mailbox file

MAILCHECK Mail checking interval for incoming mail

MAILPATH List of mailboxes checked by shell for arrival of mail

TERM Type of terminal

PWD Absolute pathname of current directory (Korn and Bash only)

CDPATH List of directories searched by cd when used with a nonabsolute pathname

PS1 Primary prompt string

PS2 Secondary prompt string

SHELL User’s login shell and one invoked by programs having shell escapes

T A B L E  8 . 1  Common Environment Variables

Variable Significance

das76205_Ch08_213-240.indd   217das76205_Ch08_213-240.indd   217 12/13/11   10:45 AM12/13/11   10:45 AM



218 Your UNIX/Linux: The Ultimate Guide

Unless MAILPATH is defined, the shell knows the location of a user’s mailbox from MAIL. 

This location is generally /var/mail or /var/spool/mail (Linux). romeo’s mail is 

saved in /var/mail/romeo on an SVR4 system.

Users often use multiple mail handling programs, which have different locations 

for their mailboxes. MAILPATH represents a colon-delimited list of these files. Here’s 

one setting that shows mailx and Netscape as the mail handling programs for this user:

MAILPATH=/var/mail/romeo:$HOME/nsmail/Inbox

MAILCHECK determines how often the shell checks the file defined in MAIL or 

MAILPATH for the arrival of new mail. (The set output shows 60.) If the shell finds 

the file modified since the last check, it informs the user with the familiar message 

You have mail in /var/mail/romeo.

The Prompt Strings (PS1, PS2, and PWD) The shell uses two prompts. The primary 

prompt string PS1 is the one you normally see. Multiline commands are displayed by 

the shell with a > prefixing each subsequent line:

$ find / -name a.out -mtime +365 \
> -exec rm {} \;

The > is the secondary prompt string stored in PS2. Though PS2 is generally a >, your 

system may not use $ as PS1. To use a different primary prompt string, change PS1:

$ PS1=”C> “
C> _ Like DOS prompt

Bash can also display the current directory in the prompt by embedding the PWD variable 

in PS1. Whenever you change your directory, the prompt also changes:

$ PS1=’[$PWD] ‘ Must use single quotes

[/home/romeo] cd /etc
[/etc] _ Prompt changes; current directory is /etc

PWD is a rather unusual variable; it is reevaluated every time the working directory changes. 

With a prompt set like this, you really don’t need to use the pwd command at all.

Confusion often arises when you work concurrently on your local machine and a remote 
one (using, say, ssh). If the prompts are identical in both, then you may need to use the 
uname -n command to identify the machine you are logged into. Bash supports a number 
of escape sequences in PS1, and if you set PS1 like this, then you will always know where 
you are:

$ PS1=”\h> “
saturn> _ saturn is the machine’s name

The escape sequence \h displays a machine’s hostname. You can also add PWD for added benefit. 
Look up the Bash documentation for the other escape sequences.

Tip

das76205_Ch08_213-240.indd   218das76205_Ch08_213-240.indd   218 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  219

BOURNE Shell

KORN Shell

C Shell

Neither PWD nor escape sequences are supported. Normally, PS1 and PS2 are set to $ 

and >, respectively.

Everything except the escape sequences apply.

Look up Section 8.10.1.

The Directory Search Path (CDPATH) CDPATH lets you avoid using pathnames when 

using cd to navigate to certain directories. Consider this setting, which includes both 

the current and parent directory:

CDPATH=.:..:/home/romeo

The shell searches three directories when using cd—this time to look for a directory. Now 

imagine that you have two directories, include and lib, under your current directory, 

and you have just moved to include. Since CDPATH includes the parent directory, you 

don’t need to use cd ../lib to go to lib:

$ pwd
/home/romeo/include
$ cd lib ; pwd
/home/romeo/lib

When you use cd lib, the shell first looks up the current directory for lib, failing 

which it searches the parent directory (..) and then /home/romeo. Make sure that you 

always include the current directory in CDPATH because otherwise that would suppress 

cd’s normal behavior.

Shell Used by Commands with Shell Escapes (SHELL) SHELL displays your login 

shell (not necessarily the shell you are using). Programs like more and vi provide a shell 
escape to let you run a UNIX command. SHELL determines the shell these programs 

use. Look at the sample line in the discussion on the HOME variable; the last field sets 

the value of SHELL.

The Terminal Type (TERM) TERM indicates the type of terminal you are using. Every 

terminal has certain characteristics that are defined in a control file in the terminfo 

directory (in /usr/lib or /usr/share/lib). This directory contains a number of sub-

directories named after the letters of the alphabet. A terminal’s control file is available 

in a directory having a one-letter name that is the same as the first letter of the terminal 

name. For instance, vt100 terminals use the file /usr/share/lib/terminfo/v/vt100.

das76205_Ch08_213-240.indd   219das76205_Ch08_213-240.indd   219 12/13/11   10:45 AM12/13/11   10:45 AM



220 Your UNIX/Linux: The Ultimate Guide

Some utilities like the vi editor are terminal-dependent, and they need to 

know the type of terminal you are using. If TERM isn’t set correctly, vi won’t work 

and the display will be faulty. TERM is also important when you log on to a remote 

machine.

Your Username (LOGNAME and USER) System V and BSD use two different variables 

to indicate your user-id. One or both variables may be available on your system. You 

can use the one that applies to your system in a shell script to prevent certain users from 

running the script.

The other variables used by Bash will be discussed in later sections that feature 

the history facility and startup files. We’ll examine the IFS variable when we take up 

shell programming.

 8.4 Aliases

The shell supports aliases as a mechanism of assigning shorthand names for commands 

or for redefining commands to run with specific options. Aliasing is done with the alias 

statement, a built-in feature of the shell.

You often use the ls -l command, so if an alias named ll doesn’t exist on 

your system, you can create one. The definition resembles an assignment of a shell 

variable:

alias ll=’ls -l’ Quoting necessary for multiple words

Don’t use whitespace around the =. Also use quotes when the alias value has multiple 

words. You can now execute ls -l simply by using

ll Executes ls -l

To consider another example, we often use the cd command with long pathnames. 

If there’s a sequence that you use often, it makes sense to convert the sequence into 

an alias:

alias cdsys=”cd /usr/include/sys”

An alias is recursive, which means that if a is aliased to b and b is aliased to c, a should 

run c.

You can also use aliasing to redefine an existing command, so it is always invoked 

with certain options. Here are two useful aliases:

alias cp=”cp -i”
alias rm=”rm -i”

The cp -i command behaves interactively when the destination file exists. However, 

rm -i always behaves interactively. With aliases now defined for them, every time you 

invoke these commands, their aliased versions are executed. How can you now use the 

original external commands? Just precede the command with a \. This means that you 

have to use \cp foo1 foo2 to override the alias.

das76205_Ch08_213-240.indd   220das76205_Ch08_213-240.indd   220 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  221

BOURNE Shell

KORN Shell

C Shell

alias by default displays all aliases. You can see a specific alias definition by 

using alias with the name. An alias is unset with unalias:

$ alias cp
alias cp=’cp -i’
$ unalias cp ; alias cp
bash: alias: cp: not found

A set of useful aliases is displayed in Table 8.2. Three of them show section numbers 

where the command used in the alias has been explained. Too much aliasing can be 

confusing and difficult to remember, so exercise restraint when defining them. Aliases 

are good to begin with, but eventually you’ll be using shell functions, which offer a 

superior form of aliasing.

Just because the alias cp works with arguments, don’t interpret that to mean that the alias 
accepts arguments. It’s simply that the shell expands the alias before running the command 
line. Only C shell aliases use arguments.

Everything applies to this shell.

It doesn’t support aliases. Using shell functions is the only option.

Aliaising in this shell is very powerful. See Section 8.10.2.

Note

T A B L E  8 . 2  Useful Aliases

Alias Definition Significance

alias ls=’ls -F’ Marks directories, executables, and symlinks

alias l.=’ls -d .*’ Lists all files beginning with a dot

alias ..=”cd ..” Moves one directory up

alias ...=”cd ../..” Moves two directories up

alias cx=”chmod a+x” Assigns execute permission to all

alias h=”history 20” Lists last 20 commands (8.5)

alias cls=”tput clear” Clears the screen

alias path=’echo PATH=$PATH’ Displays current PATH (Note use of single quotes)

alias lm=”ls -t | head -n 1” Displays last modified filename (9.6)

alias vil=”vi `ls -t | head -n 1`” Edits last modified file with vi 

alias chp=”ps -e | grep” Checks if a specific process is running (10.4.4)

alias lsd=’ls -la | grep “^d”’ Lists only directories

das76205_Ch08_213-240.indd   221das76205_Ch08_213-240.indd   221 12/13/11   10:45 AM12/13/11   10:45 AM



222 Your UNIX/Linux: The Ultimate Guide

 8.5 Command History

The history feature lets you recall previous commands (even those executed in previous 

sessions), edit them if required, and re-execute them. The shell assigns each command 

an event number. By default, the history command in Bash displays the complete 

event list that is saved in a history file. Using a numeric argument, we can display the 

last five commands:

$ history 5 Last five commands 

36 vi hexdump.c
37 cc hexdump.c
38 tar cvf /dev/fd0 *.doc
39 cp *.c ../backup
40 history Also includes command invoked to obtain list

You can use this list to re-execute previous commands, perhaps after performing some 

substitution. Table 8.3 summarizes these features, which are discussed next with suitable 

examples.

T A B L E  8 . 3  The History Functions

csh, bash ksh Significance

history 12 history -12 Lists last 12 commands

!! r Repeats previous command

!7 r 7 Repeats event number 7

!24:p - Prints without executing event number 24

!-2 r -2 Repeats command prior to the previous one

!ja r ja Repeats last command beginning with ja

!?size? - Repeats last command with embedded string size

!find:s/pl/java r find pl=java Repeats last find command after substituting java 

  for pl

^mtime^atime r mtime=atime Repeats previous command after substituting 

  atime for mtime

!cp:gs/doc/html - Repeats last cp command after globally 

  substituting html for doc

!! | sort r | sort Repeats previous command but also pipes it to 

  sort

!find | sort r find | sort Repeats last find command but also pipes it to 

  sort

cd !$ cd $_ Changes directory to last argument of previous 

  command ($_ used by Bash also)

rm !* - Removes files expanded from all arguments of 

  previous command

das76205_Ch08_213-240.indd   222das76205_Ch08_213-240.indd   222 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  223

 8.5.1 Accessing Previous Commands
Bash lets you recall previous commands by using the cursor Up and Down keys. Normally 

that’s the most convenient way to do it. But you can also access and execute any previ-

ous command by using the ! as a prefix to the event number:

$ !38 Re-executes event number 38

38 tar cvf /dev/fd0 *.doc Copies files from disk to diskette

The command line is displayed and executed. Working like this, you might execute an 

incorrect command (like rm), so by using the p (print) modifier you can display the 

command without executing it:

$ !38:p Displays only

38 tar cvf /dev/fd0 *.doc

This tar command copies files from disk to diskette. You should make sure of what you 

are doing by using the :p modifier first. If the command you recalled had xvf instead 

of cvf as arguments, data would flow in the reverse direction—from diskette to disk 

(19.13.2). But if the preceding command line is the one you want to run again, simply 

use this to repeat the last command:

!! Repeats last command 

It is often more convenient to recall commands by using substrings of their names rather 

than their event numbers. If the last command beginning with v was vi, you can run it 

again like this:

!v Repeats last command beginning with v

You can match embedded strings also; you’ll find one example in Table 8.3.

Programmers will find this form of addressing very useful for repeatedly editing and compiling 
programs. For instance, if you alternately use the commands vi hexdump.c and cc hexdump.c, 
you need to explicitly invoke the commands only once. Subsequently, you can use !v and !c 
repeatedly until the compilation generates no errors. With the Bash shell, however, it’s more 
convenient to use the Up and Down keys to recall the recent commands.

 8.5.2 Substitution in Previous Commands
Often you may need to execute a previous command but only after replacing a string 

in the command line with another. Bash uses the vi-style :s modifier and the / to 

delimit the old and new patterns. You can repeat the previous tar command, but this 

time using the .bak instead of the .doc files:

!tar:s/doc/bak vi also uses :s for substitution

Tip

das76205_Ch08_213-240.indd   223das76205_Ch08_213-240.indd   223 12/13/11   10:45 AM12/13/11   10:45 AM



224 Your UNIX/Linux: The Ultimate Guide

There are two ways of repeating a substitution on the immediately previous command. 

Use the !! with :s as usual or simply use the ̂  (caret) as the delimiter of strings. Restore 

the original command line by replacing bak with doc:

!!:s/bak/doc Substitution in previous command 

^bak^doc Same; a shortcut

Note that this substitution is made only for the first occurrence in a line. Bash permits 

global substitution also; use gs instead of s.

 8.5.3 Using Arguments to Previous Command ($_)
We often run several commands on the same file. Instead of specifying the filename every 

time, we can use $_ as its abbreviation. This expression signifies the last argument to the 

previous command. For instance, after we have created a directory with mkdir bar, 

we can use this technique to switch to it:

mkdir bar
cd $_ Changes directory to bar

To consider another example, if you have edited a shell script cronfind.sh with vi, 

you can execute this file by simply entering

$_ Executes cronfind.sh

What better way can you imagine of executing a shell or perl script that you just edited 

with vi! Bash has several other parameters that can access every argument of any previ-

ous command, but they are beyond the scope of this text.

You can also use the !* to signify all arguments to the previous command. Consider 

that you have just printed some files:

lp foo1.ps foo2.ps foo3.ps

Now that you don’t need these files any longer, you can remove them or move them to 

a separate directory using the !* symbols:

rm !*
mv !* ../backup

Note that !* also includes the previous command’s options (which are also arguments), 

so this technique works only with those commands that use no options. For instance, if 

you have first used ls -l foo and then rm !*, rm would also run with -l as argument 

and report an error.

 8.5.4 The History Variables
By default, Bash stores all previous commands in the file $HOME/.bash_history. But 

you can use HISTFILE to assign a different filename. The file is written only when you 

das76205_Ch08_213-240.indd   224das76205_Ch08_213-240.indd   224 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  225

BOURNE Shell

KORN Shell

C Shell

log out; otherwise, the list is saved only in memory. There are two variables that deter-

mine the size of the list both in memory and disk:

HISTSIZE=500 In memory

HISTFILESIZE=1000 In disk, not specified in POSIX

With memory and disk space available at throwaway prices, you should set these 

variables to large values so that you can store commands of multiple login sessions.

This feature is not available.

Almost everything applies except that Korn’s implementation of these features is different:

 • history is used with a negative integer (e.g., history -5).

 • The r command is used to repeat a command. By default, it repeats the previous 

command (!! in Bash), When used with an argument, however, r repeats the last 
command  matching the argument. For instance, r 38 repeats event 38 (!38 in 

Bash). r v repeats the last command beginning with v (!v in Bash). r itself is an 

alias that executes fc -e -.

 • Substitution is performed using =. So r tar doc=bak runs the last tar command 

but after replacing doc with bak. Korn doesn’t permit global substitution.

 • Korn doesn’t support the use of !* to represent all arguments of the previous 

command. However, it supports $_.

 • If HISTFILE is not set, Korn uses $HOME/.sh_history as the history file. 

HISTSIZE determines the size of the history list.

There’s very little difference with Bash. The differences are discussed in Section 8.10.3.

 8.6 In-line Command Editing

Bash provides vi-like capabilities of editing the command line, both the current command 

and its predecessors in the history list. To do that, make the following setting:

set -o vi Use set +o vi to reverse this setting

The editing features of the vi editor (and emacs) are built into Bash, and this setting 

enables their use for in-line editing. Since you are editing only a line at a time, certain 

restrictions will obviously apply. First, you don’t have access to the ex Mode. Second, 

trying to move the cursor up or down will actually recall the previous or next commands.

das76205_Ch08_213-240.indd   225das76205_Ch08_213-240.indd   225 12/13/11   10:45 AM12/13/11   10:45 AM



226 Your UNIX/Linux: The Ultimate Guide

BOURNE Shell

KORN Shell

C Shell

To perform command editing, you must explicitly invoke the Command Mode. 

To recall a previous command, first press [Esc] and then k as many times as you want. 

If you overshoot, then come back with j. You can normally move along the line with 

the standard word navigation commands (like b and w) or move to line extremes (with 

0 and $). Use a repeat factor if necessary and relevant.

Perform all editing functions in the normal way. Insert with i, and replace with r. 

Delete a character with x and change a word with cw. Place the deleted text elsewhere in the 

line with p or P. Once all changes are made, the command can be executed by hitting [Enter].
You can use vi’s search techniques to recall previous commands from the history list. 

Even though the search is in the reverse direction, you’ll have to use the /pattern sequence:

/cvf[Enter] Locates last occurrence of string cvf

You can repeat the search by pressing n repeatedly. If you overshoot, come back with 

N. Edit the line, and run it again. This feature alone justifies the use of in-line editing in 

preference to the history mechanism!

A proficient vi user will easily exploit these editing facilities to run a command with selected 
arguments of previous commands. If you have previously run vi foo1 foo2 foo3 foo4, then 
you can easily run gzip with some or all of these arguments. Press [Esc], search for vi with 
/vi, change vi to gzip with cw, and hit [Enter]. To delete the last argument, move to the fourth 
argument with 4w and press dw. It’s as simple as that!

This feature is not available.

Everything applies to this shell.

This feature is available only in Tcsh.

 8.7 Tilde Substitution

The ~ acts as a shorthand representation of the home directory. A string prefixed by a 

~ is interpreted as the home directory of the user. Thus, when the shell encounters the 

command line

cd ~juliet

it switches to juliet’s home directory. If the value of $HOME  for juliet is 

/home/juliet/tulec1, then this is the directory where cd ~juliet switches to.

Tip

das76205_Ch08_213-240.indd   226das76205_Ch08_213-240.indd   226 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  227

BOURNE Shell

KORN Shell

C Shell

Interestingly, the ~, when used by itself or when immediately followed by a /, 

refers to the home directory of the user using it. If you have logged in as juliet, you can 

access the html directory under your home directory by using cd ~/html. That’s why we 

often find a configuration file like .exrc referred to both as $HOME/.exrc and ~/.exrc.

You can also toggle between the directory that you switched to most recently and 

your current directory. This is done with the ~- symbols (or simply -). For instance, 

either of the commands

cd ~- Changes to your previous directory

cd - Same

changes your current working directory to the one you used most recently. Here’s how 

you use it:

[/home/image] cd /bin Changes to /bin from /home/image

[/bin] cd - Reverts to /home/image

/home/image Shell displays this

[/home/image] _ Current directory shown by PS1

This toggling effect is like the button many TV remote units have to let you alternate 

between the current and last visited channels.

This feature is not available.

Everything applies to this shell.

Everything applies except that toggling with cd - is supported only in Tcsh.

 8.8 Using set Options

The set statement by default displays all variables, but it can make several environment 

settings with the -o keyword option. The keywords take care of some of the common 

hazards faced by users, like overwriting files and accidentally logging out. Table 8.4 

lists some of these options.

File Overwriting (noclobber) To prevent accidental file overwriting (clobbering) 

with the shell’s > and >> symbols, you need to use the noclobber setting in this way:

set -o noclobber No more overwriting files with >

das76205_Ch08_213-240.indd   227das76205_Ch08_213-240.indd   227 12/13/11   10:45 AM12/13/11   10:45 AM



228 Your UNIX/Linux: The Ultimate Guide

This means that if you redirect output to an existing file foo, the shell will retort with 

a message:

bash: foo: cannot overwrite existing file

To override this protection feature, use the | after the >:

head -n 5 emp.lst >| foo

Accidental Logging Out (ignoreeof) Users often inadvertently press [Ctrl-d] with 

the intention of  terminating standard input, but they end up logging out of the system. 

The ignoreeof keyword offers protection from accidental logging out:

set -o ignoreeof [Ctrl-d] won’t log you out

Now, when you use [Ctrl-d] to terminate your session, here’s a typical response from 

the shell:

Use ‘exit’ to terminate this shell

You now have to use the exit command to take you out of the session; [Ctrl-d] 

won’t do it any more (unless executed repeatedly!).

Notifying Completion of Background Jobs (notify) Recall that the shell normally 

notifies the completion of a background job only when a prompt is available (7.11). You 

can use notify (with set -o notify)  for immediate notification.

A set option is turned off with set +o keyword. To reverse the noclobber feature, 

use set +o noclobber. The complete list of set’s special options is obtained by using 

set -o or set +o without any additional arguments.

noclobber Prevents file overwriting with > and >>

ignoreeof Prevents termination of login shell with [Ctrl-d]

notify Notifies completion of background job immediately rather than at the 

 next prompt

noglob Disables wild-card expansion

vi Enables vi-style command-line editing

emacs Enables emacs-style command-line editing

allexport Exports all variables

T A B L E  8 . 4  Shell Settings with set -o

Option Significance

das76205_Ch08_213-240.indd   228das76205_Ch08_213-240.indd   228 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  229

BOURNE Shell

KORN Shell

C Shell

This feature is not available.

Everything applies to this shell.

See Section 8.10.4.

 8.9 The Initialization Scripts

The environment variables, aliases and set options that we define are applicable only 

for the session. They revert to their default values when the user logs out. To make these 

settings permanent, you’ll have to place them in certain startup scripts that are executed 

when a user logs in. These scripts are of two types:

 • A login script (also called a profile), which is executed only once on login.

 • An rc (run command) script, which is executed every time an interactive 

sub-shell is created.

Bash uses one of these three files as the login script or profile: ~/.bash_profile, 

~/.profile, and ~/.bash_login. The rc file is generally ~/.bashrc. These scripts 

should be added to your home directory at the time of user creation. In case they are not 

there, you’ll have to create or copy them. (Incidentally, Bash also uses ~/.bash_logout 

as the script to run before terminating a login shell.)

When a user logs in, the script /etc/profile is first executed, before the user’s 

own login script. Universal environment settings are kept by the administrator in 

/etc/profile so they are available to all users.

 8.9.1 The Login Script
As mentioned before, Bash looks for one of the three files, .bash_profile, .profile, and 

.bash_login, in the sequence specified, and identifies the one it spots first as its profile. 

The profile can be quite large depending on users’ requirements. Here’s an abridged one:

$ cat .profile
# User $HOME/.profile - commands executed at login time
MAIL=/var/mail/$LOGNAME                         # mailbox location
PATH=$PATH:$HOME/bin:/usr/ucb:.
PS1=’$ ‘
PS2=>
TERM=vt100
MOZILLA_HOME=/opt/netscape ; export MOZILLA_HOME

das76205_Ch08_213-240.indd   229das76205_Ch08_213-240.indd   229 12/13/11   10:45 AM12/13/11   10:45 AM



230 Your UNIX/Linux: The Ultimate Guide

mesg y
stty stop ̂ S intr ̂ C erase ^?
echo “Today’s date is `date`”

The profile contains commands that are meant to be executed only once in a session. 

Some of the system variables have been assigned in this script. PATH has been modified 

to contain three more directories. mesg y expresses your willingness to receive mes-

sages from people using the talk command (not discussed in this edition). Some stty 

settings have also been made here.

How is the profile executed? Shell scripts are normally run by spawning a sub-

shell, but this technique won’t work here. Because a child can’t alter the environment 

of its parent (7.6.1), if the login shell uses this technique, then variables set in the script 

would never be available in the login shell. The only conceivable way of running a startup 

script would be to do so in the same shell as the login shell (i.e., without spawning a 

child shell). The dot or source command does that:

. .profile No sub-shell created

source .profile Same

No separate process is created here (like in cd) when you source this file. The environ-

ment also remains in effect throughout the login session. So you don’t need to log out 

and log in again whenever you modify this file; just execute one of the two commands.

The example profile shows three directories added to PATH. This means that these directories 
will be repeatedly added every time you source this file. Eventually, you’ll end up with a huge 
PATH setting, which could unnecessarily slow down command search.

 8.9.2 The rc File
The rc file is executed every time an interactive shell is called up (when opening an 

xterm window, for instance). The name of the file is defined by the variable BASH_ENV. 

Your profile could have a setting like this:

export BASH_ENV=$HOME/.bashrc

However, the preceding Bash definition merely ensures that an interactive sub-shell 

executes this file. If the login shell also has to execute this file, then a separate statement 

must be added in the profile:

. ~/.bashrc Can use source instead of dot

The rc file should be used to hold only Bash-specific features. History list settings 

(like HISTSIZE and HISTFILE), command editing settings (like set -o vi), and alias 

definitions should all be made in this file. This is a cleaner arrangement because should 

you decide to change your shell any time later, you won’t be saddled with a .profile 

ridden with irrelevant entries. Here are some sample entries:

alias cp=”cp -i”
alias rm=”rm -i”

Caution

das76205_Ch08_213-240.indd   230das76205_Ch08_213-240.indd   230 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  231

BOURNE Shell

KORN Shell

C Shell

set -o noclobber
set -o vi
set -o ignoreeof

This rc file is executed after the profile. However, if BASH_ENV isn’t set, then the shell 

executes only the profile.

It uses only .profile as the login script. There’s no rc file.

Korn uses both .profile and ~/.kshrc, but it doesn’t support a logout file. The 

variable ENV determines the rc filename, but it is generally set to ~/.kshrc. Unlike 

in Bash, the login script always executes this file and doesn’t require an explicit in-

struction in the profile.

See Section 8.10.5.

 8.10 The C Shell

The C shell pioneered many of the customization features examined in this chapter. 

In many cases, the Korn and Bash shells have improved upon them. In this section, 

we discuss only those features that are either not supported by the other shells or are 

handled differently by them.

 8.10.1 Local and Environment Variables
The C shell also supports local and environment variables, but they are assigned dif-

ferently. A local variable is assigned with set (like set x = 5), but an environment 

variable is assigned with setenv:

setenv DOWNLOAD_DIR /home/romeo/download No = here

The C shell doesn’t support an export statement; the previous statement also performs 

the task of exporting. By default, setenv lists all environment variables but in the 

name=value format used by the other shells:

% setenv
HOME=/users1/home/staff/henry
PATH=/bin:/usr/bin:/usr/lib/java/bin:/usr/dt/bin
LOGNAME=henry
TERM=xterm
SHELL=/usr/bin/csh
PWD=/users1/home/staff/henry
USER=henry

das76205_Ch08_213-240.indd   231das76205_Ch08_213-240.indd   231 12/13/11   10:45 AM12/13/11   10:45 AM



232 Your UNIX/Linux: The Ultimate Guide

Irrespective of the shell you use, environment variables are always displayed in the 

name=value format. This is because applications are designed to be shell-independent 

and expect to see variable settings in a fixed format. But the C shell doesn’t use 

these variables for its own use; it uses the local ones that are assigned and viewed 

with set:

% set 
argv ()
cwd /users1/home/staff/henry
home /users1/home/staff/henry
path (/bin /usr/bin /usr/lib/java/bin /usr/dt/bin)
prompt % Like PS1

shell /bin/csh
status 0 The exit status of the last command 

term xterm
user henry Like USER and LOGNAME

Many of these local variables also have corresponding environment variables (term and 

TERM). The C shell uses path rather than PATH to find out where a command is located. 

Let’s now have a look at some of the local variables.

path This is the local counterpart of the environment variable, PATH. path stores and 

displays the list in a different format:

% echo $path
/bin /usr/bin /usr/lib/java/bin /usr/dt/bin

This space-delimited list is actually an array of four elements (Appendix A). To add 

/usr/xpg4/bin to the path list, we have to do this:

% set path = ($path /usr/xpg4/bin)
% echo $path
/bin /usr/bin /usr/lib/java/bin /usr/dt/bin /usr/xpg4/bin

Note that set and echo display these directories in different ways. set uses parentheses 

to enclose the list, but not echo. Changing path updates PATH and vice versa.

mail This variable combines the functions of the environment variables, MAIL, MAILPATH, 

and MAILCHECK. Here, we set mail to look for multiple filenames, optionally prefixed 

by a number:

set mail = (600 /var/mail/julie /opt/Mail/julie)

Every 600 seconds, the shell checks the last modification times of these two files for 

arrival of new mail.

das76205_Ch08_213-240.indd   232das76205_Ch08_213-240.indd   232 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  233

prompt The C shell stores the prompt string in the prompt variable. You normally see 

the % as the prompt string, but you can use set to customize it:

% set prompt = “[C>] “
[C>] _

The secondary prompt string is normally the ?, but this value is not stored in any envi-

ronment variable. Moreover, prompt doesn’t have an uppercase counterpart.

There are some more local variables. cwd stores the current directory (like PWD). 

user stores the user-id (like LOGNAME and USER).

You can define both a local variable and an environment variable with the same name (set x=5 
and setenv x 10). The environment variable is then visible only in child processes, while the 
local variable is visible in the current process. The environment variable is visible in all processes 
only if there is no local variable of the same name.

 8.10.2 Aliases
The C shell also supports aliases as a mechanism of assigning short names to command 

sequences. Aliases are defined with alias and unset with unalias. All definitions are 

displayed by using alias without arguments. However, there are two points to note 

about C shell aliases:

 • Aliases are assigned differently.

 • They accept command-line arguments.

The alias statement uses two arguments: the alias name and the alias definition. The 

following statement abbreviates the ls -l command:

alias l ls -l No = symbol here

You can now invoke l to execute ls -l. Even though l will work with multiple 

filenames, these filenames are not considered its arguments. But the C shell alias does 

accept arguments, which are read into special positional parameters inside the alias. 

You must know at least these two parameters:

\!* Represents all arguments in the command line.

\!$ Represents the last argument in the command line.

The expressions are derived from the history mechanism, which uses them with similar 

meanings except that it relates them to the previous command. We can use the last 

expression to devise an alias for finding a file:

alias where ‘find / -name \!$ -print’ ! is special

Now we can run where pearl.jpg to locate this file, starting the search from the root 

directory. We had to escape the parameter !$ to prevent the shell from replacing it with 

Note

das76205_Ch08_213-240.indd   233das76205_Ch08_213-240.indd   233 12/13/11   10:45 AM12/13/11   10:45 AM



234 Your UNIX/Linux: The Ultimate Guide

the last argument of the previous command. Rather, \!$ provides a placeholder for the last 

argument of the current command. Single quotes here don’t protect the !; only the \ does.

You can’t define this alias in the other shells. Neither can you devise an equivalent 

for this one, which uses two commands in a pipeline:

alias lsl ‘ls -l \!* | more’

You can provide any number of arguments to the alias and the listing will be displayed 

a page at a time. The C shell goes further than this and lets you access every argument 

individually. You can explore these features on your own.

If you have converted an external command or a builtin to an alias, you can still execute the 
original command by simply preceding the command with a \. That is, you can still run the 
where command, if such a command exists on your system, with \where.

 8.10.3 History
The C shell’s history mechanism also allows you to recall, edit, and run previous com-

mands. Unlike the other shells, which automatically save commands in the history file, 

the C shell needs the savehist variable to be set to the number of commands to be saved:

set savehist = 1000 Saves in  ~/.history

All commands are saved in ~/.history. As in Bash, a separate variable, history, 

determines the size of the history list in memory:

set history = 500 Saves in memory

The history facility is not activated unless the history variable is set. If it is not set, then only 
the last command is saved—that too only in memory.

 8.10.4 Other Shell Variables
Many of the set -o options that apply to Bash and Korn (8.8) are handled by variables 

in the C shell. The shell’s behavior in these cases depends on whether the variable is 

set or not. The set and unset statements work as on-off switches here. For instance, to 

prevent overwriting of files with redirection, you have to set the noclobber variable:

set noclobber No more overwriting files with >

If you now redirect command output to an existing file foo, the shell will respond with 

a message foo: File exists. To override this protection feature, you have to use 

the >! instead:

head -n 5 emp.lst >! foo

You can revert to the original setting with unset noclobber.

Accidental logging out with [Ctrl-d] is prevented with the ignoreeof variable:

set ignoreeof [Ctrl-d] won’t log you out

Note

Note

das76205_Ch08_213-240.indd   234das76205_Ch08_213-240.indd   234 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  235

Now, when you use [Ctrl-d] to terminate your session, the shell issues the message 

Use “logout” to logout.

The C shell also supports the variables notify and noglob with the same 

significance (8.8).

 8.10.5 The Initialization Scripts
The C shell supports a login file, but it was the first shell to also use an rc file. When a 

user logs in, the shell runs three scripts in the order shown:

1. A global initialization file, which could be /etc/login or /etc/.login (Solaris). 

Instructions meant to be executed by all users are placed there.

2. ~/.cshrc  This file contains instructions that are executed whenever a C shell is started.

3. ~/.login  This is executed only when the user logs in.

The C shell also executes ~/.logout before logging out of the system. There’s something 

to note in this sequence because it differs with the behavioral pattern of Korn and Bash. 

The shell runs the rc file before the login file. The .login should contain only environ-

ment variable settings like TERM, and you need to execute those instructions only once:

mesg n
stty stop ̂ S intr ^C erase ^?
setenv MOZILLA_HOME /opt/netscape Required by Netscape

setenv TERM vt220

MOZILLA_HOME and TERM have to be explicitly specified as environment variables by 

the setenv statement. Local variables and aliases are not automatically inherited by 

sub-shells and should be defined in ~/.cshrc:

set prompt = ‘[\!] ‘
set path = ($path /usr/local/bin)
set history = 500
set savehist = 50
set noclobber
set ignoreeof
alias ls ls -aFx
alias ls-l ls -l
alias h “history | more”
alias rm rm -i

You’ll find that, over a period of time, your ~/.cshrc builds up faster than ~/.login.

 ➤ G O I N G  F U R T H E R

 8.11 Directory Stack Manipulation

Bash and the C shell offer a directory stack that you can fill in with the directories that 

you visit frequently. You can then use a shortcut to switch to any of these directories. 

G
O

IN
G

 FU
R

T
H

E
R

das76205_Ch08_213-240.indd   235das76205_Ch08_213-240.indd   235 12/13/11   10:45 AM12/13/11   10:45 AM



236 Your UNIX/Linux: The Ultimate Guide

Using the dirs, pushd, and popd commands, you can list the stack and push directories 

into and remove directories from the stack. The following paragraphs assume Bash as 

the shell, but most of the content applies to the C shell as well.

Let’s first use pushd to fill up the stack with a directory ~/workc. After setting 

PS1 to reflect the current directory, invoke pushd with the directory name as argument:

$ PS1=’[$PWD] ‘
[/home/romeo] pushd workc Prompt changes

/home/romeo/workc Shows the current directory

~/workc ~ Shows two directories in stack

[/home/romeo/workc] _ Prompt changes

pushd has the side effect of doing a “cd” to the directory and then running the dirs 

command to display the stack. The stack now contains two directories, ~/workc and ~ 

(home directory). Now, push three more directories to the stack:

pushd ~/www/cgi-bin
pushd ~/wireless/docs
pushd ~/servlets/code

Both pushd and popd run dirs to display the stack, but you can also run dirs yourself. 

The -v option displays a numbered list:

[/home/romeo/servlets/code] dirs
~/servlets/code ~/wireless/docs ~/www/cgi-bin ~/workc ~
[/home/romeo/servlets/code] dirs -v
0  ~/servlets/code
1  ~/wireless/docs
2  ~/www/cgi-bin
3  ~/workc
4  ~

You can switch to any directory in the list using pushd with a +n (or a -n) argument where 

n is the position of the directory in the stack. This is how you move to ~/wireless/docs:

[/home/romeo/www/cgi-bin] pushd +1
~/wireless/docs ~/www/cgi-bin ~/workc ~ ~/servlets/code
[/home/romeo/wireless/docs] _

Note that the stack has been rotated, and all the directories starting from position 1 in 

the old stack have now moved up toward the top of the stack.

The popd command removes (pops out) a directory from the stack. By default, 

popd removes the top directory from the stack and performs a change of directory to 

the new top:

[/home/romeo/wireless/docs] popd
~/www/cgi-bin ~/workc ~ ~/servlets/code
[/home/romeo/www/cgi-bin] _

G
O

IN
G

 F
U

R
T

H
E
R

das76205_Ch08_213-240.indd   236das76205_Ch08_213-240.indd   236 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  237

To remove a directory elsewhere in the stack, popd must be used with the +n argument 

(or -n). The stack elements are accessed in the same way as pushd, so you could remove 

the third element with the argument +2:

[/home/romeo/www/cgi-bin] popd +2
~/www/cgi-bin ~/workc ~/servlets/code
[/home/romeo/www/cgi-bin] _

If you are working with a fixed list of directories, place the pushd statements in the 

appropriate startup script so that the stack is available to you when you log in.

S U M M A R Y

The shell can be customized to set the user’s environment. Bash and Korn are feature-

rich and recommended for use. The features of Bash are summarized here, and the 

comparative features of four shells are listed in Table 8.5.

T A B L E  8 . 5  Comparative Features of the Shells

Feature Bourne Shell C Shell Korn Shell Bash

Command name sh csh ksh bash

Defining local variable var var=value set var=value var=value var=value

Defining environment

variable var export var setenv var value export var=value export var=value

Displaying environment

variables export setenv export export

Defining alias name - alias name value alias name=value alias name=value

Command history operator - ! r !

Last alias parameter - \!$ - -

All alias parameters - \!* - -

Enabling in-line

command editing - - set -o vi set -o vi

Switching to home directory

of user usr - cd ~usr cd ~usr cd ~usr

Synonym for $HOME/foo - ~/foo ~/foo ~/foo

Toggling between

 two directories - - cd - cd -

Executing a startup script . source . . or source

Login file .profile .login .profile .bash_profile,

    .profile 

    or .bash_login

rc file - .cshrc Determined by ENV .bashrc or

   (often, .kshrc) determined by 

    BASH_ENV

Logout file - .logout - .bash_logout

G
O

IN
G

 FU
R

T
H

E
R

das76205_Ch08_213-240.indd   237das76205_Ch08_213-240.indd   237 12/13/11   10:45 AM12/13/11   10:45 AM



238 Your UNIX/Linux: The Ultimate Guide

Environment variables are available in the login shell and all of its child processes. 

export converts a local variable to an environment variable. Apart from PATH, HOME, 

SHELL, and TERM, variables control the mailbox location (MAIL and MAILPATH) and the 

frequency of checking it (MAILCHECK).

The alias command defines an alias for abbreviating a command sequence or 

for redefining an existing command to always run with specific options. The \ prefix 

overrides the alias.

The history feature lets you recall, edit, and re-execute previous commands without 

retyping them. Previous commands can be accessed by their event number or context, 

and substitution can be performed on them.

The in-line editing facility lets us edit a previous command line with vi-like 

commands. The feature has to be enabled first with set -o vi.

Tilde substitution lets you access the file $HOME/foo with ~/foo. It also allows 

the use of a shortcut like cd ~romeo to switch to romeo’s home directory.

Using set -o keyword, you can protect your files from accidental overwriting 

(noclobber), accidental logout (ignoreeof), and notification of completion of a 

background job (notify).

The shell executes a profile on login and an rc file when creating a sub-shell. 

The . or source commands execute these scripts without creating a separate process. 

Commands to be executed once are placed in the profile.

S E L F - T E S T

Unless otherwise stated, all questions assume Bash as the working shell.
8.1 How does a local shell variable get converted to an environment variable?

8.2 How is the home directory set—by $HOME or /etc/passwd?

8.3 If TERM has the value vt220, where will you expect to find its control file?

8.4 How will you add the parent directory to your existing PATH? How can you make 

the setting permanent?

8.5 If you want your mailbox to be checked every minute, what setting will you 

make?

8.6 Create an alias named rm that always deletes files recursively and forcibly. How 

can you execute the original rm command without unaliasing it and without using 

an absolute pathname?

8.7 How do you repeat the last command in (i) Korn, (ii) Bash?

8.8 How will you configure the history facility to store the last 200 commands in 

memory in (i) Korn, (ii) Bash?

8.9 You have just used the command tar -cvf /dev/fd0 *.sh. How will you 

repeat the command to use the .pl files this time in (i) Korn, (ii) Bash?

8.10 In the Korn shell, the command r ca runs from the history list (i) the last 

command having ca embedded, (ii) the first command beginning with ca, 

(iii) the last command beginning with ca, (iv) all commands beginning with ca.

8.11 To enable vi-like editing of the command line, what setting will you have to 

make first? How do you later turn it off?

das76205_Ch08_213-240.indd   238das76205_Ch08_213-240.indd   238 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 8: The Shell—Customizing the Environment  239

8.12 Suppose you have just viewed a file with cat calc.java. What shortcut will 

you use to display it with more?

8.13 How can you prevent your files from being overwritten using the redirection 

symbols? How will you overwrite a file when needed?

8.14 You have to toggle repeatedly between /usr/include and /usr/lib. What 

shortcut will you use?

8.15 How do you copy all files from henry’s home directory even if you don’t know 

its absolute pathname?

8.16 Why does every UNIX system have /etc/profile? When is this file executed?

8.17 If you have the files .bash_profile and .profile in your home directory, will 

Bash read them both on login?

8.18 A shell script also runs the login file. True or false?

E X E R C I S E S

Unless otherwise stated, all questions assume Bash as the working shell.
8.1 What is the difference between an interactive and a noninteractive shell? Which 

features of the shell have significance only in an interactive shell?

8.2 Which environment variables are set by reading /etc/passwd?

8.3 Why are all environment variables represented in a fixed format regardless of 

the shell you use?

8.4 How do you change your shell to ksh (i) temporarily, (ii) permanently? How is 

the value of $SHELL affected in each case?

8.5 Explain the significance of the MAIL and MAILCHECK variables. How do you come 

to know that mail has arrived?

8.6 Assume you are in /home/romeo/cgi and you want cd perl to take you to 

/home/romeo/perl. What setting do you need to make?

8.7 If you have PS1=’\!$’, what will your prompt look like?

8.8 Mention the steps needed to (i) change the prompt to look like this: 

[jupiter-henry ~/project8] (user—henry, machine name—jupiter and 

current directory—project8), (ii) revert to your original prompt.

8.9 Frame aliases to show (i) only the hidden filenames in the current directory, 

(ii) the listing of all symbolic links in the current directory and below, (iii) the 

absolute pathname of a filename specified as argument to the alias.

8.10 What is the significance of these Bash commands? (i) !50, (ii) !-2:p, (iii) !!, 

(iv) ^doc^bak. What are their equivalents in Korn?

8.11 Can you condense these sequences? (i) cp *.c c_progs ; cd c_progs, 

(ii) cmp foo foo.bak ; cmp foo foo.doc, (iii) ls pricelist.html ; 
cp pricelist.html pricelist.html.bak.

8.12 You issued the command $_ and got the message foo: Permission denied. 

What does the message indicate?

8.13 You want to recall all the tar commands that you executed for viewing. How 

can you see them in turn by pressing a single key repeatedly?

8.14 Explain the significance of these commands: (i) cd ~henry, (ii) cd ~/henry, 

(iii) cd ~-, (iv) cd -.

das76205_Ch08_213-240.indd   239das76205_Ch08_213-240.indd   239 12/13/11   10:45 AM12/13/11   10:45 AM



240 Your UNIX/Linux: The Ultimate Guide

8.15 Why do shells use a profile as well as an rc file? What types of entries do you 

place in each?

8.16 Name two ways of making the modifications to ~/.profile available to the 

environment.

8.17 If your .profile contains a statement like PATH=$PATH:$HOME/bin, and you 

make repeated changes to the file, how should you activate the changes?

8.18 How can you make all of your aliases placed in ~/.alias available in all 

sub-shells? Will the aliases be available in a shell script in (i) Korn, (ii) Bash?

8.19 Devise a system which allows you to use an alias named current to display 

recursively only the ordinary files in the current directory tree which have been 

modified since you logged in.

8.20 How will you set your prompt in the C shell to reflect the current directory? 

(HINT: Devise an alias for the cd command.)

das76205_Ch08_213-240.indd   240das76205_Ch08_213-240.indd   240 12/13/11   10:45 AM12/13/11   10:45 AM



241

9 
C H A P T E R  9

Simple Filters

In this chapter, we begin our discussions of the text manipulation tools available in 

UNIX. We call them filters—commands that use both standard input and standard 

output. This chapter presents the simple filters; Chapters 10 and 12 feature the advanced 

ones. Filters are different from other commands in that their power lies, not in the stan-

dalone mode, but when used in combination with other tools. The last section features 

three applications built using simple filters in pipelines.

Many UNIX files have lines containing fields representing meaningful data entities. 

Some commands expect these fields to be separated by a suitable delimiter that’s not 

used by the data. Typically this delimiter is a : (as in /etc/passwd and $PATH), and we 

have retained it for some of the sample files used in this and other chapters. Many filters 

work well with delimited fields, and some won’t work without them.

  Objectives
 • Format text to provide margins and headers, doublespacing, and multiple column 

output with pr.

 • Find differences and commonalities between two files with cmp, diff, and comm.

 • Pick up lines from the beginning with head, and from the end with tail.

 • Extract characters or fields vertically with cut.

 • Join two files laterally and multiple lines to a single line with paste.

Filters Reviewed
Filters were introduced in Section 6.5.5 as a class of commands that take advan-

tage of the shell’s redirection features. A filter has the capability of reading from 

standard input and writing to standard output. By default a filter writes to standard 

output. It reads from standard input when used without a filename as argument, 

and from the file otherwise. 

The piping mechanism of the shell lets the standard output of one filter act 

as the standard input of another. This feature lets us design pipelines containing 

a series of filters. Section 9.13 shows their use in numerous combinations for 

performing content manipulations tasks—tasks which these tools can’t perform 

when acting alone.

das76205_Ch09_241-264.indd   241das76205_Ch09_241-264.indd   241 12/13/11   10:45 AM12/13/11   10:45 AM



242 Your UNIX/Linux: The Ultimate Guide

 • Sort, merge, and remove repeated lines with sort.

 • Find out unique and nonunique lines with uniq.

 • Change, delete, or squeeze individual characters with tr.

 • Combine these commands to perform content manipulating tasks in a special examples 

section.

 9.1  pr: Paginating Files

The pr command prepares a file for printing by adding suitable headers, footers, and 

formatted text. When used with a filename as argument, pr doesn’t behave like a filter:

$ pr group1
May 06 10:38 1999  group1          Page 1
root:x:0:root These seven lines are the original

bin:x:1:root,bin,daemon contents of group1

users:x:200:henry,image,enquiry
adm:x:25:adm,daemon,listen
dialout:x:18:root,henry
lp:x:19:lp
ftp:x:50:
... blank lines ...

pr adds five lines of margin at the top (simplified here) and five at the bottom. The header 

shows the date and time of last modification of the file, along with the filename and 

page number. We generally don’t use pr like this. Rather, we use it as a “preprocessor” 

to impart cosmetic touches to text files before they are sent to the printer:

$ pr group1 | lp
Request id is 334

Since pr output often lands up in the hard copy, pr and lp form a common pipeline sequence. 

Sometimes, lp itself uses pr to format the output, in which case this piping is not required.

 9.1.1 pr Options
The important options to pr are listed in Table 9.1. The -k option (where k is an integer) 

prints in k columns. If a program outputs a series of 20 numbers, one in each line, then 

this option can make good use of the screen’s empty spaces. Let’s use pr as a filter this 

time by supplying its input from the standard output of another program:

$ a.out | pr -t -5
0 4 8 12 16
1 5 9 13 17
2 6 10 14 18
3 7 11 15 19

The -t option suppresses headers and footers. If you are not using this option, then you 

can use the -h option (followed by a string) to have a header of your choice. There are 

some more options that programmers will find useful:

das76205_Ch09_241-264.indd   242das76205_Ch09_241-264.indd   242 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 9: Simple Filters 243

 • -d  Double-spaces input, reduces clutter.

 • -n  Numbers lines, which helps in debugging code.

 • -o n  Offsets lines by n spaces, increases left margin of page.

Combine these various options to produce just the format you require:

$ pr -t -n -d -o 10 group1
              1    root:x:0:root
              2    bin:x:1:root,bin,daemon
              3    users:x:200:henry,image,enquiry
              4    adm:x:25:adm,daemon,listen
        .......

There’s one option that uses a number prefixed by a + to print from a specific page 

number. Another option (-l) sets the page length:

pr +10 chap01 Starts printing from page 10

pr -l 54 chap01 Page set to 54 lines

For numbering lines, you can also use the nl command (not covered in this edition). It’s easier 
to use nl foo than pr -t -n foo.

 9.2  Comparing Files

You’ll often need to compare two files. They could be identical, in which case you may 

want to delete one of them. Two configuration files may have small differences, and 

knowledge of these differences could help you understand why one system behaves 

differently from another. UNIX supports three commands—cmp, diff, and comm—that 

compare two files and present their differences.

For illustrating the use of these three commands, we’ll use two files, group1 and 

group2, which have minor differences between them. We have used group1 with pr, but 

Note

T A B L E  9 . 1  Options to the pr Command

Option Significance

-l n Sets length of page to n lines

-w n Sets width of page to n characters

-h stg Sets header for every page to string stg
-n Numbers lines in output

-o n Offsets output by n spaces
-d Double-spaces output

-k Produces output in k columns

+k Starts printing from page k
-t Eliminates headers, footers, and margins totally

das76205_Ch09_241-264.indd   243das76205_Ch09_241-264.indd   243 12/13/11   10:45 AM12/13/11   10:45 AM



244 Your UNIX/Linux: The Ultimate Guide

Fig. 9.1 shows them side-by-side. If you have a problem that requires comparison of two 

sets of data, then your imagination needs to be at work here. By looking at the output of 

these commands, you have to figure out which command best applies to the situation.

These files have the structure of /etc/group, the file that holds both the numeric 

and string component of the user’s group-id. This file is examined in Chapter 19, but you 

have seen information from this file displayed by ls -l. Thve inode stores the numeric 

group-id of a file, and ls displays the name component by looking up /etc/group.

 9.3  cmp: Byte-by-Byte Comparison

cmp makes a comparison of each byte of two files and terminates the moment it en-

counters a difference:

$ cmp group1 group2
group1 group2 differ: char 47, line 3

cmp echoes the location of the first mismatch to the screen. By default, cmp doesn’t 

bother about possible subsequent mismatches, but you can obtain a list of them using -l:

$ cmp -l group[12] Using a wild card

 47 62 61
 109 70 71
 128 71 70
cmp: EOF on group1 group1 finishes first

There are three differences up to the point the end-of-file is encountered in either file. 

Character number 47 has the ASCII octal values 62 and 61 in the two files. This output 

is generally of not much use, but cmp is also a filter, so you can use it with wc to count 

the number of differences rather than list their details:

$ cmp -l group? | wc -l
3 3 differences till EOF

F I G U R E  9 . 1  Two Files, group1 and group2, Having Some Differences

$ cat group1 $ cat group2
root:x:0:root root:x:0:root
bin:x:1:root,bin,daemon bin:x:1:root,bin,daemon
users:x:200:henry,image,enquiry users:x:100:henry,image,enquiry
adm:x:25:adm,daemon,listen adm:x:25:adm,daemon,listen
dialout:x:18:root,henry dialout:x:19:root,henry
lp:x:19:lp lp:x:18:lp
ftp:x:50: ftp:x:50:
 cron:x:16:cron

das76205_Ch09_241-264.indd   244das76205_Ch09_241-264.indd   244 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 9: Simple Filters 245

If the two files are identical, cmp displays no message but simply returns the prompt. 

You can try it with a file and its copy:

$ cp group1 group1.bak ; cmp group1 group1.bak
$ _ No output—files identical

This behavior will interest shell programmers because comparison with cmp returns a 

true exit status (7.8) when the files are identical and false otherwise. This information 

can be subsequently used in a shell script to control the flow of a program. The cmp 

command is also an unusual filter in that it needs two sources of input (here, two files), 

and at most one of them can come from standard input. See the example in Section 

9.13.3 to know how comm uses the - to signify standard input; cmp behaves likewise.

 9.4  comm: What Is Common?

While cmp compares two files character by character, comm compares them line by line 

and displays the common and differing lines. Also, comm requires both files to be sorted. 

By default, it displays in three columns:

Column 1   Lines unique to the first file.

Column 2   Lines unique to the second file.

Column 3   Lines common (hence its name) to both files.

The files group1 and group2 are not sorted, so let’s sort them first and then use comm 

with the sorted files:

$ sort group1 > group1.sorted ; sort group2 > group2.sorted
$ comm group[12].sorted
                adm:x:25:adm,daemon,listen              These two lines are 

                bin:x:1:root,bin,daemon                 common to both files

        cron:x:16:cron                                  Only in second file

dialout:x:18:root,henry                                 Only in first file

        dialout:x:19:root,henry
                ftp:x:50:
        lp:x:18:lp
lp:x:19:lp
                root:x:0:root
        users:x:100:henry,image,enquiry
users:x:200:henry,image,enquiry

The sort command is discussed in Section 9.10. Note that groups dialout, lp, and users 

feature in both columns 1 and 2, and you can easily spot the differences between them. 

You can also understand why the listing sometimes shows a number rather than the 

name in the group field (4.9.3).

This output provides a good summary to look at but is not of much use to other 

commands that work on single-column input. comm can produce single-column output 

using the options -1, -2, or -3. To drop a particular column, simply use its column 

das76205_Ch09_241-264.indd   245das76205_Ch09_241-264.indd   245 12/13/11   10:45 AM12/13/11   10:45 AM



246 Your UNIX/Linux: The Ultimate Guide

number as an option prefix. You can also combine options and display only those lines 

that are common:

comm -3 foo1 foo2 Selects lines not common to both files

comm -13 foo1 foo2 Selects lines present only in second file

The last example and one more (that uses the -23 option) has more practical value than 

you may think. We’ll consider an example that uses this command at the end of this 

chapter.

 9.5  diff: Converting One File to Another

diff is the third command that can be used to display file differences. Unlike its fellow 

members, cmp and comm, it also tells you which lines in one file have to be changed to 

make the two files identical. When used with the same files, it produces a detailed output:

$ diff group[12]
3c3 Change line 3 of first file

< users:x:200:henry,image,enquiry Change this line

--- to

> users:x:100:henry,image,enquiry this

5,6c5,6 Change lines 5 to 6

< dialout:x:18:root,henry Replace these two lines

< lp:x:19:lp
---
> dialout:x:19:root,henry with these two

> lp:x:18:lp
7a8 Append after line 7 of first file

> cron:x:16:cron this line

diff uses certain special symbols and instructions to indicate the changes that are 

required to make two files identical. You should understand these instructions as they 

are used by the sed command, one of the most powerful commands on the system.

Each instruction uses an address combined with an action that is applied to the 

first file. The instruction 3c3 changes line 3 with one line, which remains line 3 after the 

change. 7a8 means appending a line after line 7, yielding line number 8 in the second 

file. Another instruction, 5,6c, changes two lines. Look closely at both files to satisfy 

yourself that the recommended changes in these lines are sufficient to make the two 

files identical.

Maintaining Several Versions of a File (-e) diff -e produces a set of instruc-

tions only (similar to the above), but these instructions can be used with the ed editor 

(not discussed in this text) to convert one file to the other. This facility saves disk space 

by letting us store the oldest file in its entirety, and only the changes between consecu-

tive versions. We have a better option of doing that in the Source Code Control System 

(SCCS), but diff remains quite useful if the differences are few. SCCS is discussed 

in Chapter 16.

das76205_Ch09_241-264.indd   246das76205_Ch09_241-264.indd   246 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 9: Simple Filters 247

Linux

If you are simply interested in knowing whether two files are identical or not, use cmp without 
any options.

 9.6  head: Displaying the Beginning of a File

The head command displays the top of the file. By default, it displays the first 10 lines:

head group1 Shows first 10 lines

You can use the -n option (POSIX mandated) to specify a line count and display, say, 

the first three lines of the file:

$ head -n 3 group1 Or head -3 group1 on some systems

root:x:0:root
bin:x:1:root,bin,daemon
users:x:200:henry,image,enquiry

head can be used in imaginative ways. Consider that you are resuming an editing ses-

sion the next day and find that you cannot recall the name of the file you last edited. 

Since ls -t displays files in order of their modification time, picking up the first file 

from the list and using it as an argument to the vi editor should do the job. This requires 

command substitution:

vi ̀ ls -t | head -n 1` Opens last modified file for editing

You can define this as an alias (Table 8.2) in your rc file so that the aliased command 

is always available for you to use.

head is often used with the grep command (10.2) to restrict the display to a few 

lines. The following sequence picks up the first five lines containing the string GIF after 

the words IMG SRC:

grep “IMG SRC.*GIF” quote.html | head -n 5

The regular expression .* used in the quoted string signifies any number of characters. 

Here, it implies that there can be anything between SRC and GIF (even nothing at all).

Picking Up Bytes Rather than Lines

While POSIX requires only tail to handle characters, GNU head can perform that 

task too. It also picks up data in chunks of blocks, kilobytes, and megabytes. So, if 

cmp didn’t quite tell you where the forty-seventh character is located, the -c option 

will show you exactly where the discrepancy is:

$ head -c47 group1
root:x:0:root
bin:x:1:root,bin,daemon
users:x:2

Tip

das76205_Ch09_241-264.indd   247das76205_Ch09_241-264.indd   247 12/13/11   10:45 AM12/13/11   10:45 AM



248 Your UNIX/Linux: The Ultimate Guide

You can pick up data in other units too:

head -c 1b shortlist First 512-byte block

head -c 2m README Up to 2 megabytes

 9.7  tail: Displaying the End of a File

Complementing its head counterpart, the tail command displays the end of the file. 

It provides an additional method of addressing lines, and like head it displays the last 

10 lines when used without arguments. The last three lines are displayed in this way:

$ tail -n 3 group1 Or use tail -3 group1

dialout:x:18:root,henry
lp:x:19:lp
ftp:x:50:

Some versions of UNIX limit the size of the segment that can be extracted by tail with 

the -n option. To get over this problem, you can address lines from the beginning of the 

file instead of the end. The +count option allows you to do that, where count represents 

the line number from where the selection should begin. If a file contains 1000 lines, 

selecting the last 200 implies using

tail +801 foo 801th line onwards, possible with + symbol

 9.7.1 tail Options

Monitoring File Growth (-f) Many UNIX programs constantly write to the system’s 

log files as long as they are running. System administrators need to monitor the growth 

of these files to view the latest messages. tail offers the -f (follow) option for this 

purpose. This is how you can monitor the installation of Oracle by watching the growth 

of the log file install.log from another terminal:

tail -f /oracle/app/oracle/product/8.1/orainst/install.log

The prompt doesn’t return even after the work is over. With this option, you have to use 

the interrupt key to abort the process and exit to the shell.

Extracting Bytes Rather Than Lines (-c) POSIX requires tail to support the -c 

option followed by a positive or negative integer depending on whether the extraction 

is performed relative to the beginning or end of a file. Solaris supports this option only 

in its XPG4 version, but this is no problem in Linux:

tail -c -512 foo Copies last 512 bytes from foo

tail -c +512 foo Copies everything after skipping 511 bytes

das76205_Ch09_241-264.indd   248das76205_Ch09_241-264.indd   248 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 9: Simple Filters 249

Use tail -f when you run a program that continuously writes to a file, and you want to see 
how the file is growing. You have to terminate this command with the interrupt key.

 9.8  cut: Slitting a File Vertically

While head and tail are used to slice a file horizontally, you can slice a file vertically 

with the cut command. cut identifies both columns and fields. We’ll take up columns 

first.

Cutting Columns (-c) To extract specific columns, you need to follow the -c option 

with a list of column numbers, delimited by a comma. Ranges can also be specified using 

the hyphen. Here’s how we extract the first four columns of the group file:

$ cut -c1-4 group1 -c or -f option always required

root
bin:
user
adm:
dial
lp:x
ftp:

Note that there should be no whitespace in the column list. Moreover, cut uses a special 

form for selecting a column from the beginning and up to the end of a line:

cut -c -3,6-22,28-34,55- foo Must be an ascending list

The expression 55- indicates column number 55 to the end of the line. Similarly, -3 is 

the same as 1-3.

Cutting Fields (-f) The -c option is useful for fixed-length lines. Most UNIX files 

(like /etc/passwd and /etc/group) don’t contain fixed-length lines. To extract useful 

data from these files you’ll need to cut fields rather than columns.

cut uses the tab as the default field delimiter, but it can also work with a different 

delimiter. Two options need to be used here, -d for the field delimiter and -f for the 

field list. This is how you cut the first and third fields:

$ cut -d: -f1,3 group1
root:0
bin:1
users:200
adm:25
dialout:18
lp:19
ftp:50

Tip

das76205_Ch09_241-264.indd   249das76205_Ch09_241-264.indd   249 12/13/11   10:45 AM12/13/11   10:45 AM



250 Your UNIX/Linux: The Ultimate Guide

When you use the -f option, you shouldn’t forget to also use the -d option unless the 

file has the default delimiter (the tab).

Extracting User List from who Output cut can be used to extract the first word of 

a line by specifying the space as the delimiter. The example used in Section 2.12 now 

run in tandem with cut displays the list of users only:

$ who | cut -d” “ -f1 Space is the delimiter

root
romeo
juliet
project
andrew

If a user is logged in more than once, you have to do some further processing to display 

the list with  duplicate entries removed. We need to discuss two more filters (sort and 

uniq) before that can be achieved.

You must indicate to cut whether you are extracting fields or columns. One of the options -f 
or -c has to be specified. These options are really not optional; one of them is compulsory.

 9.9  paste: Pasting Files

What you cut with cut can be pasted back with paste—but vertically rather than 

horizontally. You can view two files side-by-side by pasting them:

paste foo1 foo2

Like cut, paste also uses the -d option to specify the delimiter, which by default is 

also the tab. paste has fewer applications than cut. We’ll discuss its most important 

option (-s), which is used to join lines. Consider this address book that contains details 

of three persons, with three lines for each:

$ cat addressbook
barry wood
woodb@yahoo.com
245-690-4004
charles harris
charles_harris@heavens.com
345-865-3209
james wilcocks
james.wilcocks@heavens.com
190-349-0743

The -s option joins lines in the same way vi’s J command does (5.7.3). Using this 

option on this file (with paste -s addressbook) would join all of these nine lines to 

Note

das76205_Ch09_241-264.indd   250das76205_Ch09_241-264.indd   250 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 9: Simple Filters 251

form a single line. This won’t be of much use, so we’ll learn to use the -d option with 

multiple delimiters to join three lines at a time.

If we specify the delimiter string as ::\n with -d, the delimiters are used in a 

circular manner. The first and second lines would be joined with the : as delimiter, and 

the same would be true for the second and third lines. The third and fourth lines would 

be separated by a newline. After the list is exhausted it is reused. This is exactly what 

we want:

$ paste -s -d”::\n” addressbook
barry wood:woodb@yahoo.com:245-690-4004
charles harris:charles_harris@heavens.com:345-865-3209
james wilcocks:james.wilcocks@heavens.com:190-349-0743

See how paste works with a single file to concatenate lines in a specified manner? 

Table data is often split with each column on a separate line, and in situations like these 

paste can be very useful.

 9.10  sort: Ordering a File

Sorting is the ordering of data in ascending or descending sequence. In UNIX, we use 

the sort command to sort complete lines or parts of them by specifying one or more 

keys. Like cut, sort identifies fields, and it can sort on specified fields. We’ll consider 

the important sort options by sorting the file shortlist. This is a text file containing 

five lines of a personnel database:

$ cat shortlist
2233:charles harris   :g.m.      :sales      :12/12/52:  90000
9876:bill johnson     :director  :production :03/12/50: 130000
5678:robert dylan     :d.g.m.    :marketing  :04/19/43:  85000
2365:john woodcock    :director  :personnel  :05/11/47: 120000
5423:barry wood       :chairman  :admin      :08/30/56: 160000

Each line has six fields delimited by a :. The details of an employee are stored in 

each line. A person is identified by emp-id, name, designation, department, date 

of birth, and salary (in the same order). The file has been deliberately designed in 

fixed format for easier readability. (You’ll be using an enlarged version of this file 

in Chapter 10.)

By default, sort reorders lines in ASCII collating sequence—whitespace first, 

then numerals, uppercase letters, and finally lowercase letters:

$ sort shortlist
2233:charles harris   :g.m.      :sales      :12/12/52:  90000
2365:john woodcock    :director  :personnel  :05/11/47: 120000
5423:barry wood       :chairman  :admin      :08/30/56: 160000
5678:robert dylan     :d.g.m.    :marketing  :04/19/43:  85000
9876:bill johnson     :director  :production :03/12/50: 130000

das76205_Ch09_241-264.indd   251das76205_Ch09_241-264.indd   251 12/13/11   10:45 AM12/13/11   10:45 AM



252 Your UNIX/Linux: The Ultimate Guide

Here, sorting starts with the first character of each line and proceeds to the next charac-

ter only when the characters in two lines are identical. Using options, you can alter the 

default ordering sequence and sort on multiple keys (fields).

 9.10.1  sort Options
The important sort options are summarized in Table 9.2. In this edition, we’ll use the -k 

(key) POSIX option to identify keys (the fields) instead of the +n and -n forms (where n 

is the field number) that were used in the previous edition. Unlike cut and paste, sort 

uses a contiguous string of spaces as the default field separator (a single tab in cut and 

paste). We’ll use the -t option to specify the delimiter.

Sorting on Primary Key (-k) Let’s now use the -k option to sort on the second field 

(name). The option should be -k 2:

$ sort -t: -k 2 shortlist
5423:barry wood       :chairman  :admin      :08/30/56: 160000
9876:bill johnson     :director  :production :03/12/50: 130000
2233:charles harris   :g.m.      :sales      :12/12/52:  90000
2365:john woodcock    :director  :personnel  :05/11/47: 120000
5678:robert dylan     :d.g.m.    :marketing  :04/19/43:  85000

The sort order can be reversed with the -r (reverse) option. The following sequence 

reverses the previous sorting order:

$ sort -t: -r -k 2 shortlist
5678:robert dylan     :d.g.m.    :marketing  :04/19/43:  85000
2365:john woodcock    :director  :personnel  :05/11/47: 120000
2233:charles harris   :g.m.      :sales      :12/12/52:  90000
9876:bill johnson     :director  :production :03/12/50: 130000
5423:barry wood       :chairman  :admin      :08/30/56: 160000

T A B L E  9 . 2  sort Options

Option         Description

-tchar         Uses delimiter char to identify fields

-k n                   Sorts on nth field

-k m,n                 Starts sort on mth field and ends sort on nth field

-k m.n                 Starts sort on nth column of mth field

-u                Removes repeated lines

-n             Sorts numerically

-r             Reverses sort order

-f    Folds lowercase to equivalent uppercase (case-insensitive sort)

-m list        Merges sorted files in list

-c             Checks if file is sorted

-o flname      Places output in file flname

das76205_Ch09_241-264.indd   252das76205_Ch09_241-264.indd   252 12/13/11   10:45 AM12/13/11   10:45 AM



Chapter 9: Simple Filters 253

sort combines options in a rather unusual way. The previous command sequence could 

also have been written as:

sort -t: -k 2r shortlist

Sorting on Secondary Key You can sort on more than one key; i.e., you can provide 

a secondary key to sort. If the primary key is the third field, and the secondary key the 

second field, then you need to specify for every -k option where the sort ends. This is 

done in this way:

$ sort -t: -k 3,3 -k 2,2 shortlist
5423:barry wood       :chairman  :admin      :08/30/56: 160000
5678:robert dylan     :d.g.m.    :marketing  :04/19/43:  85000
9876:bill johnson     :director  :production :03/12/50: 130000
2365:john woodcock    :director  :personnel  :05/11/47: 120000
2233:charles harris   :g.m.      :sales      :12/12/52:  90000

This sorts the file by designation and name. The -k 3,3 option indicates that sorting 

starts on the third field and ends on the same field.

Sorting on Columns You can also specify a character position within a field to be 

the beginning of a sort. If you are to sort the file according to the year of birth, then you 

need to sort on the seventh and eighth column positions within the fifth field:

$ sort -t: -k 5.7,5.8 shortlist
5678:robert dylan     :d.g.m.    :marketing  :04/19/43:  85000
2365:john woodcock    :director  :personnel  :05/11/47: 120000
9876:bill johnson     :director  :production :03/12/50: 130000
2233:charles harris   :g.m.      :sales      :12/12/52:  90000
5423:barry wood       :chairman  :admin      :08/30/56: 160000

The -k option also uses the form -k m.n where n is the character position in the mth 

field. So, -k 5.7,5.8 means that sorting starts on column 7 of the fifth field and ends 

on column 8.

Numeric Sort (-n) When sort acts on numerals, strange things can happen. When 

you sort the group file on the third field (containing the numeric group-id), you get a 

curious result:

$ sort -t: -k3,3 group1
root:x:0:root
bin:x:1:root,bin,daemon
dialout:x:18:root,henry
lp:x:19:lp
users:x:200:henry,image,enquiry 200 above 25!

adm:x:25:adm,daemon,listen
ftp:x:50:

das76205_Ch09_241-264.indd   253das76205_Ch09_241-264.indd   253 12/13/11   10:46 AM12/13/11   10:46 AM



254 Your UNIX/Linux: The Ultimate Guide

This is probably not what you expected, but the ASCII collating sequence places 200 above 

25 (0 has a lower ASCII value than 5). This can be overridden by the -n (numeric) option:

$ sort -t: -k3,3 -n group1
root:x:0:root
bin:x:1:root,bin,daemon
dialout:x:18:root,henry
lp:x:19:lp
adm:x:25:adm,daemon,listen
ftp:x:50:
users:x:200:henry,image,enquiry

Always use the -n option when you sort a file on a numeric field. If there are other sorting 
fields that require a plain ASCII sort, then affix an n to the column specification that requires 
numeric sort—like -k3,3n.

Removing Repeated Lines (-u) The -u (unique) option lets you remove repeated 

lines from a file. To find out the unique designations that occur in the file, cut out the 

designation field and pipe it to sort:

$ cut -d: -f3 shortlist | sort -u | tee desigx.lst
chairman
d.g.m.
director
g.m.

We used three commands to solve a text manipulation problem. Here, cut selects the 

third field from shortlist for sort to work on.

Merge-sort (-m) When sort is used with multiple filenames as arguments, it con-

catenates them and sorts them collectively. When large files are sorted in this way, 

performance often suffers. The -m (merge) option can merge two or more files that are 

sorted individually:

sort -m foo1 foo2 foo3

This command will run faster than the one used without the -m option only if the three 

files are sorted.

Saving sort Output (-o) Even though sort’s output can be redirected to a file, we 

can use its -o option to specify the output filename. Curiously, the input and output 

filenames can even be the same:

sort -o sortedlist -k 3 shortlist Output stored in sortedlist

sort -o shortlist shortlist Output stored in same file

We’ll need to use sort in all of the three examples at the end of this chapter.

Note

das76205_Ch09_241-264.indd   254das76205_Ch09_241-264.indd   254 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 9: Simple Filters 255

Commit to memory the default delimiter used by cut, paste, and sort. cut and paste use the 
tab, but sort uses a contiguous string of spaces as a single delimiter.

 9.11  uniq: Locate Repeated and Nonrepeated Lines

When you concatenate or merge files, you’ll face the problem of duplicate entries creeping 

in. You saw how sort removes them with the -u option. UNIX offers a special tool to 

handle these lines—the uniq command. Consider a sorted file dept.lst that includes 

repeated lines:

$ cat dept.lst
01:accounts:6213
01:accounts:6213
02:admin:5423
03:marketing:6521
03:marketing:6521
03:marketing:6521
04:personnel:2365
05:production:9876
06:sales:1006

uniq simply fetches one copy of each line and writes it to the standard output:

$ uniq dept.lst
01:accounts:6213
02:admin:5423
03:marketing:6521
04:personnel:2365
05:production:9876
06:sales:1006

Since uniq requires a sorted file as input, the general procedure is to sort a file and pipe 

its output to uniq. The following pipeline also produces the same output, except that 

the output is saved in a file:

sort dept.lst | uniq -  uniqlist

uniq is indeed unique; when provided with two filenames as arguments, uniq reads 

the first file and writes to the second. Here, it reads from standard input and writes to 

uniqlist.

 9.11.1  uniq Options
To select unique lines, it’s preferable to use sort -u, which does the job with a single com-

mand. But uniq has a few useful options that can be used to make simple database queries.

Tip

das76205_Ch09_241-264.indd   255das76205_Ch09_241-264.indd   255 12/13/11   10:46 AM12/13/11   10:46 AM



256 Your UNIX/Linux: The Ultimate Guide

Selecting the Nonrepeated Lines (-u) The -u option selects the unique lines in 

input—lines that are not repeated:

$ uniq -u dept.lst
02:admin:5423
04:personnel:2365
05:production:9876
06:sales:1006

Selecting the Duplicate Lines (-d) The -d (duplicate) option selects only one copy 

of the repeated lines:

$ uniq -d dept.lst
01:accounts:6213
03:marketing:6521

Counting Frequency of Occurrence (-c) The -c (count) option displays the fre-

quency of occurrence of all lines, along with the lines:

$ uniq -c dept.lst
2 01:accounts:6213
1 02:admin:5423
3 03:marketing:6521
1 04:personnel:2365
1 05:production:9876
1 06:sales:1006

This is an extremely useful option, and it is often used in tandem with sort to count 

occurrences. Consider the file shortlist where the third field represents the designation. 

To determine the number of people having the same designation, first cut out the third 

field with cut, sort it with sort, and then run uniq -c to produce a count:

$ cut -d: -f3 shortlist | sort | uniq -c
    1 chairman
    1 d.g.m.
    2 director
    1 g.m.

Later, you’ll find how perl and awk also handle this situation using their own resources. 

However, they require more code to do the same job. The second application (9.13.2) in 

our special examples section uses this feature to print a word-count list.

Like sort, uniq also accepts the output filename as an argument, but without using an 
option (unlike -o in sort). If you use uniq foo1 foo2, uniq simply processes foo1 and 
overwrites foo2 with its output. Never use uniq with two filenames unless you know what 
you are doing.

Caution

das76205_Ch09_241-264.indd   256das76205_Ch09_241-264.indd   256 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 9: Simple Filters 257

 9.12  tr: Translating Characters

So far, the commands have been handling either entire lines or fields. The tr (translate) 

filter manipulates individual characters in a line. More specifically, it translates characters 

using one or two compact expressions:

tr options expression1 expression2 standard input

Note that tr takes input only from standard input; it doesn’t take a filename as argu-
ment. By default, it translates each character in expression1 to its mapped counterpart in 

expression2. The first character in the first expression is replaced with the first character 

in the second expression, and similarly for the other characters.

Let’s use tr to replace the : with a ~ (tilde) and the / with a -. Simply specify 

two expressions containing these characters in the proper sequence:

$ tr ‘:/’ ‘~-’ < shortlist  | head -n 3
2233~charles harris   ~g.m.      ~sales      ~12-12-52~  90000
9876~bill johnson     ~director  ~production ~03-12-50~ 130000
5678~robert dylan     ~d.g.m.    ~marketing  ~04-19-43~  85000

Note that the lengths of the two expressions should be equal. If they are not, the longer 

expression will have unmapped characters (not in Linux). Single quotes are used here 

because no variable evaluation or command substitution is involved. It’s just as easy to 

define the two expressions as two separate variables, and then evaluate them in double 

quotes:

exp1=’:/’ ; exp2=’~-’
tr “$exp1” “$exp2” < shortlist

As with wild cards, tr also accepts ranges in the expressions. Special characters also 

need to be escaped.

Changing Case of Text Since tr doesn’t accept a filename as argument, the input 

has to be redirected from a file or a pipe. The following sequence changes the case of 

the first three lines from lower to upper:

$ head -n 3 shortlist | tr ‘[a-z]’ ‘[A-Z]’
2233:CHARLES HARRIS   :G.M.      :SALES      :12/12/52:  90000
9876:BILL JOHNSON     :DIRECTOR  :PRODUCTION :03/12/50: 130000
5678:ROBERT DYLAN     :D.G.M.    :MARKETING  :04/19/43:  85000

Reversing the two expressions will convert case from upper to lower. tr is often used 

to change the case of a file’s contents.

Using ASCII Octal Values and Escape Sequences Like echo, tr also supports the 

use of octal values and escape sequences to represent characters. This facility allows us 

to use nonprintable characters (like LF) in the expression. So, to have each field on a 

separate line, replace the : with the LF character (octal value 012):

das76205_Ch09_241-264.indd   257das76205_Ch09_241-264.indd   257 12/13/11   10:46 AM12/13/11   10:46 AM



258 Your UNIX/Linux: The Ultimate Guide

$ tr ‘:’ ‘\012’ < shortlist | head -n 6 You can use \n

2233 instead of \012

charles harris
g.m.
sales
12/12/52
90000

If you reverse the two expressions, you’ll make the newline character “visible.”

 9.12.1 tr Options
Deleting Characters (-d) The file shortlist has delimited fields and the date for-

matted in readable form with a /. In nondatabase setups, delimiters are not used, and the 

date is generally represented as a six-character field in the format mmddyy. To convert 

this file to the traditional format, use the -d (delete) option to delete the characters : and 

/ from the file. The following command does it for the first three lines:

$ tr -d ‘:/’ < shortlist | head -n 3
2233charles harris   g.m.      sales 121252 90000
9876bill johnson     director  production 031250 130000
5678robert dylan     d.g.m.    marketing 041943 85000

Compressing Multiple Consecutive Characters (-s) UNIX tools work best with 

fields rather than columns (as above), so it’s preferable to use files with delimited fields. 

In that case, lines need not be of fixed length; you can eliminate all redundant spaces with 

the -s (squeeze) option, which squeezes multiple consecutive occurrences of its argument 

to a single character. We can then have compressed output with lines in free format:

$ tr -s ‘ ‘ <shortlist | head -n 3
2233:charles harris :g.m. :sales :12/12/52: 90000
9876:bill johnson :director :production:03/12/50:130000
5678:robert dylan :d.g.m. :marketing :04/19/43: 85000

Unless you are using awk, you can use tr -s to compress all contiguous spaces in the output 
of several UNIX commands and then use cut to extract individual fields from this compressed 
output. For instance, you can cut out any field from the listing. Some of the questions at the 
end of the chapter expect you to perform this compression.

Complementing Values of Expression (-c) Finally, the -c (complement) option 

complements the set of characters in the expression. Thus, to delete all characters except 

the : and /, you can combine the -d and -c options:

$ tr -cd ‘:/’ < shortlist
:::://::::://::::://::::://::::://:$ _

Unusual output indeed! tr has deleted all characters except the : and the / from its input. 

The appearance of the prompt at the immediate end of output shows that the newline 

Tip

das76205_Ch09_241-264.indd   258das76205_Ch09_241-264.indd   258 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 9: Simple Filters 259

character has also not been spared. Any idea how to find out the number of times a 

specific character occurs in a stream?

Study these tr options closely, and you’ll discover many areas where you can 

apply them. We’ll be using some of the tr options in Section 9.13.

 9.13  Applying the Filters

You have now arrived at the examples section, well-armed with knowledge of the basic 

UNIX filters. There are another four that we have yet to cover (grep, sed, awk, and perl), 

but the ones we know already can do a lot of work for us. In this section, we’ll develop 

three pipeline sequences to solve content manipulating tasks. You need to put in a great 

deal of effort to accomplish these tasks using procedural languages like C and Java.

 9.13.1 Listing the Five Largest Files in the Current Directory
The ls -l command shows the file size in the listing, but ls has no option to order 

them by size. We have to use a combination of filters to perform the task of listing the 

five largest files in the current directory. Fig. 9.2 shows the listing that we’ll use as input. 

We’ll have to ignore the first output line and order the list in reverse numeric sequence 

on the fifth field. We’ll print simply two fields: the filename and size.

The delimiter in the listing is a contiguous series of space characters. This is the 

default delimiter of sort, but not of cut (being a tab). Before using cut, we have to use 

tr to compress contiguous whitespace to a single space. This job requires a pipeline, 

so let’s progressively build it:

1. Reverse-sort this space-delimited output in numeric sequence on the fifth field. 

This requires the use of the -n and -r options of sort:

    ls -l | sort -k 5 -nr

F I G U R E  9 . 2  Listing Used as Input to List Five Largest Files

$ ls -l

total 20896

-rw-------    1 sumit    sumit 165143 Jul 12 11:59 PKI.pdf

-rw-rw-r--    1 sumit    sumit 36506 Jul 14 10:40 UsingSCCS.html

-rw-------    1 sumit    sumit 163381 Jul 11 18:28 adv_bsd_ipc-tutorial.ps

-rw-rw-r--    1 sumit    sumit 8089286 Jul 10 20:04 bec.ps

-rw-------    1 sumit    sumit 76083 Jul 11 18:26 bsd_sockets.pdf

-rw-------    1 sumit    sumit 5518553 Jul 11 22:21 cgi_tvcc.pdf

-rw-------    1 sumit    sumit 5598592 Aug 25 15:53 nowsms.exe

-rw-------    1 sumit    sumit 979367 Jul 10 21:30 putty.zip

-rw-------    1 sumit    sumit 43984 Jul 11 20:43 rcs.ps.gz

-rw-------    1 sumit    sumit 26665 Jul 11 20:42 sccs_allman.ps.gz

-rw-rw-r--    1 sumit    sumit 167690 Jul 17 21:07 sedfaq.txt

das76205_Ch09_241-264.indd   259das76205_Ch09_241-264.indd   259 12/13/11   10:46 AM12/13/11   10:46 AM



260 Your UNIX/Linux: The Ultimate Guide

2. Extract the first five lines from the sorted output:

    ls -l | sort -k 5 -nr | head -n 5

3. Squeeze multiple spaces to a single space:

    ls -l | sort -k 5 -nr | head -n 5 | tr -s “ “

4. Cut the fifth and last fields:

    ls -l | sort -k 5 -nr | head -n 5 | tr -s “ “ |  cut -d” “ -f5,9

The output now shows the five largest files in the current directory in the form filesize filename:

$ ls -l | sort -k 5 -nr | head -n 5 | tr -s “ “ |  cut -d” “ -f5,9
8089286 bec.ps
5598592 nowsms.exe
5518553 cgi_tvcc.pdf
979367 putty.zip
167690 sedfaq.txt

Piping this output to the printf command will let us format the output, and, using awk, 

we can even have a total count of the size. We’ll have to wait until Chapter 12 before 

we can do that.

 9.13.2  Creating a Word-Usage List
Document authors sometimes like to see the words they use along with the frequency of 

their occurrence. For this to be possible, each word has to be placed in a separate line. 

tr can do that by converting all spaces and tabs (octal 011) to newlines:

tr “ \011” “\012\012” < foo1                        Space is \040

There’s a space before \011; we won’t be displaying the symbol subsequently. If we 

define a word as a contiguous group of alphabetic characters, we have to use tr again to 

delete all nonalphabetic characters (apart from the newline) from the output of the first 

tr command. This requires the use of the complementary (-c) and delete (-d) options:

tr “ \011” “\012\012” < foo1 | tr -cd “[a-zA-Z\012]”

You now have a list of words, with each word on a separate line. Now, sort this output 

and pipe it to uniq -c:

$ tr “ \011” “\012\012” < foo1 | tr -cd “[a-zA-Z\012]” | sort | uniq -c
     32 Apache
     18 DNS
     10 Directory
     16 FQDN
     25 addresses
     56 directory

das76205_Ch09_241-264.indd   260das76205_Ch09_241-264.indd   260 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 9: Simple Filters 261

You had to use four commands to display the word count. You’ll need two 

more commands to sort the list in reverse numeric sequence and print it in three 

columns:

$ tr “ \011” “\012\012” < foo1 | tr -cd “[a-zA-Z\012]” | sort | uniq -c \
> sort -nr | pr -t -3
     56 directory 25 addresses 16 FQDN
     32 Apache 18 DNS 10 Directory

For the sake of readability, we split the command line into two lines by using \ to escape 

the [Enter] key.

 9.13.3  Finding Out the Difference between Two Password Files
When moving a set of users to another machine, the file the system administrator needs 

most is /etc/passwd of both machines. Some users may already have accounts on these 

machines, but some have to be created. These files often have hundreds of lines, but 

we’ll work with smaller versions:

$ cat passwd1
joe:!:501:100:joe bloom:/home/henry:/bin/ksh
amadeus:x:506:100::/home/amadeus:/bin/ksh
image:!:502:100:The PPP server account:/home/image:/usr/bin/ksh
bill:!:503:100:Reader’s Queries:/home/bill:/bin/sh
juliet:x:508:100:juliet:/home/julie:/bin/csh
charlie:x:520:100::/home/charlie:/usr/bin/ksh
romeo:x:601:100::/home/romeo:/usr/bin/ksh
ftp:x:602:50:anonymous ftp:/home/ftp:/bin/csh
$ cat passwd2
henry:!:501:100:henry blofeld:/home/henry:/bin/ksh
amadeus:x:506:100::/home/amadeus:/bin/ksh
image:!:502:100:The PPP server account:/home/image:/usr/bin/ksh
bill:!:503:100:Reader’s Queries:/home/bill:/bin/sh
julie:x:508:100:julie andrews:/home/julie:/bin/csh
jennifer:x:510:100:jennifer jones:/home/jennifer:/bin/bash
charlie:x:520:100::/home/charlie:/usr/bin/ksh
romeo:x:601:100::/home/romeo:/usr/bin/ksh
harry:x:602:100:harry’s music house:/home/harry:/bin/csh

Each file serves a group of users (the first field), but what concerns us is locating those 

users in the first file who don’t have a presence in the second file. Let’s first cut out the 

first field of passwd1 and save the sorted output:

cut -f1 -d: passwd1 | sort > temp

We could perform a similar exercise with the second file too:

cut -d: -f1 passwd2 | sort > temp2

das76205_Ch09_241-264.indd   261das76205_Ch09_241-264.indd   261 12/13/11   10:46 AM12/13/11   10:46 AM



262 Your UNIX/Linux: The Ultimate Guide

We now have to compare these two files with comm -23. Since these commands are also 

filters, we should be able to do this part of the job in one invocation without creating 

the temporary file temp2:

$ cut -d: -f1 passwd2 | sort | comm -23 temp - ; rm temp
ftp
joe
juliet

comm -23 lists only those lines that are in the first file, and the - symbol ensured that the 

output from sort was supplied as standard input. The list shows three users for whom 

the administrator has to create accounts with the useradd command. Since the admin-

istrator is an expert shell programmer, she’ll use a script to do this job automatically!

Pipelining represents one of the most important aspects of the UNIX system. It 

implements the UNIX philosophy that difficult jobs can be done by combining filters 

that do simple jobs in isolation. The UNIX manual doesn’t tell you the combinations of 

filters required for each task, and this makes pipelines difficult to conceive initially. A 

lot is left to knowledge of these filters, perseverance, and imagination.

S U M M A R Y

The pr command formats input to print headers and page numbers but can also drop them 

(-t). The output can be numbered (-n), double-spaced (-d), and offset from the left (-o).

We discussed three file comparison utilities. cmp tells you where the first differ-

ence was encountered. comm shows the lines that are common and optionally shows 

you lines unique to either or both sorted files. diff lists file differences as a sequence 

of instructions.

head displays the beginning of a file, while tail displays the end. Unlike head, 

tail can also be used with a line number (with the + option) from where extraction 

should begin. It is most useful in monitoring the growth of a file (-f).

cut selects columns (-c) from its input, as well as fields (-f). The field numbers 

have to be a comma-delimited sequence of ascending numbers with hyphens to denote 

ranges.

You can join two files laterally with paste. By using the delimiter in a circular 

manner, paste can join multiple lines into one.

With sort, you can sort on one or more fields or keys (-k) and columns within these 

fields. You can sort numerically (-n), reverse the sort order (-r), make a case-insensitive 

sort (-f), merge two sorted files (-m), and remove repeated lines (-u).

uniq removes repeated lines, but can also select them as well as nonrepeated lines. 

The command is often combined with sort, which orders the input first.

tr translates characters using two expressions, but it only accepts standard input. 

It can be used to change the case of letters. You can compress multiple consecutive oc-

currences (-s) and delete a specific character (-d). You can also use it with ASCII octal 

values and escape sequences to transform nonprintable characters.

das76205_Ch09_241-264.indd   262das76205_Ch09_241-264.indd   262 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 9: Simple Filters 263

S E L F - T E S T

Some questions use the file shortlist, whose contents are shown in Section 9.10.
9.1 How will you (i) doublespace a file, (ii) produce a list of all files in the current 

directory without headers but in three columns?

9.2  How will you display only the lines common to two files?

9.3  The command cmp foo1 foo2 displays nothing. What does that indicate?

9.4  How does head display its output when used with multiple filenames?

9.5  How do you display the ps output without the header line?

9.6  How do you display the length of the first line of shortlist in a message used 

with the echo statement?

9.7  A program, a.out, continuously writes to a file. How do you run the program 

so that you can monitor the growth of this file from the same terminal?

9.8  Explain why this command won’t work: cut -d: -c1 -f2 foo.

9.9  Devise a sequence to reset the PATH variable so that the first directory is removed 

from its list.

9.10  How will you save only the year from the date output in a variable?

9.11  Write a sort sequence to order shortlist on the month of birth.

9.12  Produce from shortlist a list of the birth years along with the number of people 

born in that year.

9.13  Generate a numbered code list for the departments in shortlist in the form 

code_number code_description (like 1 admin).

9.14  How do you remove repeated lines from an unsorted file where the repeated lines 

are (i)  contiguous, (ii) not contiguous?

9.15  How do you convert the contents of the file shortlist to uppercase?

E X E R C I S E S

9.1 Two lists, foo1 and foo2, contain names of users. How do you create a third list 

of users who are present in foo2 but absent in foo1? When will the command 

sequence not work properly?

9.2  How do you compare the contents of the file foo with the output of a program 

named a.out without saving the output to disk?

9.3  How do you select from a file (i) lines 5 to 10, (ii) second-to-last line?

9.4  How will you use pr, sort, and cut to read a file backwards?

9.5  How do you extract the names of the users from /etc/passwd after ignoring the 

first 10 entries?

9.6  How do you display a list of all processes without the ps header line where 

processes with the same name are grouped together?

9.7  Frame an alias that invokes vi with the last modified file in the current directory.

9.8  How do you set the length of a line in shortlist to a variable?

9.9  How will you save the last two digits of the year from the date output in a 

variable?

9.10  How do you display a listing of all directories in the PATH list?

das76205_Ch09_241-264.indd   263das76205_Ch09_241-264.indd   263 12/13/11   10:46 AM12/13/11   10:46 AM



264 Your UNIX/Linux: The Ultimate Guide

9.11  Devise a sort command to order the file /etc/passwd on GID (primary) and 

UID (secondary) so that users with the same GID are placed together. Users with 

a lower UID should be placed higher in the list.

9.12  How do you display the date output with each field on a separate line? How do 

you now combine the fields to get back the original output?

9.13  How will you find out the number of times the character ? occurs in a file?

9.14  Run the script command, execute a few commands, and then terminate script. 

How do you now remove the [Ctrl-m] character at the end of most lines?

9.15  List from /etc/passwd the UID and the user having the highest UID.

9.16  You have two files, foo1 and foo2, copied from /etc/passwd on two machines. 

Specify the steps needed to print a list of users who are (i) present in foo1 but 

not in foo2, (ii) present in foo2 and not in foo1, (iii) present in both files.

9.17  Assuming that a user may be logged in more than once, how do you (i) list only 

those users, (ii) mail root a sorted list of all users currently logged in, where a 

user is listed only once?

9.18  How are these two commands similar and different? sort -u foo ; uniq foo.

9.19  A feature provided in a user’s startup file appends the output of the date command 

to a file foo whenever a user logs in. How can the user print a report showing 

the day along with the number of times she logged in on that day?

9.20  Devise a pipeline sequence to display a count of the processes on your system 

in the form count process_name.

9.21  You need to replicate a directory structure bar1 to an empty structure bar2, 

where both directories are at the same hierarchical level.

 (i) Describe the sequence of steps needed to achieve this.

 (ii) How do you verify that the directory structures are identical?

 (iii) Describe three situations when the sequence won’t work properly.

         (HINT: You need to use find, but its output is not sorted.)

das76205_Ch09_241-264.indd   264das76205_Ch09_241-264.indd   264 12/13/11   10:46 AM12/13/11   10:46 AM



265

10 
C H A P T E R  10

Filters Using Regular 
Expressions—grep and sed

You often need to search a file for a pattern, either to see the lines containing 

(or not containing) it or to have it replaced with something else. This chapter 

discusses two important filters that are specially suited for these tasks—grep and sed. 

The grep command takes care of all of the search requirements you may have. sed 

goes further and can even manipulate individual characters in a line. In fact, sed can do 

several things, some of them quite well.

This chapter also takes up one of the fascinating features of UNIX—regular 
expressions. When discussing more and  vi, we observed that the search patterns in 

those programs can also take on special expressions. In this chapter, you’ll see regular 

expressions in all their manifestations. These discussions should prepare you well for 

awk (Chapter 12) and perl (Chapter 14) because they too use these expressions.

  Objectives
 • Use grep to search a file for a pattern and display both matching and nonmatching 

lines.

 • Learn the various grep options to display a count, line numbers, or filenames.

 • Understand the concept of a regular expression as a mechanism for matching multiple 

similar patterns.

 • Learn the significance of the characters of the Basic Regular Expression (BRE) set.

 • Learn the significance of the characters of the Extended Regular Expression (ERE) set.

 • Use sed to edit an input stream and understand its addressing mechanism.

 • Understand the substitution feature and how it is enhanced when used with regular 

expressions.

 • Learn the significance of the repeated and remembered patterns.

 • Use the interval regular expression (IRE) to locate or replace patterns at specific 

locations.

 • Use the tagged regular expression (TRE) to use part of the source pattern in the 

target pattern.

 • Use the IRE and TRE to perform content manipulating tasks in a special examples 

section.

das76205_Ch10_265-295.indd   265das76205_Ch10_265-295.indd   265 12/13/11   10:46 AM12/13/11   10:46 AM



266 Your UNIX/Linux: The Ultimate Guide

 10.1 The Sample Database

In this chapter and in the ones dealing with awk and shell programming, you’ll often 

refer to the file emp.lst. Sometimes, you’ll use another file or two derived from it. Let’s 

take a close look at the file and understand the organization:

$ cat emp.lst
2233:charles harris :g.m. :sales :12/12/52: 90000
9876:bill johnson :director :production :03/12/50: 130000
5678:robert dylan :d.g.m. :marketing :04/19/43: 85000
2365:john woodcock :director :personnel :05/11/47: 120000
5423:barry wood :chairman :admin :08/30/56: 160000
1006:gordon lightfoot :director :sales :09/03/38: 140000
6213:michael lennon :g.m. :accounts :06/05/62: 105000
1265:p.j. woodhouse :manager :sales :09/12/63: 90000
4290:neil o’bryan :executive :production :09/07/50: 65000
2476:jackie wodehouse :manager :sales :05/01/59: 110000
6521:derryk o’brien :director :marketing :09/26/45: 125000
3212:bill wilcocks :d.g.m. :accounts :12/12/55: 85000
3564:ronie trueman :executive :personnel :07/06/47: 75000
2345:james wilcox :g.m. :marketing :03/12/45: 110000
0110:julie truman :g.m. :marketing :12/31/40: 95000

The first five lines of this file were used as the file shortlist in the section on sort 

(9.10). The significance of the fields was also explained there, but we’ll recount it just 

the same. This is a fixed-format text file containing 15 lines of a personnel database. 

There are six colon-delimited fields—emp-id, name, designation, department, date of 

birth, and salary.

 10.2 grep: Searching for a Pattern

UNIX has a special family of commands for handling search requirements, and the 

principal member of this family is the grep command. grep scans its input for a pat-

tern, and can display the selected pattern, the line numbers, or the filenames where the 

pattern occurs. The command uses the following syntax:

grep options pattern filename(s)

grep searches for pattern in one or more filename(s), or the standard input if no filename 

is specified. The first argument (barring the option) is the pattern, and the ones remain-

ing are filenames. Let’s use grep to display lines containing the string sales from the 

sample database, emp.lst:

$ grep “sales” emp.lst
2233:charles harris :g.m. :sales :12/12/52: 90000
1006:gordon lightfoot :director :sales :09/03/38: 140000
1265:p.j. woodhouse :manager :sales :09/12/63: 90000
2476:jackie wodehouse :manager :sales :05/01/59: 110000

das76205_Ch10_265-295.indd   266das76205_Ch10_265-295.indd   266 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 267

Because grep is also a filter, it can search its standard input for the pattern and store 

the output in a file:

who | grep henry > foo

When grep is used with multiple filenames, it displays the filenames along with the 

output. In the next example, grep searches two files. Don’t bother about what they 

contain; just observe how each line is preceded by the filename:

$ grep “director” emp1.lst emp2.lst
emp1.lst:1006:gordon lightfoot :director :sales :09/03/38:140000
emp1.lst:6521:derryk o’brien :director :marketing :09/26/45:125000
emp2.lst:9876:bill johnson :director :production :03/12/50:130000
emp2.lst:2365:john woodcock :director :personnel :05/11/47:120000

To suppress the filenames, you can use cut to select all but the first field using grep as 

its input. Alternatively, you can also make grep ignorant of the source of its input by 

using cat emp[12].lst | grep “director”.

 10.2.1 Quoting in grep
Though we have used the pattern both with (“sales”) and without quotes (henry), it’s 

always safe to quote the pattern. Quoting is essential if the search string consists of 

more than one word or uses any of the shell’s characters like *, $, and so on. Let’s use 

a two-word string both within and without quotes:

$ grep gordon lightfoot emp.lst
grep: lightfoot: No such file or directory
emp.lst:1006:gordon lightfoot:director :sales     :09/03/38:140000
$ _
$ grep ‘gordon lightfoot’ emp.lst
1006:gordon lightfoot:director :sales     :09/03/38:140000

In the first example, lightfoot was interpreted as a filename, but grep could locate 

gordon in emp.lst. The second example solves the problem by quoting the string. 

We used single quotes here, but this technique won’t do if we use grep to locate 

neil o’bryan from the file. Recall that double quotes protect single quotes:

$ grep ‘neil o’bryan’ emp.lst
> [Ctrl-c] Shell’s PS2 at work here

$ grep “neil o’bryan” emp.lst
4290:neil o’bryan    :executive:production:09/07/50: 65000

When quoting patterns, the shells of the Bourne family issue a > if the closing quote is 

absent in the line. The C shell simply outputs the error message Unmatched ‘.

Quote the pattern used with grep if it contains multiple words or special characters that can 
be interpreted otherwise by the shell. You can generally use either single or double quotes. 
However, if the special characters in the pattern require command substitution or variable 
evaluation to be performed, you must use double quotes.

Note

das76205_Ch10_265-295.indd   267das76205_Ch10_265-295.indd   267 12/13/11   10:46 AM12/13/11   10:46 AM



268 Your UNIX/Linux: The Ultimate Guide

 10.2.2 When grep Fails
Like cmp, grep can also behave silently. It simply returns the prompt when the pattern 

can’t be located:

$ grep president emp.lst
$ _ president not found

There’s more to it here than meets the eye. The command failed because the string 

president couldn’t be located. Though the feature of scanning a file for a pattern is 

available in both sed and awk, these commands are not considered to fail if they can’t 

locate a pattern. find also doesn’t fail if no file is found.

Don’t, however, draw the wrong conclusion from the preceding behavioral pattern 

of grep. The silent return of the shell prompt is no evidence of failure. In fact, the silent 

behavior of cmp denotes success. Success or failure is denoted by the exit status (7.5) 
that is stored in a special variable ($?) when a command has finished execution. The 

if conditional and while loop test this exit status to control the flow of execution. The 

exit status will be examined and applied in Chapter 13 featuring shell programming.

 10.3 grep Options

grep is one of the most important UNIX commands, and you must know the options 

that POSIX requires grep to support. Table 10.1 shows the POSIX options. Linux 

supports all of these options, but Solaris has two versions of grep (in /usr/bin and 

/usr/xpg4/bin), and between them they support all POSIX options.

Ignoring Case (-i) When you look for a name but are not sure of the case, grep 

offers the -i (ignore) option which ignores case for pattern matching:

T A B L E  1 0 . 1  grep Options

Option Significance

-i Ignores case for matching
-v Doesn’t display lines matching expression
-n Displays line numbers along with lines
-c Displays count of number of occurrences
-l Displays list of filenames only
-e exp Specifies expression exp with this option. Can use multiple times.

Also used for matching expression beginning with a hyphen.
-x Matches pattern with entire line (doesn’t match embedded patterns)

-f file Takes patterns from file, one per line
-E Treats pattern as an extended regular expression (ERE)
-F Matches multiple fixed strings (in fgrep-style)

-n Displays line and n lines above and below (Linux only)

-A n Displays line and n lines after matching lines (Linux only)

-B n Displays line and n lines before matching lines (Linux only)

das76205_Ch10_265-295.indd   268das76205_Ch10_265-295.indd   268 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 269

$ grep -i ‘WILCOX’ emp.lst
2345:james wilcox    :g.m.     :marketing :03/12/45:110000

Deleting Lines (-v) grep can also play an inverse role; the -v (inverse) option selects 

all lines except those containing the pattern. Thus, you can create a file otherlist 

containing all but directors:

$ grep -v ‘director’ emp.lst > otherlist
$ wc -l otherlist
     11 otherlist There were four directors initially

More often than not, when we use grep -v, we also redirect its output to a file as a 

means of getting rid of unwanted lines. Obviously, the lines haven’t been deleted from 

the original file as such.

The -v option removes lines from grep’s output, but it doesn’t actually change the argument 
file. This option is frequently used with redirection.

Displaying Filenames (-l) Programmers often use the -l (list) option to locate files 

where a variable or system call has been used. You can easily find out the C programs 

that use the fork system call:

$ grep -l fork *.c
fork.c:   printf(“Before fork\n”);
fork.c:   pid = fork();                    /* Replicates current process */
orphan.c:   if ((pid = fork()) > 0)        /* Parent */
wait.c:   switch(fork()) {

Assuming that the pattern can occur multiple times in a file, can you sort this file list 

in order of their modification or access time? A variation of this exercise is featured at 

the end of this chapter. 

Matching Multiple Patterns (-e) The -e option has two functions—to match mul-

tiple patterns and patterns beginning with a hyphen. Linux supports both functions, but 

Solaris offers this option only with the XPG4 version. This is how you match multiple 

patterns by using -e multiple times:

$ grep -e woodhouse -e wood -e woodcock emp.lst
2365:john woodcock :director :personnel :05/11/47:120000
5423:barry wood :chairman :admin :08/30/56:160000
1265:p.j. woodhouse :manager :sales :09/12/63: 90000

You could question the wisdom of entering such a long command line when the patterns 

don’t differ much from one another. Yes, grep supports sophisticated pattern matching 

techniques that can display the same lines but with a single expression. This is the ideal 

forum for regular expressions to make their entry.

Note

das76205_Ch10_265-295.indd   269das76205_Ch10_265-295.indd   269 12/13/11   10:46 AM12/13/11   10:46 AM



270 Your UNIX/Linux: The Ultimate Guide

Linux

Patterns Beginning with a - (-e) What happens when you look for a pattern that 

begins with a hyphen? This is how the non-XPG4 version of grep on Solaris behaves:

$ grep “-mtime” /var/spool/cron/crontabs/*
grep: illegal option -- m
grep: illegal option -- t
grep: illegal option -- m
grep: illegal option -- e
Usage: grep -hblcnsviw pattern file . . .

grep treats -mtime as a combination of five options of which only one is legitimate (-i); 

the others are “illegal.” To locate such patterns, you must use the -e option:

$ grep -e “-mtime” /var/spool/cron/crontabs/*
romeo:55 17 * * 4 find / -name core -mtime +30 -print

Don’t forget to use the XPG4 version of grep when using Solaris. Linux users need 

not bother.

How do you use grep if you don’t know the location of the file to be searched? If you know 
the directory structure where the file resides, then you can use find’s -exec option in tandem 
with grep. The following command locates all C programs in $HOME that contain the line 
“#include <fcntl.h>”:

find $HOME -name “*.c” -exec grep -l “#include <fcntl.h>” {} \; > foo

This saves the absolute pathnames of the files in foo. To extract the lines as well, use the tech-
nique that was discussed as a Tip in Section 6.7: 

find $HOME -name “*.c” -exec grep “#include <fcntl.h>” {} /dev/null \;

This is the power of UNIX!

Printing the Neighborhood   GNU grep has a nifty option (-n where n is an integer) 

that locates not only the matching line, but also a certain number of lines above and 

below it. For instance, you may want to know what went before and after the foreach 

statement that you used in a perl script:

$ grep -1 “foreach” count.pl One line above and below

print (“Region List\n”) ;
foreach $r_code sort (keys(%regionlist)) {
   print (“$r_code : $region{$r_code} : $regionlist{$r_code}\n”) ;

It is easier to identify the context of a matched line when the immediate neighborhood 

is also presented. If you need to display more lines on either side, then use the -A and 

-B options.

Tip

das76205_Ch10_265-295.indd   270das76205_Ch10_265-295.indd   270 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 271

 10.4 Basic Regular Expressions (BRE)—An Introduction

View the file emp.lst (10.1) once again, and you’ll find some names spelled in a similar 

manner—like trueman and truman, wilcocks and wilcox. Locating both truman and 

trueman without using grep twice is a problem:

$ grep truman emp.lst
0110:julie truman    :g.m.     :marketing :12/31/40: 95000

It’s also tedious to specify each pattern separately with the -e option. This is where 

searches in UNIX become truly remarkable. Using a regular expression, you can locate 

a “truman” without knowing exactly how the name is spelled.

A regular expression uses an elaborate metacharacter set that overshadows the 

shell’s wild cards. grep uses this expression to match multiple similar patterns. Unlike 

wild cards, however, a regular expression is a feature of the command that uses it and 

has nothing to do with the shell. Some of the characters used by regular expressions are 

also meaningful to the shell—enough reason why these expressions should be quoted.

Regular expressions take care of some common query and substitution require-

ments. You may want the system to present a list of similar names, so you can select 

exactly the one you require. Or you may want to replace multiple spaces with a single 

space, or display lines that begin with a #. You may even be looking for a string at a 

specific column position in a line. All of this is possible (and much more) with regular 

expressions as you’ll discover in the three rounds of discussions that feature the subject 

in this chapter.

POSIX identifies regular expressions as belonging to two categories—basic and 

extended. grep supports basic regular expressions (BRE) by default and extended 
regular expressions (ERE) with the -E option. sed supports only the BRE set. We’ll first 

start with a minimal treatment of the BRE set (Table 10.2) and then take up the ERE set 

in the next section. We’ll later expand the coverage of the BRE when we discuss sed.

Regular expressions are interpreted by the command and not by the shell. Quoting ensures 
that the shell isn’t able to interfere and interpret the metacharacters in its own way.

 10.4.1 The Character Class
A regular expression lets you specify a group of characters enclosed within a pair of 

rectangular brackets, [ ]. The match is then performed for any single character in the 

group. This form resembles the one used by the shell’s wild cards. Thus, the expression

[od] Either o or d

matches either an o or a d. This property can now be used to match woodhouse and 

wodehouse. These two patterns differ in their third and fourth character positions—od 

in one and de in the other. To match these two strings, we’ll have to use the model [od]
[de], which in fact matches all of these four patterns:

od   oe   dd   de

Note

das76205_Ch10_265-295.indd   271das76205_Ch10_265-295.indd   271 12/13/11   10:46 AM12/13/11   10:46 AM



272 Your UNIX/Linux: The Ultimate Guide

T A B L E  1 0 . 2  The Basic Regular Expression (BRE) Character Set Used by grep, sed, 
and awk

Pattern Matches

* Zero or more occurrences of the previous character
. A single character
[pqr] A single character p, q, or r
[c1-c2] A single character within the ASCII range represented by c1 and c2
[^pqr] A single character which is not a p, q, or r
^pat Pattern pat at beginning of line
pat$ Pattern pat at end of line

Examples

g* Nothing or g, gg, ggg, etc.
gg* g, gg, ggg, etc.
.* Nothing or any number of characters
[1-3] A digit between 1 and 3
[^a-zA-Z] A nonalphabetic character
bash$ bash at end of line
^bash$ bash as the only word in line
^$ Lines containing nothing

The first and fourth are relevant to the present problem. Using the character class, the 

regular expression required to match woodhouse and wodehouse should be this:

wo[od][de]house

Let’s use this regular expression with grep:

$ grep “wo[od][de]house” emp.lst
1265:p.j. woodhouse :manager :sales :09/12/63: 90000
2476:jackie wodehouse :manager :sales :05/01/59:110000

You can also use ranges in the character class. The pattern [a-zA-Z0-9] matches a 

single alphanumeric character. However, you can’t match an alphabetic character with 

the expression [A-z] because between Z and a there are a number of other nonalphabetic 

characters as well (the caret, for example). You can check this with Appendix G.

Negating a Class (^) Regular expressions use the ̂  (caret) to negate the character class, 

while the shell uses the ! (bang). When the character class begins with this character, all 

characters other than the ones grouped in the class are matched. So, [^a-zA-Z] matches 

a single nonalphabetic character string.

The character class feature is similar to the one used in wild cards except that negation of the 
class is done by a ^ (caret), while in the shell it’s done by the ! (bang). As with wild cards, the 
character class is the only way you can negate a single character. For instance, [^p] represents 
any character other than p.Note

das76205_Ch10_265-295.indd   272das76205_Ch10_265-295.indd   272 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 273

 10.4.2 The *
The * (asterisk) refers to the immediately preceding character. However, its interpretation 

is the trickiest of the lot as it bears absolutely no resemblance whatsoever with the * used 

by wild cards or DOS (or the * used by Amazon and eBay in their search strings). Here, 

it indicates that the previous character can occur many times, or not at all. The pattern

e*

matches the single character e or any number of es. Because the previous character may 

not occur at all, it also matches a null string. Thus, apart from this null string, it also 

matches the following strings:

e    ee    eee    eeee  .....

Mark the keywords “zero or more occurrences of the previous character” that are used 

to describe the significance of the *. Don’t make the mistake of using e* to match a 

string beginning with e; use ee* instead.

The * of regular expressions has nothing in common with its counterpart in wild cards. The 
regular expression s* indicates that s might not occur at all! C programmers should note that 
s*printf matches sprintf, ssprintf, sssprintf, and so forth, but it also matches printf 
because the previous character, s, which the * refers to, may not occur at all.

How do you now match trueman and truman? The first pattern contains an e, while the 

other pattern doesn’t. This means that e may or may not occur at all in the expression, 

and the regular expression true*man matches the two patterns:

$ grep “true*man” emp.lst
3564:ronie trueman :executive :personnel :07/06/47: 75000
0110:julie truman :g.m. :marketing :12/31/40: 95000

You don’t have to use the -e option twice to get this result. Note that these are not the 

only strings the expression can match: It would have also matched trueeman had there 

been such a pattern in the file.

Using both the character class and the *, we can now match wilcocks and wilcox:

$ grep “wilco[cx]k*s*” emp.lst
3212:bill wilcocks :d.g.m. :accounts :12/12/55: 85000
2345:james wilcox :g.m. :marketing :03/12/45:110000

The expression k*s* means that k and s may not occur at all (or as many times as 

possible); that’s why the expression used with grep also matches wilcox. You can feel 

the power of regular expressions here—and how they easily exceed the capabilities of 

wild cards.

The * in its special sense always refers to the character preceding it, and has significance in 
a regular expression only if it is preceded by a character. If it’s the first character in a regular 
expression, then it’s treated literally (i.e., matches itself).

Caution

Note

das76205_Ch10_265-295.indd   273das76205_Ch10_265-295.indd   273 12/13/11   10:46 AM12/13/11   10:46 AM



274 Your UNIX/Linux: The Ultimate Guide

 10.4.3 The Dot
A . matches a single character. The shell uses the ? character to indicate that. The pattern

2...

matches a four-character pattern beginning with a 2. The shell’s equivalent pattern is 2???.

The Regular Expression .* The dot along with the * (.*) constitutes a very useful 

regular expression. It signifies any number of characters, or none. Say, for instance, you 

are looking for the name p. woodhouse, but are not sure whether it actually exists in 

the file as p.j. woodhouse. No problem, just embed the .* in the search string:

$ grep “p.*woodhouse” emp.lst
1265:p.j. woodhouse :manager :sales :09/12/63: 90000

Note that if you literally look for the name p.j. woodhouse, then the expression should 

be p\.j\. woodhouse. The dots need to be escaped here with the \—the same character 

you used in the shell for despecializing the next character.

A regular expression match is made for the longest possible string. Thus, when you use the 
expression 03.*05, it will match 03 and 05 as close to the left and right of the line, respectively.

 10.4.4 Specifying Pattern Locations (^ and $)
Most of the regular expression characters are used for matching patterns, but there are 

two that specify pattern locations. You can specify that a pattern occurs at the beginning 

or end of a line:

^ — Matches pattern at the beginning of a line.

$ — Matches pattern at the end of a line.

Anchoring a pattern is often necessary when it can occur in more than one place in a 

line. The expression 2... doesn’t exclusively locate lines where the emp-id begins with 

2. You have to use ^2:

$ grep “^2” emp.lst
2233:charles harris :g.m. :sales :12/12/52: 90000
2365:john woodcock :director :personnel :05/11/47: 120000
2476:jackie wodehouse :manager :sales :05/01/59: 110000
2345:james wilcox :g.m. :marketing :03/12/45: 110000

Similarly, to select those lines where the salary lies between 70,000 and 89,999 dollars, 

you have to use the $ (nothing to do with the currency) at the end of the pattern:

$ grep “[78]....$” emp.lst
5678:robert dylan :d.g.m. :marketing :04/19/43: 85000
3212:bill wilcocks :d.g.m. :accounts :12/12/55: 85000
3564:ronie trueman :executive :personnel :07/06/47: 75000

Note

das76205_Ch10_265-295.indd   274das76205_Ch10_265-295.indd   274 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 275

This problem is actually awk’s concern, but we can at least understand how the $ behaves 

when placed at the end of a regular expression.

How can you reverse a previous search and select only those lines where the 

emp-ids don’t begin with a 2? You need the expression ^[^2]:

grep “^[^2]” emp.lst

The two carets here have totally different meanings. The first one anchors the pattern, 

and the other negates a class.

Listing Only Directories UNIX has no command that lists only directories. However, 

we can use a pipeline to “grep” those lines from the listing that begin with a d:

ls -l | grep “^d” Shows only the directories

It’s indeed strange that ls, which supports 20 options has none to display directories! 

You should convert this into an alias (Table 8.2) or a shell function so that it is always 

available for you to use.

Identifying Files with Specific Permissions Here’s how grep can add power to 

the ls -l command. This pipeline locates all files that have write permission for the 

group:

$ ls -l | grep ‘^.....w’ Locates w at sixth position

drwxrw-r-x 3 sumit dialout  1024 Oct 31 15:16 text
-rwxrw---- 1 henry dialout 22954 Nov  7 08:21 wall.gif
-rw-rw-r-- 1 henry dialout   717 Oct 25 09:36 wall.html

This sequence matches a w at the sixth column location—the one that indicates the 

presence or absence of write permission for the group.

The caret has a triple role to play in regular expressions. When placed at the beginning of a 
character class (e.g., [^a-z]), it negates every character of the class. When placed outside it, 
and at the beginning of the expression (e.g., ^2...), the pattern is matched at the beginning 
of the line. At any other location (e.g., a^b), it matches itself literally.

 10.4.5 When Metacharacters Lose Their Meaning
Some of the special characters may actually exist as text. If these characters violate 

the regular expression rules, their special meanings are automatically turned off. For 

example, the . and * lose their meanings when placed inside the character class. The 

* is also matched literally if it’s the first character of the expression. Thus, grep “*” 

looks for an asterisk.

Sometimes, you may need to escape these characters. For instance, when looking 

for a pattern g*, you need to use grep “g\*”. Similarly, to look for a [, you should use 

\[, and to look for the literal pattern .*, you should use \.\*.

Note

das76205_Ch10_265-295.indd   275das76205_Ch10_265-295.indd   275 12/13/11   10:46 AM12/13/11   10:46 AM



276 Your UNIX/Linux: The Ultimate Guide

 10.5 Extended Regular Expressions (ERE) and egrep

Extended regular expressions (ERE) make it possible to match dissimilar patterns 

with a single expression. This set uses some additional characters (Table 10.3), and 

POSIX-compliant versions of grep use them with the -E option. Linux grep supports 

this option, but Solaris users must use /usr/xpg4/bin/grep to use EREs. If your version 

of grep doesn’t support this option, then use egrep but without the -E option.

 10.5.1 The + and ?
The ERE set includes two special characters, + and ?. They are often used in place of 

the * to restrict the matching scope:

+ — Matches one or more occurrences of the previous character.

? — Matches zero or one occurrence of the previous character.

What all of this means is that b+ matches b, bb, bbb, etc., but, unlike b*, it doesn’t 

match nothing. The expression b? matches either a single instance of b or nothing. These 

characters restrict the scope of match as compared to the *.

In the two “truemans” that exist in the sample database, note that the character e 

either occurs once or not at all. So, e? is the expression to use here. This time we need 

to use grep’s -E option to use an ERE:

$ grep -E “true?man” emp.lst Or use egrep

3564:ronie trueman :executive :personnel :07/06/47: 75000
0110:julie truman :g.m. :marketing :12/31/40: 95000

The + is a pretty useful character, too. Statements like #include <stdio.h> often 

appear with multiple spaces between #include and <stdio.h>. To match them all, use 

the expression #include +<stdio.h> to match the following patterns:

#include <stdio.h>      #include  <stdio.h>           #include      <stdio.h>

T A B L E  1 0 . 3  The Extended Regular Expression (ERE) Set Used by grep, egrep and awk

Expression Significance

ch+ Matches one or more occurrences of character ch
ch? Matches zero or one occurrence of character ch
exp1|exp1 Matches exp1 or exp2
(x1|x2)x3 Matches x1x3 or x2x3

Examples

g+ Matches at least one g
g? Matches nothing or one g
GIF|JPEG Matches GIF or JPEG
(lock|ver)wood Matches lockwood or verwood

das76205_Ch10_265-295.indd   276das76205_Ch10_265-295.indd   276 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 277

And if you are not sure whether there’s a space between # and include, include the ? 

in the expression:

# ?include +<stdio.h> A space before the ?

But there could also be tabs instead of spaces, so how does one handle them?

 10.5.2 Matching Multiple Patterns (|, ( and ))
The | is the delimiter of multiple patterns. Using it, we can locate both woodhouse and 

woodcock without using the -e option twice:

$ grep -E ‘woodhouse|woodcock’ emp.lst
2365:john woodcock :director :personnel :05/11/47: 120000
1265:p.j. woodhouse :manager :sales :09/12/63: 90000

The ERE thus handles the problem easily, but offers an even better alternative. The 

characters ( and ) let you group patterns, and when you use the | inside the parentheses, 

you can frame an even more compact pattern:

$ grep -E ‘wood(house|cock)’ emp.lst
2365:john woodcock :director :personnel :05/11/47: 120000
1265:p.j. woodhouse :manager :sales :09/12/63: 90000

EREs when combined with BREs form very powerful regular expressions. For instance, 

the expression in the following command contains characters from both sets:

$ grep -E ‘wilco[cx]k*s*|wood(house|cock)’ emp.lst
2365:john woodcock :director :personnel :05/11/47: 120000
1265:p.j. woodhouse :manager :sales :09/12/63: 90000
3212:bill wilcocks :d.g.m. :accounts :12/12/55: 85000
2345:james wilcox :g.m. :marketing :03/12/45: 110000

All EREs can also be placed in a file in exactly the same way they are used in the 

command line. You then have to use grep both with the -E and -f options to take the 

patterns from the file.

If grep doesn’t support the -E option on your machine, use egrep without the -E option for 
all examples considered in this section.

 10.6 sed:The Stream Editor

sed is a multipurpose tool that combines the work of several filters. It is derived from 

ed, the original UNIX editor (not discussed in this text). sed performs noninteractive 

operations on a data stream—hence its name. It uses very few options but has a host of 

features that allow you to select lines and run instructions on them. Learning sed will 

prepare you well for perl, which uses many of these features.

Note

das76205_Ch10_265-295.indd   277das76205_Ch10_265-295.indd   277 12/13/11   10:46 AM12/13/11   10:46 AM



278 Your UNIX/Linux: The Ultimate Guide

sed uses instructions to act on text. An instruction combines an address for 

selecting lines, with an action to be taken on them, as shown by the syntax:

sed options ‘address action’ file(s)

The address and action are enclosed within single quotes. Addressing in sed is done 

in two ways:

 • By one or two line numbers (like 3,7).

 • By specifying a /-enclosed pattern which occurs in a line (like /From:/).

In the first form, address specifies either one line number to select a single line or a 

set of two (3,7) to select a group of contiguous lines. Likewise, the second form uses 

one or two patterns. The action component is drawn from sed’s family of internal 

commands (Table 10.4). It can either be a simple display (print) or an editing function 

like insertion, deletion, or substitution of text. The components of a sed instruction are 

shown in Fig. 10.1.

sed processes several instructions in a sequential manner. Each instruction operates 

on the output of the previous instruction. In this context, two options are relevant, and 

most likely they are the only ones you’ll use with sed—the -e option that lets you use 

multiple instructions and the -f option to take instructions from a file. Both options are 

used by grep in an identical manner.

T A B L E  1 0 . 4  Internal Commands Used by sed

Command Description

i, a, c Inserts, appends, and changes text
d Deletes line(s)
p Prints line(s) on standard output
q Quits after reading up to addressed line
r flname Places contents of file flname after line
w flname Writes addressed lines to file flname
= Prints line number addressed
s/s1/s2/ Replaces first occurrence of expression s1 in all lines with 

expression s2
s/s1/s2/g As above but replaces all occurrences 

Examples

1,4d Deletes lines 1 to 4
10q Quits after reading the first 10 lines
3,$p Prints lines 3 to end (-n option required)
$!p Prints all lines except last line (-n option required)
/begin/,/end/p Prints line containing begin through line containing end 

(-n option required)
10,20s/-/:/ Replaces first occurrence of - in lines 10 to 20 with a :
s/echo/printf/g Replaces all occurrences of echo in all lines with printf

das76205_Ch10_265-295.indd   278das76205_Ch10_265-295.indd   278 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 279

C Shell

Users of this shell must note that when sed is continued in the next line by pressing 

[Enter], the shell generates an error and complains of an “unmatched” quote. As a 

general rule, escape all lines except the last with a \ to generate the ? prompt. (Some 

systems, like Solaris, don’t display this prompt.) The situations where such escaping 

is required are pointed out sometimes, but not always.

 10.7 Line Addressing

To consider line addressing first, the instruction 3q can be broken down into the address 

3 and the action q (quit). When this instruction is enclosed within quotes and followed 

by one or more filenames, you can simulate head -n 3 in this way:

$ sed ‘3q’ emp.lst Quits after line number 3

2233:charles harris :g.m. :sales :12/12/52: 90000
9876:bill johnson :director :production :03/12/50: 130000
5678:robert dylan :d.g.m. :marketing :04/19/43: 85000

Generally, we’ll use the p (print) command to display lines. However, this command 

behaves in a seemingly strange manner: it outputs both the selected lines and all lines. 

So the selected lines appear twice. We must suppress this behavior with the -n option, 

and remember to use this option whenever we use the p command. Thus,

$ sed -n ‘1,2p’ emp.lst
2233:charles harris :g.m. :sales :12/12/52: 90000
9876:bill johnson :director :production :03/12/50: 130000

prints the first two lines. To select the last line of the file, use the $:

$ sed -n ‘$p’ emp.lst
0110:julie truman :g.m. :marketing :12/31/40: 95000

Selecting Lines from Anywhere The two command invocations above emulate the 

head and tail commands, but sed can also select a contiguous group of lines from any 

location. To select lines 9 through 11, use this:

sed -n ‘9,11p’ emp.lst

F I G U R E  1 0 . 1  Components of a sed Instruction

address

sed ' s / ^ b o l d / B O L D / g '  f o o1,$

action

das76205_Ch10_265-295.indd   279das76205_Ch10_265-295.indd   279 12/13/11   10:46 AM12/13/11   10:46 AM



280 Your UNIX/Linux: The Ultimate Guide

Selecting Multiple Groups of Lines sed is not restricted to selecting only one group 

of lines. You can select as many sections from just about anywhere:

sed -n ‘1,2p Three addresses in one command, using only a single

7,9p pair of quotes

$p’ emp.lst Selects last line

Alternatively, you can place multiple sed instructions in a single line using the ; as 

delimiter:

sed -n ‘1,2p;7,9p;$p’ emp.lst 

POSIX permits the ; to be surrounded by spaces, and Linux allows that too, but Solaris 

doesn’t (yet) support this provision. In Section 10.8, we’ll consider alternative methods 

of running this sed command. 

Negating the Action (!) Like find, sed also supports a negation operator (!). For 

instance, selecting the first two lines is the same as not selecting lines 3 through the end:

sed -n ‘3,$!p’ emp.lst Don’t print lines 3 to the end

The address and action are normally enclosed within a pair of single quotes. As you 

have learned by now, you should use double quotes only when parameter evaluation or 

command substitution is embedded within the command.

Use the -n option whenever you use the p command, unless you deliberately want to select 
lines twice. Usually, that requirement doesn’t arise.

 10.8 sed Options

POSIX requires sed to support only three options (-n, -e, and -f). We have used the 

-n option to suppress the default output when using the p command. Let’s look at the 

other options, which are listed in Table 10.5.

Multiple Instructions in the Command Line (-e) The -e option allows you to 

enter as many instructions as you wish, each preceded by the option. We can repeat the 

command prior to the previous one with this:

sed -n -e ‘1,2p’ -e ‘7,9p’ -e ‘$p’ emp.lst

Tip

T A B L E  1 0 . 5  sed Options

Option Significance

-n      Suppress default printing when using p
-e      Precedes each sed instruction when using multiple instructions
-f flname   Takes instructions from file flname

das76205_Ch10_265-295.indd   280das76205_Ch10_265-295.indd   280 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 281

Instructions in a File (-f) When you have too many instructions to use or when 

you have a set of common instructions that you execute often, they are better stored in 

a file. For instance, the preceding three instructions can be stored in a file, with each 

instruction on a separate line:

$ cat instr.fil
1,2p
7,9p
$p

You can now use the -f option to direct sed to take its instructions from the file:

sed -n -f instr.fil emp.lst

sed is quite liberal in that it allows a great deal of freedom in using and repeating op-

tions. You can use the -f option with multiple files. You can also combine the -e and 

-f options as many times as you want:

sed -n -f instr.fil1 -f instr.fil2 emp.lst
sed -n -e ‘/wilcox/p’ -f instr.fil1 -f instr.fil2 emp?.lst

These are some of the features of sed that make it so versatile and at the same time easy 

to work with. The second example uses context addressing (/wilcox/) in an instruction. 

This is the other form of addressing used by sed, and is considered next.

 10.9 Context Addressing

The second form of addressing lets you specify a pattern (or two) rather than line numbers. 

This is known as context addressing where the pattern has a / on either side. You can 

locate the senders from your mailbox ($HOME/mbox) in this way:

$ sed -n ‘/From: /p’ $HOME/mbox A simple grep!

From: janis joplin <joplinj@altavista.net>
From: charles king <charlesk@rocketmail.com>
From: Monica Johnson <Monicaj@Web6000.com>
From: The Economist <business@lists.economist.com>

Both awk and perl also support this form of addressing. Ideally, you should only be 

looking for From: at the beginning of a line. sed also accepts regular expressions but 

only of the BRE variety and not the EREs that we used with the -E option of grep. The 

following command lines should refresh your memory:

sed -n ‘/^From: /p’ $HOME/mbox ^ matches at beginning of line

sed -n ‘/wilco[cx]k*s*/p’ emp.lst wilcox or wilcocks

sed -n “/o’br[iy][ae]n/p;/lennon/p” emp.lst Either the o’briens or lennon

Note that we had to use double quotes in the third example because the pattern itself contains a 

single quote. Double quotes protect single quotes in the same way single quotes protect double.

das76205_Ch10_265-295.indd   281das76205_Ch10_265-295.indd   281 12/13/11   10:46 AM12/13/11   10:46 AM



282 Your UNIX/Linux: The Ultimate Guide

You can also specify a comma-separated pair of context addresses to select a 

group of contiguous lines. What is more, line and context addresses can also be mixed:

sed -n ‘/johnson/,/lightfoot/p’ emp.lst
sed -n ‘1,/woodcock/p’ emp.lst

In a previous example (10.4.4), we used ls and grep in a pipeline to list files which 

have write permission for the group. We can do that with sed as well:

ls -l | sed -n ‘/^.....w/p’

Regular expressions in grep and sed are actually more powerful than the ones we have 

used so far. They use some more special characters, and we’ll meet them in the third 

round of discussions that are featured in Section 10.13.

C programmers should use the command sed -n ‘/{/,/}/p’ foo.c to select the first block 
of code delimited by { and }. sed won’t select the subsequent blocks.

We used single quotes here, but if the pattern itself contains a single quote, you must use 
double quotes. In that case, make sure that a $ (if present in the pattern) is not interpreted 
as a variable prefix.

 10.10 Writing Selected Lines to a File (w)

Irrespective of the way you select lines (by line or context addressing), you can use the 

w (write) command to write the selected lines to a separate file. You can save the lines 

contained within the <FORM> and </FORM> tags in a separate file:

sed ‘/<FORM>/,/<\/FORM>/w forms.html’ pricelist.html

Every <FORM> tag in an HTML file has a corresponding </FORM> tag. The / here needs 

escaping as  it is also used as sed’s pattern delimiter. Here, the form contents are ex-

tracted and saved in forms.html. To go further, you can save all form segments from 

all HTML files in a single file:

sed ‘/<FORM>/,/<\/FORM>/w forms.html’ *.html

sed’s power doesn’t stop here. Since it accepts more than one address, you can perform 

a full context splitting of its input. You can search for three sets of patterns and store the 

matched lines in three separate files—all in one shot:

sed -e ‘/<FORM>/,/<\/FORM>/w’ forms.html
        /<FRAME>/,/<\/FRAME>/w frames.html
        /<TABLE>/,/<\/TABLE>/w tables.html’ pricelist.html

The -n option is required with the w command only to suppress printing of all lines on the 
terminal. However, even without it, the selected lines will be written to the respective files.

Tip

Tip

Note

das76205_Ch10_265-295.indd   282das76205_Ch10_265-295.indd   282 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 283

C Shell

 10.11 Text Editing

This section discusses some of the editing commands available in sed’s action compo-

nent. sed can insert text and change existing text in a file. A vi user would be relieved 

to learn that the commands are also the same—i (insert), a (append), c (change), and 

d (delete). But there are important differences too.

 10.11.1 Inserting and Changing Lines (i, a, c)
The i command inserts text. A C programmer can add two common “include” lines at 

the beginning of a program, foo.c, in this way:

$ sed ‘1i\ Need to use \ before [Enter] here

> #include <stdio.h>\ ... and here only

> #include <unistd.h> ... but not here

> ‘ foo.c > $$ Redirect output to a temporary file

First, enter the instruction 1i, which inserts text at line number 1. Then enter a \ before 

pressing [Enter]. You can now key in as many lines as you wish. Each line except the last has 

to be terminated by the \ before hitting [Enter]. sed identifies the line without the \ as the 

last line of input. This technique has to be followed when using the a and c commands also.

The preceding command writes the concatenated output of the two lines of inserted 

text and the existing lines to the standard output, which we redirected to a temporary 

file, $$. We must move this file to foo.c to use it. The first two lines show that the i 

command worked fine:

$ mv $$ foo.c ; head -n 2 foo.c
#include <stdio.h>
#include <unistd.h>

Double-spacing Text What is the consequence of not using an address with these 

commands? The inserted or changed text is then placed after or before every line of the 

file. The following command

sed ‘a\ Inserts after every line

 this blank line

‘ emp.lst

inserts a blank line after each line of the file is printed. This is another way of double-

spacing text (9.1.1). Using i here would have inserted a blank line before each selected line.

These commands won’t work in the C shell in the way described here. You have to use 

two \s for lines that already have one \, and one \ when there is none. The previous 

command will work in this way in the C shell:

sed ‘a\\ Two \s here

\ and one here

‘ emp.lst

das76205_Ch10_265-295.indd   283das76205_Ch10_265-295.indd   283 12/13/11   10:46 AM12/13/11   10:46 AM



284 Your UNIX/Linux: The Ultimate Guide

This is an awkward form of usage and is not intuitive at all. The sed, awk, and perl 

commands should be run in the other shells.

 10.11.2 Deleting Lines (d)
Using the d (delete) command, sed can emulate grep’s -v option to select lines not 

containing the pattern. Either of these commands removes comment lines from a shell 

or perl script:

sed ‘/^#/d’ foo > bar
sed -n ‘/^#/!p’ foo > bar -n option to be used here

Deleting Blank Lines A blank line consists of any number of spaces, tabs, or nothing. 

How do you delete these lines from a file? Frame a pattern which matches zero or more 

occurrences of a space or tab:

sed ‘/^[  ]*$/d’ foo A space and a tab inside [ ]

You need to press the [Tab] key or [Ctrl-i] inside the character class—immediately 

after the space. Providing a ^ at the beginning and a $ at the end matches only lines that 

contain either nothing or simply whitespace. 

 10.12 Substitution (s)

Substitution is easily the most important feature of sed, and this is one job that sed does 

exceedingly well. It lets you replace a pattern in its input with something else. The use 

of regular expressions enhances our pattern matching capabilities, and in this chapter we 

feature some more regular expression characters that make the use of sed so compelling. 

You have encountered the substitution syntax in vi before (5.14):

[address]s/expression1/expression2/flags

Here, expression1 (which can also be a regular expression) is replaced with expression2 in 

all lines specified by [address]. Contrary to vi, however, if the address is not specified, the 

substitution is performed for all matching lines. This means that there’s no need to use 1,$ as 

the address. To bring flags into the picture, let’s first avoid its use and replace the : with a |:

$ sed ‘s/:/|/’ emp.lst | head -n 2
2233|charles harris :g.m. :sales :12/12/52: 90000
9876|bill johnson :director :production :03/12/50: 130000

Just look at what sed has done; only the first (leftmost) instance of the : in a line has 

been replaced. You need to use the g (global) flag to replace all the colons:

$ sed ‘s/:/|/g’ emp.lst | head -n 2
2233|charles harris |g.m. |sales |12/12/52| 90000
9876|bill johnson |director |production |03/12/50| 130000

das76205_Ch10_265-295.indd   284das76205_Ch10_265-295.indd   284 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 285

We used global substitution to replace all colons with pipes. Here, the command s 

is the same as 1,$s. Though we see two lines here, the substitution has been carried 

out for the entire file. Also, substitution is not restricted to a single character; it can 

be any string:

sed ‘s/<I>/<EM>/g’ foo.html

You can also limit the vertical boundaries by specifying an address:

sed ‘1,3s/:/|/g’ emp.lst First three lines only

And you can remove the source string altogether by using a null string between the last 

two /s:

sed ‘s/<I>//’ foo.html Deletes first occurrence of <I> in every line

sed ‘1,3s/://g’ emp.lst Deletes all occurrences of : in first three lines

When a g is used at the end of a substitution instruction, the change is performed globally 
along the line. Without it, only the leftmost occurrence is replaced.

Performing Multiple Substitutions You can perform multiple substitutions with 

one invocation of sed. Simply press [Enter] at the end of each instruction, and then 

close the quote at the end. This is how you replace three HTML tags:

$ sed ‘s/<I>/<EM>/g Can also specify in a single line 

> s/<B>/<STRONG>/g with ; as the delimiter of commands 

> s/<U>/<EM>/g’ form.html

sed is a stream editor; it works on a data stream. This means that an instruction 

processes the output of the previous one. This is something users often forget; they 

don’t get the sequence right. Note that the following sequence finally converts all 

<I> tags to <STRONG>:

$ sed ‘s/<I>/<EM>/g
> s/<EM>/<STRONG>/g’ form.html

When you have a group of instructions to execute, place them in a file and use sed with the 
-f option.

 10.12.1 Using Regular Expressions in Substitution
As in context addresses, regular expressions can also be used as the source pattern, but 

only of the BRE type. EREs are not allowed:

sed ‘s/gilmo[ur][re]/gilmour/g’ emp.lst

You can also use the anchoring characters, ^ and $, with the same meaning. Further, 

when either is used as the sole character in the source pattern, it implies that the target 

Note

Tip

das76205_Ch10_265-295.indd   285das76205_Ch10_265-295.indd   285 12/13/11   10:46 AM12/13/11   10:46 AM



286 Your UNIX/Linux: The Ultimate Guide

pattern has to be placed at that location. This is how you can add the 2 prefix to all 

emp-ids and the .00 suffix to the salary:

$ sed ‘s/^/2/;s/$/.00/’ emp.lst | head -n 3
22233:charles harris :g.m. :sales :12/12/52: 90000.00
29876:bill johnson :director :production :03/12/50: 130000.00
25678:robert dylan :d.g.m. :marketing :04/19/43: 85000.00

There are now five digits in the first field. The last field has also been modified.

Compressing Multiple Spaces How do you delete the trailing spaces from the 

second, third, and fourth fields? We need to match one or more occurrences of a space 

followed by a colon:

$ sed ‘s^  *:^:^g’ emp.lst | tee empn.lst | head -n 3 
2233:charles harris:g.m.:sales:12/12/52: 90000
9876:bill johnson:director:production:03/12/50:130000
5678:robert dylan:d.g.m.:marketing:04/19/43: 85000

We’ve used the ^ instead of the / this time. sed (and vi) allows any character to be used 

as the pattern delimiter as long as it doesn’t occur in any of the strings. Most UNIX 

system files (like /etc/passwd) follow this variable-length format because the common 

filters can easily identify a field by seeing the delimiter. Using tee, we created the file 

empn.lst. This is the file you’ll be using with the awk command later.

 10.12.2 The Remembered Pattern (//)
So far, we’ve looked for a pattern and then replaced it with something else. The follow-

ing three commands do the same job:

sed ‘s/director/member/’ emp.lst
sed ‘/director/s//member/’ emp.lst
sed ‘/director/s/director/member/’ emp.lst

The second form suggests that sed “remembers” the scanned pattern and stores it in // 

(two frontslashes). The // is here interpreted to mean that the search and substituted 

patterns are the same. We call it the remembered pattern.

The address /director/ in the third form appears to be redundant. However, 

you must also understand this form because it widens the scope of substitution. 

It’s possible that you may want to replace a string in all lines containing a different 

string:

$ sed -n ‘/marketing/s/director/member   /p’ emp.lst
6521:derryk o’brien   :member    :marketing :09/26/45:125000

The significance of // depends on its position in the instruction. If it is in the source string, 
it implies that the scanned pattern is stored there. If the target string is //, it means that the 
source pattern is to be removed.Note

das76205_Ch10_265-295.indd   286das76205_Ch10_265-295.indd   286 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 287

 10.13 Basic Regular Expressions Revisited

To master sed, you must appreciate the numerous possibilities that regular expressions 

throw up with this command—more so than in grep. This third round of discussions 

feature some more characters from the BRE set (Table 10.6). Both grep and sed use 

these characters (with some variations), but sed exploits them to the hilt. This time, be 

prepared to see and use a \ before every metacharacter discussed in this section, except 

the &. We’ll learn to use three types of expressions:

 • The repeated pattern—uses a single symbol, &, to make the entire source pattern 

appear at the destination also.

 • The interval regular expression (IRE)—uses the characters { and } with a single 

or a pair of numbers between them.

 • The tagged regular expression (TRE)—groups patterns with ( and ) and represents 

them at the destination with numbered tags.

In the last two types of expressions, the metacharacters need escaping so the command 

understands them as special. The expressions themselves must be quoted so the shell 

can’t interpret them.

 10.13.1 The Repeated Pattern (&)
We sometimes encounter situations when the source pattern also occurs at the destination. 

We can then use & to represent it. All of these commands do the same thing:

sed ‘s/director/executive director/’ emp.lst
sed ‘s/director/executive &/’ emp.lst
sed ‘/director/s//executive &/’ emp.lst

All of these commands replace director with executive director. The &, known as 

the repeated pattern, here expands to the entire source string. Apart from the numbered 

tag (10.13.3), the & is the only other special character you can use in the target expression.

T A B L E  1 0 . 6  Other Basic Regular Expressions (BREs) Used by grep and sed

Pattern Matches

& Source pattern at destination (sed only)
\{m\}    m occurrences of the previous character (no \ in perl) (10.13.2)
\{m,\}    At least m occurrences of the previous character (no \ in perl) (10.13.2)
\{m,n\}    Between m and n occurrences of the previous character (no \ in perl) 

(10.13.2)
\(exp\)    Expression exp for later referencing with \1, \2, etc. (no \ in perl) 

(10.13.3)
^.\{9\}nobody    nobody after skipping nine characters from line beginning 

(no \ in perl) (10.13.2)
\(BOLD\).*\1    At least two occurrences of the string BOLD in a line (no \ before 

( and ) in perl) (10.13.3)

das76205_Ch10_265-295.indd   287das76205_Ch10_265-295.indd   287 12/13/11   10:46 AM12/13/11   10:46 AM



288 Your UNIX/Linux: The Ultimate Guide

 10.13.2 Interval Regular Expression (IRE)
We have matched a pattern at the beginning and end of a line. But what about match-

ing it at any specified location—or within a zone? sed and grep also use the interval 
regular expression (IRE) that uses an integer (or two) to specify the number of times 

the previous character can occur. The IRE uses an escaped pair of curly braces and 

takes three forms:

 • ch\{m\}—The metacharacter ch can occur m times.

 • ch\{m,n\}—Here, ch can occur between m and n times.

 • ch\{m,\}—Here, ch can occur at least m times.

All of these forms have the single-character regular expression ch as the first element. 

This can either be a literal character, a . (dot), or a character class. It is followed by a 

pair of escaped curly braces containing either a single number m or a range of numbers 

lying between m and n to determine the number of times the character preceding it can 

occur. The values of m and n can’t exceed 255.

Let’s consider the second form of the IRE. Since this matches a pattern within a 

“zone,” we can use this feature  to display the listing for those files that have the write 

bit set either for group or others:

$ ls -l | sed -n ‘/^.\{5,8\}w/p’
-r-xr-xrwx   3 sumit    dialout       426 Feb 26 19:58 comj
-r-xr-xrwx   3 sumit    dialout       426 Feb 26 19:58 runj
-r-xrw-r-x   1 sumit    dialout       527 Apr 23 07:42 valcode.sh
-r-xrw-r-x   2 sumit    dialout       289 Apr 23 07:42 vvi.sh

Extracting Lines Based on Length With the IRE, you can use the following 

commands to select lines longer than 100 characters. The second one additionally imposes 

a limit of 150 on the maximum length:

sed -n ‘/.\{101,\}/p’ foo Line length at least 101

grep ‘^.\{101,150\}$’ foo Line length between 101 and 150

The ̂  and $ are required in the second example; otherwise lines longer than 150 characters 

would also be selected. Remember that a regular expression always tries to match the 

longest pattern possible (10.4.3—Note).

 10.13.3 The Tagged Regular Expression (TRE)
The tagged regular expression (TRE) is probably the most useful feature of sed. Using 

it, you can form groups in a line and then extract these groups. The TRE requires two 

regular expressions to be specified—one each for the source and target patterns.

This is how the TRE works. Identify the segments of a line that you wish to 

extract, and enclose each segment with a matched pair of escaped parentheses. For 

instance, to have a number as a group, represent that number as \([0-9]*\). A series of 

nonalphabetic characters can be represented as \([^a-zA-Z]*\). Every grouped pattern 

automatically acquires the numeric label n, where n signifies the nth group from the left. 

das76205_Ch10_265-295.indd   288das76205_Ch10_265-295.indd   288 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 289

To reproduce a group at the destination, you have to use the tag \n. This means that the 

first group is represented as \1, the second one as \2, and so forth.

Consider a simple example. Suppose you want to replace the words henry higgins 

with higgins, henry. The sed instruction will then look like this:

$ echo “henry higgins” | sed ‘s/\(henry\) \(higgins\)/\2, \1/’
higgins, henry

Here, the source pattern has two tagged patterns \(henry\) and \(higgins\). They 

appear in the target pattern at the location of the \1 and \2. The (, ), 1, and 2 have to 

be escaped as they are treated specially by sed. In the next section, we’ll build on this 

to reverse all names in a telephone directory.

Searching for Repeated Words Let’s now consider an error-detection feature that 

benefits document authors—using grep this time. The TRE raises the possibility of 

detecting words that are inadvertently repeated—like the the. Since the TRE remembers 

a grouped pattern, you can look for these repeated words like this:

$ grep “\([a-z][a-z][a-z]*\) *\1” note Two spaces before *

You search search for a pattern with grep.
sed   sed can perform substitution too.
But the grand-daddy of them all is perl perl.

Each line here contains consecutive instances of a word (search, sed and perl). What does 

this pattern group match? A word containing at least two lowercase letters. This group is 

followed by one or more spaces (two spaces before the second *) and the repeated pattern.

 10.14 Applying the IRE and TRE

Though the TRE is a little cryptic, you must understand it if you want sed to serve as 

a gateway to learning perl. As we did in the previous chapter, let’s use this examples 

section to devise a few useful sequences that make use of the IRE and TRE. Two 

sequences use sed, but one uses grep.

 10.14.1 Handling a Telephone Directory
Consider this small telephone directory where a person has either a wired phone or a 

mobile phone:

$ cat teledir.txt
charles harris 98310200987
bill johnson  327-100-2345
robert dylan    9632454090
john woodcock  2344987665
barry wood      234-908-3456
gordon lightfoot 345-987-4670

das76205_Ch10_265-295.indd   289das76205_Ch10_265-295.indd   289 12/13/11   10:46 AM12/13/11   10:46 AM



290 Your UNIX/Linux: The Ultimate Guide

Each line contains names in the sequence first_name last_name along with the telephone 

number. We’ll now use grep to select only those users who have a mobile phone. We 

need to use an IRE to match a string containing (at least) 10 digits:

$ grep ‘[0-9]\{10\}’ teledir.txt
charles harris 98310200987
robert dylan    9632454090
john woodcock  2344987665

Reversing First Name and Surname Using TREs, we’ll create a new list from this 

directory that reverses the first name and surname with a comma delimiting them. We’ll 

have to frame two groups of alphabetic characters and then reverse them in the target 

pattern. This is how we obtain a sorted list:

$ sed ‘s/\([a-z]*\) *\([a-z]*\)/\2, \1/’ teledir.txt | sort
dylan, robert    9632454090
harris, charles 98310200987
johnson, bill  327-100-2345
lightfoot, gordon 345-987-4670
wood, barry      234-908-3456
woodcock, john  2344987665

The first group, \([a-z]*\), represents zero or more occurrences of alphabetic characters; 

this effectively captures the first name. An identical pattern takes care of the surname. 

These two groups are separated by zero or more occurrences of space ( *). In the target 

pattern, we re-create these groups but in reverse sequence with the tags \2 and \1.

 10.14.2 Replacing an Obsolescent Function with a POSIX-Compliant One
UNIX-C programmers often need to copy data from one memory location to another. 

The bcopy library function, which requires three arguments, is used in this manner:

bcopy(hp->h_addr, &name.sin_addr, hp->h_length);

POSIX advocates the use of memcpy, but how does one replace bcopy with memcpy using 

sed? To assess the viability, let’s have a look at how the previous function would have 

to be reframed using memcpy:

memcpy(&name.sin_addr, hp->h_addr, hp->h_length);

It’s viable; we simply need to reverse the first and second arguments. This is easily done 

by forming two groups representing the two arguments. Each group is represented by 

multiple instances of a noncomma character followed by a comma. Let sed read the 

standard input this time:

$ echo “bcopy(hp->h_addr, &name.sin_addr, hp->h_length);” |
> sed ‘s/bcopy(\([^,]*,\)\([^,]*,\)/memcpy(\2\1/’
memcpy( &name.sin_addr,hp->h_addr, hp->h_length);

das76205_Ch10_265-295.indd   290das76205_Ch10_265-295.indd   290 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 291

If you need to make this change in all of your C programs, then you have to run the 

sed command in a for loop inside a shell script. After reading Chapter 13, you should 

be able to handle this job.

 10.14.3 Converting Pathnames in URLs
Finally, let’s take up a very important application of the TRE. You may have faced the 

problem of activating links of an HTML document saved on disk even though the linked 

documents are all available in the current directory. This happens because the link tags 

often have relative pathnames in the URLs they point to. For instance, consider this 

section showing a list of four items:

$ cat httplinks.html
<LI><A HREF=”smail.html”>Sendmail</A> The Universal Mail Transport Agent
<LI><A HREF=”http://www.sonu.com/docs/ftpdoc.html”File Transfer Protocol</A>
<LI><A HREF=”../../public_html/news.html”>Newsgroups</A> Usenet News
<LI><A HREF=”../irc.html”>Internet Relay Chat</A> On-line text conversation

Note that the last three items have pathnames using directories, and one of them points 

to a different host altogether. If you have downloaded all of these HTML files to your 

current directory, you won’t be able to access them by clicking on these links unless you 

remove all protocol, FQDN, and directory references from each document. For instance, 

the anchor tag (<A>) in the second line should specify A HREF=”ftpdoc.html” instead 

of the complete URL shown. (HTML, FQDN, and URL are discussed in Chapter 11.) 

Let’s use the TRE to extract only the filenames from these URLs.

The task isn’t as daunting as you might think. If you observe these A HREFs closely, 

you’ll find the source string for substitution to have three components:

 • \(A HREF=”\)—This is the first group and should be printed with \1.

 • .*\/—This takes care of all characters following the opening “ up to the last /. 

Note that this matches the pathname of the directory, but we won’t be printing this. 

The frontslash also needs to be escaped.

 • \([^/]*”\)—This matches all nonfrontslash characters followed by a “. The 

matched expression is the base filename and should be printed with \2.

Now run sed using these three components in a regular expression:

$ sed ‘s/\(A HREF=”\).*\/\([^/]*”\)/\1\2/’ httplinks.html
<LI><A HREF=”smail.html”>Sendmail</A> The Universal Mail Transport Agent
<LI><A HREF=”ftpdoc.html”>File Transfer Protocol</A>
<LI><A HREF=”news.html”>Newsgroups</A> Usenet News
<LI><A HREF=”irc.html”>Internet Relay Chat</A> On-line text conversation

There you see only the base filenames after conversion! This is a useful sequence that 

you’ll need often, and you may also need to modify it. The IMG SRC tag also refers to 

URLs, so you have to add another s command for it. You can try this out as an exercise 

for yourself.

sed also features pattern and hold spaces, and branches and labels. They are difficult 

to use and hence are left out of our discussions. This power tool is best mastered by sheer 

das76205_Ch10_265-295.indd   291das76205_Ch10_265-295.indd   291 12/13/11   10:46 AM12/13/11   10:46 AM



292 Your UNIX/Linux: The Ultimate Guide

practice, by repeated attempts to figure out the exact command sequence that will perform 

a specific job. You don’t always get it right the first time, but don’t worry; hardly anybody 

does, not with this command at least.

S U M M A R Y

The grep filter searches its input for one or more patterns. You can ignore case when 

performing a match (-i), display only filenames (-l), and select lines not containing 

the pattern (-v).

grep can also be used with a regular expression using two sets of metacharacters—

the basic regular expression set (BRE) and the extended regular expression set (ERE). 

sed doesn’t use the extended set. All regular expressions must be quoted to prevent the 

shell from interfering.

In the BRE set, the . matches a single character, while * matches zero or more 

occurrences of the previous character. The character class is similar to the one used by 

wild cards except that the ^ negates the class. The pattern .* matches anything and is 

often embedded in a regular expression. The ^ and $ serve as anchoring characters.

grep uses the ERE with the -E option, but egrep does the same without using this 

option. The ERE uses the | to delimit multiple patterns and the ( and ) to group patterns. 

The + and ? are similar to the * used in the BRE except that they are more restrictive.

A sed instruction comprises an address and an action (command). Lines can be 

addressed by line numbers or context. The -n option makes sure that lines are not printed 

twice when using the p command. Lines can be inserted (i), appended (a), changed (c), 

and deleted (d).

sed accepts multiple instructions (-e) to work on different sections of its input 

and to save the edited sections to separate files (w).

sed is mostly used for substitution (s). The g flag at the end makes the substitu-

tion global. The search and substitution patterns can be regular expressions, but only 

of the BRE type.

A set of two slashes (//) as the source pattern represents the expression used for 

scanning a pattern (the remembered pattern). The & reproduces the entire source pattern 

at the target (the repeated pattern).

The interval regular expression (IRE) uses a single or a pair of numbers surrounded 

by escaped curly braces—like ch\{m,n\}. The expression signifies that ch can occur 

between m and n times.

The tagged regular expression (TRE) uses \( and \) to enclose a pattern. The 

grouped pattern gets the tag \1, \2, and so on. The feature is useful in reproducing a 

portion of the source pattern at the target.

S E L F - T E S T

Some questions use the file emp.lst, whose contents are shown in Section 10.1.

10.1 Devise a command sequence to display the line containing the last occurrence 

of the string done.

das76205_Ch10_265-295.indd   292das76205_Ch10_265-295.indd   292 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 293

10.2 What does grep “^\*” look for? Is the \ really necessary?

10.3 Devise a sequence to display a count of lines containing the string IMG SRC in 

all HTML files (extension .htm or .html) in the current directory. Assume that 

both string and filenames can have a mix of upper- and lowercase.

10.4 How can you extract from the output of find . -name “*.c” -print only the 

filenames in the current directory and not in its subdirectories?

10.5 How do you store in the variable numb the number of .c files that contain the 

string printf?

10.6 Devise a sequence to display the listing, ordered by last access time, of the .c 

files in the current directory that contain the string wait.

10.7 What do these regular expressions match? (i) a.*b, (ii)  ..*, (iii) ^}$.

10.8 How do you use grep to locate lines containing these patterns? (i) SIGSTOP or 

SIGTSTP, (ii) SIGTTIN or SIGTTOU, (iii) harris or harrison.

10.9 How is the expression g* different from gg*?

10.10 Devise two regular expressions that match lines longer than 10 characters.

10.11 Find out the name and designation of the youngest person in emp.lst who is 

not a director.

10.12 What does this command do, and what are the two $s doing here? 

        grep “$SHELL$” /etc/passwd | cut -d: -f1

10.13 Use an ERE to extract all section headers from this book. (Each section is num-

bered either as n.n or n.n.n, and the contents are spread across 19 files having 

the names chap00, chap01, etc. )

10.14 Write an alias which lists only directories in the current directory using (i) grep, 

(ii) sed.

10.15 How will you use sed to select from a file (i) lines 3 to 10, (ii) all but the last line?

10.16 How do you (i) print every line of a file twice, (ii) insert a blank line after each 

line that is read?

10.17 How will you replace - with _ and vice versa, assuming that the file doesn’t 

contain any numerals?

10.18 What shortcut does sed offer to replace the string Linux with Red Hat Linux?

10.19 How do you add two spaces at the beginning of every line?

10.20 Invert the name of the individual in emp.lst so that the surname occurs first.

E X E R C I S E S

Some questions use the file emp.lst, whose contents are shown in Section 10.1.

10.1 What is the difference between a wild card and a regular expression?

10.2 What do these commands do? (i) grep a b c, (ii) grep <HTML> foo, 

 (iii) grep “**” foo, (iv) grep *.

10.3 Explain the significance of the * in this command:

 grep ‘botswana.*birds’ *.htm*.

10.4 How many lines does grep ‘.*’ foo display? What happens if you remove the 

quotes?

das76205_Ch10_265-295.indd   293das76205_Ch10_265-295.indd   293 12/13/11   10:46 AM12/13/11   10:46 AM



294 Your UNIX/Linux: The Ultimate Guide

10.5 What is the significance of this command? grep -l “`echo ‘\t’`” foo
10.6 Are the following commands equivalent? grep “^[^a-z]” foo and 

grep -v “^[a-z]” foo
10.7 How do you locate all nonblank lines that don’t begin with #, /*, or //?

10.8 Look up the format specifiers for the date command, and then frame a command 

sequence to list from emp.lst the names of the persons born today.

10.9 Devise a sequence to locate those users who have logged in yesterday or earlier 

but have not logged out, and mail the list to root. Users logged in more than once 

should feature only once in the list.

10.10 Explain the task performed by the following pipeline. Can you simplify it to use two 

commands instead of four? ls -t `grep fork *.c | cut -d: -f1 | sort -u`.

10.11 How do you display the listing of all files in the current directory that have the 

same permissions as ./foo?

10.12 Frame regular expressions to match these patterns: (i) jefferies jeffery 
jeffreys, (ii) hitchen hitchin hitching, (iii) Heard herd Hird, (iv) dix 
dick dicks dickson dixon, (v) Mcgee mcghee magee, (vi) wood woodcock 
woodhouse.

10.13 How do these expressions differ? (i) [0-9]*  and [0-9][0-9]* , 

(ii) ^[^^] and ^^^.

10.14 Frame a command sequence that looks at romeo’s mailbox to tell him either that 

he has received a message from henry or that the Subject: line contains the 

word urgent or immediate in lower- or uppercase.

10.15 How will you list the ordinary files in your current directory that are not 

user-writable?

10.16 Explain the significance of this command: 

 grep “^[^:]*:[^:]*:100:” /etc/passwd
 What is the disadvantage of locating a pattern this way?

10.17 How do you locate all lines containing printf, but not sprintf and fprintf, 

anywhere but at the end of a line? 

10.18 How do you look for one bill christie in a file, without knowing whether 

bill exists as william or bill and whether christie also exists as christy?

10.19 Use find and grep to (i) locate all C programs in the home directory tree that 

contain the words int main(, (ii) open the vi editor with each file. There may 

be multiple spaces between int and main, but there may or may not be spaces 

between main and (.

10.20 Using sed, how do you add the tags <HTML> at the beginning and </HTML> at 

the end of a file?

10.21 How will you remove blank lines from a file using (i) grep, (ii) sed? (A blank 

line may contain either nothing or only whitespace characters.)

10.22 How do you locate lines beginning and ending with a dot using (i) grep, 

(ii) sed?

10.23 Frame regular expressions to locate lines longer than 100 and smaller than 150 

characters using (i) grep, (ii) sed.

10.24 Find out the occurrences of three consecutive and identical word characters (like 

aaa or bbb) using (i) grep, (ii) sed.

das76205_Ch10_265-295.indd   294das76205_Ch10_265-295.indd   294 12/13/11   10:46 AM12/13/11   10:46 AM



Chapter 10: Filters Using Regular Expressions—grep and sed 295

10.25 The command grep -c ENCRYPTION foo outputs the number of lines containing 

ENCRYPTION, but if the pattern sometimes occurs more than once in a line, how 

do you then obtain a count of all these occurrences? (HINT: Use sed also.)

10.26 How do you delete all lines (i) beginning with a # except the line #!/bin/ksh, 

(ii) beginning with /* and ending with */?

10.27 How do you delete all leading and trailing spaces in all lines?

10.28 Explain what these commands do and if there’s anything wrong with them:

         (i) sed -e ‘s/print/printf/g’ -e ‘s/printf/print/g’ foo
        (ii) sed -e ‘s/compute/calculate/g’ -e ‘s/computer/host/g’ foo

10.29 Every <B> tag in an HTML file has a closing </B> tag as well. Convert them to 

<STRONG> and </STRONG>, respectively, using sed with a single s command.

10.30 Specify the command sequence needed to remove the directory /usr/local/bin 

from the PATH defined in $HOME/.profile.

10.31 Devise a sequence to display the extensions of all files in the current directory 

along with a count of each extension.

10.32 How can you sort a file that is double-spaced (where even-numbered lines are 

blank lines) and still preserve the blank lines?

das76205_Ch10_265-295.indd   295das76205_Ch10_265-295.indd   295 12/13/11   10:46 AM12/13/11   10:46 AM



296

11C H A P T E R  11
Networking Tools

Networking wasn’t part of the original UNIX scheme of things. But UNIX has 

played a predominant role in the development of TCP/IP as a communica-

tions technology. TCP/IP tools were first developed on BSD UNIX before they were 

ported to other UNIX variants. Network communication became so pervasive that the 

technology was ultimately made available to all operating systems and eventually led 

to the formation of the Internet. The Internet has been running on TCP/IP since 1983.

This chapter (the last one belonging to Part I of this book) discusses the tools used 

in a TCP/IP network. Some of these tools,  like telnet and ftp, belong to the original 

DARPA set, which we cover only briefly. They have been replaced today by more secure 

tools like ssh. We’ll examine the basics of cryptography, and how its principles are incor-

porated into the secure shell (SSH). We also need to study the mechanism behind email 

and the Web service, and how both applications have benefited from MIME technology.

  Objectives
 • Understand the features of TCP/IP that provide for reliable transmission in a hetero-

geneous environment.

 • Learn the function of /etc/hosts in resolving hostnames to IP addresses.

 • Understand the concept of domains and FQDNs and how DNS is superior to /etc/hosts.

 • Learn how applications use ports to communicate with servers in a client-server 
scheme.

 • Use telnet and ftp for remote login and file transfer.

 • Understand the basics of cryptography and the use of symmetric and asymmetric keys 

for encryption and decryption.

 • Discover the mechanism behind SSH (the secure shell) and the tools ssh, slogin, 

sftp, and scp.

 • Learn the cooperative efforts of the MUA, MTA, and MDA in transporting mail on 

the Internet.

 • Know how graphical programs run in a network using the X Window system.

 • Learn the role of the Multipurpose Internet Mail Extensions (MIME) standard in 

handling mail attachments and different media types on the Web.

 • Know the role of hypertext, URL, and HTML in the HTTP protocol.

das76205_Ch11_296-328.indd   296das76205_Ch11_296-328.indd   296 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 297

 11.1  TCP/IP Basics

TCP/IP is a set of networking protocols built into the UNIX kernel. These protocols 

define a set of rules that each machine must comply with to communicate with another 

machine in a network. The term TCP/IP expands to Transmission Control Protocol/

Internet Protocol, but it’s actually a collection of several protocols, which includes the 

TCP and IP protocols. What makes TCP/IP a powerful communications technology is 

that it is independent of hardware and operating system. Its key features include:

 • Delivery of data in multiple packets.

 • Complete reliability of transmission with full error control.

Unlike our telephone system, TCP/IP is a packet-switching system. In a packet-switched 

network, there’s no dedicated connection between sender and receiver. Data is broken into 

packets, and each packet is provided with a header. This header contains the sequence 

number and a checksum, which is a simple number determining the exact information 

in the packet. These packets are put inside envelopes, the sender’s and recipient’s ad-

dresses are written on them, and the packets are sent on their way.

As the packets travel along a vast network like the Internet, they encounter routers 
everywhere. These are special computers or intelligent devices that look at the envelope 

addresses and then determine the most efficient route each packet has to take to move 

closer to its destination. Because the load on the network varies constantly, packets may 

move along different routes and arrive out of order. The packets are reassembled in the 

correct order from the information provided in them.

Before assembly, the checksum of each packet is calculated and checked with the 

number that has been sent in the packet. If the checksums don’t match, the packet is 

corrupted and has to be resent. If a packet is not received within the timeout period, it 

is retransmitted. When all clean packets are received, they are assembled, their headers 

are discarded, and data is fed to the application in its original form.

 11.1.1  Hostnames and IP Addresses
In a network, a computer is known as a host and identified by its hostname. This name 

is unique throughout the network. The hostname command reveals the hostname of 

your computer:

$ hostname
saturn

Hostnames were originally single words like saturn, but with the rise of the Internet, 

they are often embedded in a larger, dot-delimited string. The hostname output could 

also be in this form:

saturn.heavens.com                                           An FQDN

We also call this a hostname, but it is more appropriately described as a fully qualified 
domain name (FQDN). Though we’ll examine FQDNs soon, for now, understand that 

the host saturn belongs to the domain heavens.com. In this network, other hosts will 

have different hostnames but the same domain name.

das76205_Ch11_296-328.indd   297das76205_Ch11_296-328.indd   297 12/13/11   10:47 AM12/13/11   10:47 AM



298 Your UNIX/Linux: The Ultimate Guide

Every networked host is also assigned an IP address. There are basically two 

forms of this address. In IPv4, the old (but still widely accepted) scheme, this address 

is a set of four dot-delimited numbers (called octets). In IPv6, the latest scheme (though 

not widely accepted yet), an IP address is represented by a set of eight colon-delimited 

numbers. The host saturn might have this address under the old scheme (IPv4):

192.168.35.12

The maximum value of each octet is 255. Like the hostname, the IP address of a host 

is unique in that network. On the Internet, however, hosts have unique IP addresses 

and FQDNs. TCP/IP applications can address a host using either form as an identifier:

telnet saturn                            Convenient for users

ssh 192.168.35.12                        Machine understands only IP address

Users find numbers difficult to remember, while network software understands only 

numbers. So even if you use telnet saturn, the hostname has to be converted to its IP 

address by the networking software. How this conversion takes place is taken up next.

The application is generally invoked with the name of the host. The operating system obtains 
the associated IP address of the host and sets up the network connection. This translation is 
not necessary if the application itself is invoked with the IP address.

 11.2  Resolving Hostnames and IP Addresses

The task of resolving hostnames to IP addresses, and vice versa, is performed by the 

resolver. It is not a separate application but only a set of library routines that are linked 

to every TCP/IP application. There are two ways by which this resolution can take place:

 • The hosts file. This is the file /etc/hosts. Hosts in this file can either be simple 

hostnames or FQDNs.

 • DNS. This represents the Domain Name System where hosts are organized in 

domains and are represented by FQDNs.

Small networks often adopt the “hosts” approach, but large networks (including the 

Internet) use the latter mechanism. Irrespective of the form used in hostnames, a con-

nection can be established only after resolution has been performed. Remember that a 

TCP/IP packet contains the sender’s and recipient’s IP addresses and not their hostnames. 

 11.2.1  /etc/hosts: The Hosts File
In a small network, the name-address mappings are placed in /etc/hosts in each and 

every host of the network. This file is often called the hosts file. A look at a sample file 

reveals its flexible structure:

$ cat /etc/hosts
# Internet host table
#

Note

das76205_Ch11_296-328.indd   298das76205_Ch11_296-328.indd   298 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 299

127.0.0.1 localhost
192.168.35.11 jupiter.heavens.com  jupiter
192.168.35.12 saturn.heavens.com   saturn
192.168.35.13 mercury.heavens.com  mercury

Each line here relates to a host and contains at least two fields. Using this file and rather 

than using the IP address, you can connect to host jupiter in these ways:

ftp jupiter.heavens.com
ftp jupiter                                      An alias

The problem arises when a machine is added to the network. The network administrator 

then has to update /etc/hosts on all machines in the network. This could be manage-

able in a small network, but becomes tedious in a large one, and absolutely impossible 

on the Internet. Enter DNS.

You’ll find the line relating to localhost in every hosts file. It’s characteristic of TCP/IP that 
every host has a special address 127.0.0.1 and a special hostname, localhost. To test telnet 
or ftp on your host without being connected to a network, you can use telnet 127.0.0.1 or 
ftp localhost.

 11.2.2  The Domain Name System (DNS)
Berkeley introduced the Domain Name System (DNS) as a scalable system that is easier 

to maintain than the hosts file. DNS introduces three key concepts:

 • A hierarchical organization of hostnames.

 • A distributed database containing the name-address mappings.

 • Delegation of authority to individual levels of the hierarchy.

In the Internet namespace, hosts belong to domains, which in turn belong to subdomains, 

and so forth. They form a hierarchy with the root domain as the top, signified by a . 

(dot) (Fig. 11.1). Immediately below the root domain are the top-level domains (TLDs) 
or generic domains, like edu and com. These in turn have subdomains or second-level 

domains under them (like amazon), and in this way nesting can descend several levels. 

Observe the similarity with the file system.

Hosts in DNS are described only as FQDNs, and you can interpret the FQDN 

ralph.cs.berkeley.edu. as the host ralph in the cs.berkeley.edu domain, where berkeley is 

under edu, and cs is under berkeley. FQDNs are like absolute pathnames and are unique 

throughout the Internet. They are also case-insensitive; RALPH.CS.BERKELEY.EDU 

and ralph.cs.berkeley.edu represent the same FQDN. An FQDN should identify the 

organization easily.

The Net originally had eight three-character TLDs (top-level domains) allocated 

to organizations based on the nature of their activities. MIT is represented in the edu 

domain, but Sun Microsystems (com) and GNU (org) belong to different TLDs. Moreover, 

every country listed in the ISO-3166-1 specification is also represented by a two-letter 

country-code top-level domain (ccTLD). In late 2000, seven more TLDs were added 

(aero, museum, name, etc.) as shown in Table 11.1.

Note

das76205_Ch11_296-328.indd   299das76205_Ch11_296-328.indd   299 12/13/11   10:47 AM12/13/11   10:47 AM



300 Your UNIX/Linux: The Ultimate Guide

T A B L E  1 1 . 1  The Internet Domains (TLDs and ccTLDs)

Domain Name Significance

int              International organizations

edu           Educational institutions

gov              US government organizations

mil           US military organizations

org              Nonprofit organizations

com              Commercial organizations

net              Networking organizations

arpa          Domain for reverse resolution

aero                 Air-transport industry

biz                  Businesses

museum           Accredited museums

name             Individuals; possible to have henry.blofeld.name

pro              Professionals

coop             Cooperatives

info                 For all uses

de            A ccTLD; Germany

uk, ch, us, in, etc.   Other ccTLDs; United Kingdom, Switzerland, USA, India, etc.

root (.)

com gov edu mil net int org uk us in de au

ge amazon sun berkeley internic affinity linux who net co co

cs rs vsnl nic

F I G U R E  1 1 . 1  The Internet Domain Hierarchy

das76205_Ch11_296-328.indd   300das76205_Ch11_296-328.indd   300 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 301

Agencies spread across the globe allocate domains (like berkeley) without creat-

ing conflict. However, the responsibility for maintaining all information related to the 
berkeley domain now rests with the authorities at berkeley (rather, Berkeley). This re-

sponsibility includes, apart from the allocation of further subdomains, the maintenance 

of the relevant portion of the DNS database in one or more name servers. A name server 

contains hostname-IP address mappings but in a more elaborate form than /etc/hosts. 

The resolver (11.2) queries the name servers on behalf of the application to obtain the 

IP address of a host.

How DNS Works
When a hostname or an FQDN is used with an application, the resolver first has 

to determine the mechanism of resolution that it has to adopt. It looks up its own 

configuration file, /etc/resolv.conf, for entries like these:

order hosts, bind
nameserver 192.168.35.200
nameserver 192.168.35.201

The resolver on this machine will first look up /etc/hosts, failing which it will 

use BIND, the name of the most common DNS implementation. If the resolver 

uses DNS, it will first look up the name server at the IP address mentioned first. 

It will try the second name server only if the first name server can’t be contacted.

The name server may not have the answer to the resolver’s query, in which 

case it refers the query to another name server. That name server may not have the 

answer either, but DNS is  designed so that every name server always provides a 

partial solution that eventually leads to the resolution. For further details, look up 

the Web site of this book.

 11.3  Client-Server: How Networked 
Applications Communicate

Normally, a TCP/IP application can’t work alone in the way a command like cat 

can. Network applications operate on the client-server principle—the division of 

labor between two programs. An application is split up into a server and a client 
component, usually running on two separate machines. For host A to fetch a file by 

FTP from host B, an FTP client on host A needs to communicate with an FTP server 

running on host B.

The server programs are also called daemons in UNIX, and you have seen many 

of them in the ps -e output (7.4). They run in the background, listening for input 

from clients, and are not associated with a controlling terminal. The httpd daemon 

listens for a request for a Web page. The sendmail daemon handles your mail. The 

inetd daemon handles both FTP and TELNET. The ping command is an exception; 

it needs no server.

das76205_Ch11_296-328.indd   301das76205_Ch11_296-328.indd   301 12/13/11   10:47 AM12/13/11   10:47 AM



302 Your UNIX/Linux: The Ultimate Guide

It’s possible for multiple daemons to run on a host, so how is a client FTP packet 

directed to its proper destination, the FTP server? Specifying the IP address in an FTP 

packet is not enough; a separate port number has to be included as well. This number 

is always associated with the FTP service, so the packet reaches the FTP server. Port 

numbers are like telephone extension numbers in an office. Specifying the office telephone 

number is not enough; one must also know the extension number to reach the right person.

Daemons listen for requests at certain specific port numbers assigned to them. 

The sendmail daemon listens on port 25, FTP on 21, and SSH on 22. The complete 

list is maintained in /etc/services. Clients connect to their respective servers, but 

they themselves don’t use these port numbers. A connection is set up when the server 

accepts the connection. Table 11.2 lists some of the common clients and servers along 

with their port numbers.

Note that for a client to communicate, its corresponding server component must 

be running at the other end. For instance, you can’t run ftp on your local host if the 

server responsible for offering the FTP service is not running remotely. You could see 

something like this if you try to do so:

ftp: connect: Connection refused

The earliest TCP/IP tools were independently developed at DARPA and Berkeley. The 

DARPA set comprised the telnet and ftp commands, which use the login-password 

route to connect to the server. The Berkeley suite, comprising rlogin, rcp, and rsh, 

offered password-free authentication instead. Both systems are inherently insecure.

DARPA tools send the password across the network in clear text. This allows net-

work sniffers to intercept the password and gain illegal access to the system. Berkeley 

tools assume that the IP address of the remote host is the correct one, but it’s possible 

to subvert DNS and provide a wrong IP address. All of these tools transmit data in clear 

text, which could be intercepted and altered in transit.

We’ll not discuss the Berkeley tools in this edition, and we will discuss the DARPA 

set only briefly. Rather, we’ll spend some time on SSH (the secure shell), where the 

entire communication is encrypted.

T A B L E  1 1 . 2  Server and Client Programs

Service       Server Program     Client Program    Server Port

FTP           in.ftpd or ftpd            

(controlled by inetd)

ftp             21

SSH           sshd              ssh, scp, sftp, slogin  22

TELNET     in.telnetd or telnetd     

(controlled by inetd)

telnet     23

SMTP          sendmail          mailx, netscape    25

HTTP         httpd            mozilla, opera, konqueror 80

POP3          ipop3d           

(controlled by inetd)

Mozilla Thunderbird,

fetchmail 

110

               

das76205_Ch11_296-328.indd   302das76205_Ch11_296-328.indd   302 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 303

 11.4  ping: Checking the Network

To operate in a network, a host must be equipped with a network interface card (NIC) 

that is configured and assigned an IP address. You can then use ping to send packets to 

a machine known to be working in the network. The command sends 56-byte packets 

to a remote destination, which answers back on receipt:

# ping -s earth                 Solaris; Linux doesn’t need -s option

PING earth: 56 data bytes
64 bytes from earth.pdsit.becs.ac.in (192.168.35.140): icmp_seq=0. time=0. ms
64 bytes from earth.pdsit.becs.ac.in (192.168.35.140): icmp_seq=1. time=0. ms
64 bytes from earth.pdsit.becs.ac.in (192.168.35.140): icmp_seq=2. time=0. ms
64 bytes from earth.pdsit.becs.ac.in (192.168.35.140): icmp_seq=3. time=0. ms
[Ctrl-c]                    Display interrupted by pressing this key

----earth PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms)  min/avg/max = 0/0/0

The output confirms the connectivity between the local and remote hosts. “Pinging” a 

host doesn’t require any server process to run at the other end. For instance, if inetd is 

not started up on the remote machine, neither ftp nor telnet will work even if ping 

reports success.

 11.5  telnet: Remote Login

The telnet client program, belonging to the DARPA set, allows you to log in to a 

remote machine. If you have an account on the remote host, you can use telnet with 

the hostname or IP address as argument:

$ telnet 192.168.35.12
Trying 192.168.35.12...
Connected to 192.168.35.12.
Escape character is ‘^]’.
  
SunOS 5.8
login: romeo                                    Enter your user-id

Password: ********                              and password

$ _

The user-id and password are transmitted in clear text, and the server logs you in after 

authentication. Your machine just acts as a dumb terminal echoing both what you type 

and the response from the server. Any files you use or any commands that you run will 

always be on the remote machine. After you have finished, you can press [Ctrl-d] or 

type exit to log out and return to your local shell.

The Escape character lets you make a temporary escape to the telnet> prompt 

so that you can execute a command on your local machine. To invoke it, press [Ctrl-]] 

das76205_Ch11_296-328.indd   303das76205_Ch11_296-328.indd   303 12/13/11   10:47 AM12/13/11   10:47 AM



304 Your UNIX/Linux: The Ultimate Guide

([Ctrl] and the ]). You can then use the ! with a UNIX command, say, ls, to list files 

on the local machine:

$ [Ctrl-]]
telnet> !ls -l *.sam

A TELNET session is closed in the same way as any login session. Use [Ctrl-d] 

or the command appropriate to the shell. If you are at the telnet> prompt, 

use quit, an internal command of telnet. Use help to view telnet’s internal 

commands.

If you are using Bash as your login shell on both local and remote machines, then you can 
use the hostname in the prompt. Use a setting that includes \h as an escape sequence in PS1. 
You’ll then know which machine you are working on.

The reason why the TELNET service has been disabled on many hosts is that the password is 
transmitted in clear text to the server. Also, the entire session can be intercepted and altered. 
Modern setups use SSH for remote login. SSH is discussed in Section 11.8.

 11.6  ftp: File Transfer Protocol

DARPA’s ftp command is used to transfer files. Additionally, it offers a number of 

UNIX-like directory-oriented services, and many of its commands have similar names. 

Let’s use ftp to connect to saturn, using the hostname this time:

$ ftp saturn             Resolver translates saturn to 192.168.35.12

Connected to saturn.
220 saturn FTP server (Version wu-2.6.1-18) ready.
Name (saturn:romeo): romeo            Default is also romeo

331 Password required for romeo.
Password: *********                  Enter the password

230 User romeo logged in.
Remote system type is UNIX.
Using binary mode to transfer files.                       Note this

ftp> _                           The ftp prompt

ftp prompts with the local username as default (romeo), so if romeo is connecting to a 

like-to-like account on saturn, he can simply press [Enter]. The program is terminated 

by closing the connection first with close and then bye or quit:

ftp> close                  You can skip this if you want

221 Goodbye.
ftp> bye                      You can use quit also

$ _

Tip

Note

das76205_Ch11_296-328.indd   304das76205_Ch11_296-328.indd   304 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 305

You have to log on to the FTP server yet again to try out ftp’s internal commands that 

are featured in the forthcoming paragraphs. For a complete list, use the help command 

at the ftp> prompt.

 11.6.1  Basic File and Directory Handling
ftp supports a number of internal commands—like pwd, ls, cd, mkdir, rmdir, and 

chmod. But the commands apply only to the remote machine. The following session 

tells most of the story:

ftp> verbose                             Turns off some ftp messages

Verbose mode off.
ftp> pwd
257 “/home/sales” is current directory.
ftp> ls
-rw-r--r--   1 sales     group        1498 Jul 25 18:34 exrc
-rw-r--r--   1 sales     group          20 Jul 25 18:37 login.sql
-rwxr-xr-x   1 sales     group      289312 Jul 25 18:22 perl
-rw-r--r--   1 sales     group     1457664 Jul 25 18:43 vb4cab.2
  .....
ftp> cd reports
ftp> pwd
257 “/home/sales/reports” is current directory.
ftp> cdup                           Same as cd ..

ftp> pwd                          This is on the remote machine

257 “/home/sales” is current directory.
ftp> !pwd                          This is on the local machine

/home/henry/project3

To use the operating system commands on the local machine, use the ! as a command 

prefix (like !pwd). Since the ! doesn’t work with the cd command, ftp offers the lcd 

(local cd) command to do the job.

To have clean output, set the verbose mode to off by using the command once or twice. The 
command is a toggle switch; i.e., it alternates between the two modes.

 11.6.2  Transferring Files
For the purpose of transfer, files can be seen as belonging to two types—ASCII (text) 

and binary. All executables and most graphics, word processing, and multimedia files 

belong to the binary type. To transfer such files, set the transfer mode to binary first.

Uploading (put and mput) If you are a Web site developer, you’ll frequently need to 

upload your Web pages and graphic files to your Web site. The following put command 

sends (uploads) a single file, penguin.gif, to the remote machine:

ftp> binary                          No newline conversions

200 Type set to I.

Tip

das76205_Ch11_296-328.indd   305das76205_Ch11_296-328.indd   305 12/13/11   10:47 AM12/13/11   10:47 AM



306 Your UNIX/Linux: The Ultimate Guide

ftp> put penguin.gif                           Copied with same name

local: penguin.gif remote: penguin.gif
200 PORT command successful.
150 Opening BINARY mode data connection for penguin.gif.
226 Transfer complete.
6152 bytes sent in 0.04 seconds (150.20 Kbytes/s)

You can change your destination filename and you can copy multiple files with mput:

put penguin.gif pelican.gif
mput t*.sql                               * interpreted on local machine

Downloading (get and mget) To download files from the remote machine, you’ll 

need the get and mget commands, which are used in a similar manner to that of their 

“put” counterparts. This time, we’ll turn off all messages with verbose:

ftp> verbose                               Turns off noise
ftp> ls
drwxr-xr-x   14 888      999          4096 Jun 15 16:46 communicator
drwxr-xr-x    2 888      999            26 May 14 00:47 communicator_for_france
-rw-r--r--    1 888      999        323393 Sep  7 17:22 ls-lR
-rw-r--r--    1 888      999         28360 Sep  7 17:22 ls-lR.gz
  .....
ftp> binary                            Default on most systems

ftp> get ls-lR.gz
ftp> _                              No statistics this time—file copied

As with put, you can change your destination filename, and you can copy multiple 

files with mget:

get ls-lR.gz netscape_filelist
mget t*.sql                               * interpreted on remote machine

Why does ftp have two transfer modes? When files are transferred in the ASCII mode 

(using the ascii command of ftp), newline conversions take place automatically. That 

is, if you use the ftp command on Windows to transfer a file from a UNIX machine 

in the ASCII mode, all LF will be replaced with CR-LF (3.21). This replacement is 

desirable for text files, but not for binary files, where alteration makes them unusable.

There are two ftp commands that are often invoked immediately before get or mget: prompt 
and hash. The prompt command (a toggle switch like verbose) makes mget and mput behave 
noninteractively if the interactive mode was on in the first place. Running hash before get or 
mget prints a # every time a block of data is transferred.

 11.6.3  Anonymous FTP
There are several sites on the Net that offer software and documents for downloading. 

These sites offer a special user account—“anonymous,” which you access with your 

email address as the password. They are known as anonymous FTP sites. This is how 

Tip

das76205_Ch11_296-328.indd   306das76205_Ch11_296-328.indd   306 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 307

Linux

you connect to the anonymous FTP site of Apple, the company which created the iPod 

and iPhone:

$ ftp ftp.apple.com
Trying 17.254.0.15...
Connected to ftp.apple.com.
220 17.254.0.15 FTP server ready
Name (ftp.apple.com:sumit): anonymous
331 Anonymous login ok, send your complete email address as your password.
Password: romeo@vsnl.com Not echoed on screen

230 Anonymous access granted, restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> 

This time we used ftp with an FQDN that represents an Internet host. Once you are in, 

you can navigate to the directory and then use get and mget to download the software 

you want. Note that you can only download files from an anonymous FTP site.

On the Internet, file transfers sometimes get aborted, and ftp in Linux allows you to 

resume the transfer with the reget command. If the line drops with a file foo partially 

downloaded, you should use reget foo to continue the transfer from the point of failure.

How to Use ftp Noninteractively
ftp can take authentication parameters for each host from $HOME/.netrc. Two 

of the three entries that follow are for hosts jupiter and neptune. The other is for 

anonymous FTP sites:

machine jupiter login sasol password l1u2dw3ig
machine neptune login romeo password b1e6e37nn
default login anonymous password romeo@vsnl.com

Here, each of the keywords, machine, login, and password, is followed by its 

corresponding parameter. The last line containing the keyword default applies to 

all other sites. Here, it is used for anonymous FTP sites. This line has one fewer 

word than the previous ones.

The file contains the clear-text password, so it must be made unreadable to 

group and others (with chmod 600 .netrc). If you now run ftp jupiter, you’ll 

be logged in as user sasol without prompting.

 11.7  Cryptography Basics

Before we take up SSH, the secure shell, we need to understand some principles of 

cryptography and its techniques. Cryptography is the science of protecting information. 

This protection is achieved by using mathematical techniques to transform information 

das76205_Ch11_296-328.indd   307das76205_Ch11_296-328.indd   307 12/13/11   10:47 AM12/13/11   10:47 AM



308 Your UNIX/Linux: The Ultimate Guide

into an unintelligible form by a process known as encryption. The unscrambling of 

the data to its original form is called decryption. Both encryption and decryption are 

achieved by using one or more keys. It is practically impossible to retrieve the original 

data without knowledge of the key.

Cryptography is used for authentication, confidentiality, and message integrity. 

When A sends a message to B, B needs to satisfy itself that the message is indeed from 

A (authentication). A also needs to make sure that only B can read the message (con-

fidentiality). Both need to make sure that the message has not been altered in transit 

(message integrity). These principles form the basis of the secure shell, so let’s look at 

the standard techniques that achieve these basic cryptographic goals.

There are many algorithms that determine the way data is encrypted and 

decrypted, and how keys are generated. Generally, we divide these algorithms into 

these types:

 • Symmetric key algorithms that use a single key.

 • Asymmetric key algorithms that use two keys.

Since the encrypted pattern is largely defined by the key used, the security of the data 

depends both on the strength of the algorithm and the length of the key. Though it is 

practically impossible to decrypt the data without knowledge of the key, a brute force 
attack (one that tries all possible keys) can theoretically retrieve the data. However, by 

one estimate, if the key length is 128 bits, a brute force attack using a billion comput-

ers, with each computer able to search a billion keys a second, would still require over 

10,000 billion years to search all keys. This figure easily exceeds the residual life of the 

solar system (four billion years).

Both symmetric and asymmetric systems have their advantages and disadvantages, 

and SSH makes use of both technologies to provide a completely encrypted session 

between two ends. Let’s now find out how and where these algorithms are used.

 11.7.1  Symmetric Key Algorithms
Symmetric key algorithms make use of a single key for encryption and decryption 

of data. Both sender and recipient must have knowledge of the key. These algorithms 

enable very fast encryption and decryption and are thus widely used for bulk data. 

If you have a large document to send, then in all probability, you’ll use a symmetric 

key to protect it. The most common symmetric algorithms in use are DES, 3DES, 

Blowfish, and IDEA.

Symmetric algorithms have one problem, however—key distribution. If two indi-

viduals who trust each other decide to exchange data, then this isn’t much of a problem. 

However, on the Internet, if 10 users agree to exchange data with one another, they 

would need to exchange 90 keys. Also, they would all need to trust one another. The 

solution is to use a symmetric key for data encryption and asymmetric cryptography 

for key distribution.

 11.7.2  Asymmetric Key Algorithms
Asymmetric key algorithms, also known as public/private key algorithms, make 

use of two keys—public and private. Data encrypted by one key can only be decrypted 

by the other key. The two keys are related to each other though it is “computationally 

das76205_Ch11_296-328.indd   308das76205_Ch11_296-328.indd   308 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 309

infeasible” to derive one key from knowledge of the other. It’s the public key that is 

distributed to all; the private key never leaves the machine.

When A needs to send an encrypted message to B using an asymmetric key algo-

rithm, there are two options available to A:

 • Encrypt the message with A’s private key so that B can decrypt it with A’s public 

key. This achieves the goal of authentication. B is sure that message has indeed 

come from A.

 • Encrypt with B’s public key so that B can decrypt it with B’s private key. The goal 

of confidentiality is achieved as A is assured that only B can read the message.

In real life, however, the principles just described are used in a somewhat different man-

ner. Asymmetric key algorithms are slow (often, about a thousand times slower than 

symmetric ones) and are thus totally unsuitable for encrypting bulk data. SSH uses the 

best of both worlds. It uses a symmetric algorithm to encrypt data but an asymmetric one 

to distribute the key. SSH uses RSA, DSA, and Diffie-Hellman as public key systems 

for key distribution.

 11.8  SSH: The Secure Shell

To understand why the TELNET and FTP services are increasingly being disabled, let’s 

walk through the steps that typically characterize an FTP session. The insecurity associ-

ated with each step will help us understand why cryptography was adopted in SSH design:

 • The client connects to the server. Neither the server nor the client has any means 

to authenticate each other. An impostor can manipulate the DNS of the network to 

provide an IP address that actually belongs to a different server.

 • The client logs on to the server using a username and password, both of which are 

sent in clear text. It’s easy to intercept this data.

 • The client requests a file to be transferred. The entire file is also sent unencrypted, 

so it can be read by an outsider (violating confidentiality) and also altered (violat-

ing integrity).

SSH addresses all three issues. It uses a symmetric key to encrypt an entire session, 

but also uses the public/private key mechanism to authenticate hosts and users. There 

are currently two SSH protocols in use, and the exact techniques differ in SSH-1 and 

SSH-2. We’ll present the features of SSH-2 and note in an inset the changes you need 

to make when an SSH-2 client connects to an SSH-1 server. We use OpenSSH, a free 

implementation of SSH made by Berkeley, to run SSH-2.

 11.8.1  Host Authentication
SSH uses public key algorithms to generate a public-private key pair not only for users 

but also for hosts. When the sshd daemon is first started, it generates the host key pair 

for that host. When you use an SSH client, say, ssh itself, to connect to a server running 

sshd, this is what you see:

$ ssh mercury
The authenticity of host ‘mercury (192.168.35.1)’ can’t be established.

das76205_Ch11_296-328.indd   309das76205_Ch11_296-328.indd   309 12/13/11   10:47 AM12/13/11   10:47 AM



310 Your UNIX/Linux: The Ultimate Guide

RSA key fingerprint is 89:7f:65:bd:dd:af:01:e2:30:51:41:1a:fa:51:64:81.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘mercury,192.168.35.1’ (RSA) to the list of known hos
ts.
sumit@mercury’s password: **********
Last login: Fri Nov 28 10:19:03 2003 from saturn.heavens.com
$ _

SSH here points out that it is connecting to mercury for the first time, and that it has been 

provided with the public key of mercury (the host key, referred to as “fingerprint”). If you 

find nothing wrong with that, then mercury’s public key is added to ~/.ssh/known_hosts 

on the client host.

Once you decide to go ahead, the client generates a random and symmetric session 
key. The client encrypts this key with the server’s public key and sends it to the server. 

Henceforth, all communication between server and client will be encrypted using this 

session key. The user is logged in using password authentication, but this is not how 

we intend to use SSH.

 11.8.2  The rhosts/shosts Authentication Scheme
The Berkeley r-utilities (comprising the rsh, rlogin, and rcp commands) introduced 

the concept of trusted hosts to perform password-free authentication. A host could 

maintain a systemwide file, /etc/hosts.equiv, that listed those hosts (one per line) 

who are allowed to connect to this host. Alternatively, a user could also maintain the file 

~/.rhosts with similar entries. We do not cover the r-utilities in this edition, but we need 

to know the concepts because SSH may “fall back” on this scheme if everything else fails.

Consider that user romeo on host saturn has the entry mercury in ~/.rhosts. 

This implies that romeo on mercury can use rsh and rlogin to log on to his like-to-like 

account on saturn without using a password. However, if .rhosts contains the entry 

pluto juliet, it means that user juliet on pluto can log on to romeo’s account without 

using a password. For other logins, a password would be prompted for.

This scheme has drawbacks. The r-utilities use DNS to verify the authenticity of a host, 

and DNS is vulnerable to spoofing attacks. However, SSH also supports a variation of this 

mechanism. It uses /etc/shosts.equiv and ~/.shosts for authentication, failing which 

it uses /etc/hosts.equiv and ~/.rhosts. The entries in both sets are of the same form, 

and password-free access is granted if equivalence can be established. If all’s not well, SSH 

prompts for a password with the difference that the password is sent encrypted to the server.

We won’t discuss this scheme any further because it may be disabled in favor of 

a public/private key-based user authentication system that is discussed next. To use this 

scheme, make sure that you delete both ~/.rhosts and ~/.shosts, both in the server 

and the client. It’s expected that the administrator won’t also maintain /etc/hosts.equiv 

and /etc/shosts.equiv.

 11.8.3  User Authentication with Symmetric Algorithms
Host authentication is followed by user authentication using public key encryption, 

provided the client is set up to work that way. The program ssh-keygen generates the 

das76205_Ch11_296-328.indd   310das76205_Ch11_296-328.indd   310 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 311

public-private key pair for a user and stores them in two separate files. As an added 

precaution, SSH allows you to encrypt the private key using a passphrase which is 

prompted for at the time of key generation:

$ ssh-keygen -t rsa                                Generating RSA keys

Generating public/private rsa key pair.
Enter file in which to save the key (/home/sumit/.ssh/id_rsa): [Enter]
Enter passphrase (empty for no passphrase): ***********************
Enter same passphrase again: ***********************
Your identification has been saved in /home/sumit/.ssh/id_rsa.
Your public key has been saved in /home/sumit/.ssh/id_rsa.pub.
The key fingerprint is:
29:75:68:49:30:e8:8b:e1:5c:db:13:97:01:d6:bc:15 sumit@saturn.planets

We opted for RSA-based authentication (-t rsa), but SSH-2 also supports DSA. A 

passphrase is similar to a password except that spaces are allowed. The default locations 

for the private and public RSA keys are ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub, 

respectively. As expected, the private key file is a little more secure than the other:

$ cd ~/.ssh ; ls -l id_rsa*
-rw-------    1 sumit    users         951 2003-11-27 13:10 id_rsa
-rw-r--r--    1 sumit    users         223 2003-11-27 13:10 id_rsa.pub

Your private key is stored in encrypted form (using the passphrase you provided) in the 

first file. To use RSA-based public/private key authentication, you need to copy the file 

containing your public key (id_rsa.pub) to all hosts to which you need to connect by 

SSH. You could use ftp to do this job, but the service could be disabled, so use scp, a 

command of the SSH suite:

$ cd ~/.ssh                              On the client machine

$ scp id_rsa.pub sumit@mercury:.
sumit@mercury’s password: **********
id_rsa.pub           100% |*****************************|   230       00:00

scp still prompts for the password because RSA-based user authentication has 

not been set up yet. Now log in to the server (here, mercury) and append this file 

to ~/.ssh/authorized_keys on the remote host. This file contains the public keys 

for this user, who connects from different hosts:

$ ssh mercury
sumit@mercury’s password: ************
Last login: Fri Nov 28 10:25:49 2003 from saturn.heavens.com
$ cat id_rsa.pub >> ~/.ssh/authorized_keys
$ exit                                   Back to client

Connection to mercury closed.

das76205_Ch11_296-328.indd   311das76205_Ch11_296-328.indd   311 12/13/11   10:47 AM12/13/11   10:47 AM



312 Your UNIX/Linux: The Ultimate Guide

If everything has been set up properly, then when you use ssh or any of the tools of the 

SSH suite (scp, sftp or slogin) to connect to mercury, the program prompts for the 

passphrase of your private key:

$ ssh mercury
Enter passphrase for key ‘/home/sumit/.ssh/id_rsa’: ***********************
Last login: Fri Nov 28 10:27:24 2003 from saturn.heavens.com
$ _

Note that SSH doesn’t prompt for the password this time, but simply the passphrase used 

to encrypt the private key. The server verifies the authenticity of the user by sending 

the client a challenge—a randomly selected string encrypted with the user’s public key. 

The client decrypts the string and sends back the challenge string, thus proving that it 

possesses the private key. The user is then logged in. There could be a variation of this 

procedure, but the underlying idea of using public key cryptography for key distribution 

and authentication is evident.

If SSH has not been set up properly, it will fall back on the rhosts/shosts form of authentica-
tion and prompt for your password as stored on the remote host. If SSH is simply unable to 
establish a secure connection, then it may even transmit the password in an unencrypted 
manner, but only after warning you!

 11.8.4  Using the SSH Agent for Noninteractive Logins
If you connect to a remote host regularly, typing a passphrase repeatedly can be quite 

annoying. We can use the SSH authentication agent program, ssh-agent, to cache the 

unencrypted private key in memory. Once you hand over this key to ssh-agent, all 

future connections will be both password- and passphrase-free.

ssh-agent needs two variables to be set. The default output shows their assign-

ment in the form variable=value:

$ ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-XXFh8izh/agent.1655; export SSH_AUTH_SOCK;
SSH_AGENT_PID=1656; export SSH_AGENT_PID;
echo Agent pid 1656;

We haven’t run the agent yet, but using the services of eval (13.20—Going Further), 

we can make these assignments and invoke the agent in a single invocation:

$ eval ̀ ssh-agent -s`                        Use -c for C shell

Agent pid 1251

The agent is now running with 1251 as the PID. You now have to hand over your private 

key with ssh-add:

$ ssh-add ~/.ssh/id_rsa
Need passphrase for /home/sumit/.ssh/id_rsa
Enter passphrase for /home/sumit/.ssh/id_rsa: ********************
Identity added: /home/sumit/.ssh/id_rsa (/home/sumit/.ssh/id_rsa)

Caution

das76205_Ch11_296-328.indd   312das76205_Ch11_296-328.indd   312 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 313

The private key will remain cached in memory as long as you are logged in. You can 

display all keys registered with ssh-agent with the -l option, and delete a key with 

-d. Now you no longer need a passphrase to connect to the server:

$ ssh mercury
Last login: Fri Nov 28 10:28:17 2003 from saturn.heavens.com
$ _

Noninteractive login at last! You have a secure communication channel and every 

character passing through this channel is encrypted using a symmetric key algorithm. 

You can now use any of the SSH tools (discussed in Section 11.9) in a noninteractive 

manner.

When an SSH-2 Client Connects to an SSH-1 Server
You may have the latest version of OpenSSH on your machine running SSH-2, but 

your server could still be running SSH-1. In that case, let’s walk through all the 

configuration steps and note the differences:

•  When you first connect to a remote host to obtain its public key, use 

ssh -1 mercury. The -1 (one) option ensures that the ssh client uses SSH-1.

•  Generate your private/public key pair with ssh-keygen -t rsa1. Previously, 

we used -t rsa which represented the RSA keys for SSH-2. RSA keys in 

SSH-1 have different formats and are stored in the files ~/.ssh/identity 

(for private) and ~/.ssh/identity.pub (for public).

•  Copy the .pub file as usual to the server, but make sure that the permissions 

of ~/.ssh/authorized_keys are set to 600. SSH-2 is indifferent to the 

permissions used as long as the file is readable.

•  Now connect to the SSH-1 server using the -1 option with ssh, slogin, and 

sftp, and -oProtocol=1 with scp.

If you still have any problems, then use ssh -v for a verbose output that shows the 

entire handshaking process. You should be able to locate the error in this output.

 11.9  The SSH Tools

The SSH suite comprises tools that emulate the behavior of both the DARPA set and 

the Berkeley r-utilities. These tools also have similar names:

 • slogin for remote login.

 • ssh for remote login and command execution.

 • scp and sftp for file transfer.

Note that the ssh command itself can be used both for remote login and command 

execution. Unlike the conventional tools, however, all SSH tools are secure (if configured 

properly); all communication between server and client is encrypted. We’ll now discuss 

these tools.

das76205_Ch11_296-328.indd   313das76205_Ch11_296-328.indd   313 12/13/11   10:47 AM12/13/11   10:47 AM



314 Your UNIX/Linux: The Ultimate Guide

 11.9.1  Remote Login and Command Execution (ssh and slogin)
SSH features two commands, ssh and slogin, both derived from the Berkeley tools 

(rsh and rlogin) for remote login. If you have previously run ssh-agent and ssh-add 

to save your private key in memory, then you can log in without supplying a passphrase:

$ ssh mercury
Last login: Fri Nov 28 10:45:23 2003 from saturn.heavens.com
$ _

However, if you have not used ssh-agent and ssh-add, then ssh will prompt for the 

passphrase:

$ ssh mercury
Enter passphrase for key ‘/home/sumit/.ssh/id_rsa’:

Using the -l (el) option, you can also log in using a different user-id, provided the other 

user has permitted you to do so by saving your public key in ~/.ssh/authorized_keys 

on the server:

ssh -l charlie mercury

The slogin command behaves similarly and also supports the -l option.

Sometimes, you may want to run a remote command without logging in. ssh can 

do that too. Simply use the hostname and command name as arguments:

ssh saturn ls -l                  ls -l executed on host saturn

Though ls is run remotely, the output is seen on your terminal. To save this output in 

the remote machine as well, escape the >:

ssh saturn ls -l \> dir.lst                     > interpreted remotely

If you use wild cards that have to be interpreted remotely, you need to quote or escape 

them too so that your local shell doesn’t interfere.

 11.9.2  File Transfer with sftp and scp
The sftp command is similar to ftp except that it has a restricted set of internal com-

mands. Log in with or without a passphrase:

$ sftp mercury
Connecting to mercury...
sftp> _                                          The sftp prompt

Invoke help, and you’ll find that it uses an “l” (el) prefix to run a command on the local 

machine. This prefix was seen only in the lcd command in ftp, but here you have to 

use lpwd, lls, and lmkdir to run pwd, ls, and mkdir on the local machine. Here’s how 

you use sftp to upload a file:

sftp> cd workc
sftp> pwd

das76205_Ch11_296-328.indd   314das76205_Ch11_296-328.indd   314 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 315

Remote working directory: /home/sumit/workc
sftp> lpwd
Local working directory: /home/sumit
sftp> lcd personal/workc
sftp> lpwd
Local working directory: /home/sumit/personal/workc
sftp> put shell.c
Uploading shell.c to /home/sumit/workc/shell.c
sftp> quit

Even though the feature is not yet documented, you can use the mput and mget com-

mands in the same way they are used in ftp.

scp has one advantage over both ftp and sftp: It can copy subdirectory struc-

tures. scp accesses a remote file as hostname: filename. This is how a file is copied in 

both directions:

scp saturn:/home/henry/shell.c shell.c    From remote to local

scp shell.c saturn:/home/henry/          From local to remote

If the file has to be copied from the user’s home directory, then you can shorten the 

command line further. You can also use wild cards to retrieve multiple files:

scp henry@saturn:shell.c .
scp henry@saturn:”*”.c .

For copying a directory structure, use the -r option. Both of the following commands 

copy henry’s home directory tree from saturn to the local machine:

scp -r saturn:/home/henry .
scp -r henry@saturn:. .                           Two dots

Shell programmers can now use the scp command in shell scripts.

 11.10  Internet Mail

Electronic mail was first discussed in Section 2.9, and the mailx command was used 

to move mail between users on the same host. Mail programs generally need no special 

configuration to deliver mail in these single-host situations. A user’s email address is 

simply her username. On the Internet, email addresses take one of these two forms, both 

of which include the domain name:

romeo@heavens.com
juliet floyd <juliet@heavens.com>

Generally, we don’t see FQDNs (that include the hostname) in email addresses. Here, ro-

meo could have an account on saturn and juliet could have hers on mercury. Yet, the email 

address of both hide the hostname. Note that juliet’s email address is embedded within 

< and >. On the Internet, we use email addresses of this form, though the minimal form 

also works. The full name is not used for routing the mail, only the actual email address.

das76205_Ch11_296-328.indd   315das76205_Ch11_296-328.indd   315 12/13/11   10:47 AM12/13/11   10:47 AM



316 Your UNIX/Linux: The Ultimate Guide

The mechanism used to move mail on the Internet is a little complex. Unlike 

TELNET and SSH, which work within a simple client-server framework, Internet mail 

handling requires the work of at least three agencies:

 • Mail user agent (MUA)—For reading the mailbox and sending mail.

 • Mail transport agent (MTA)—For transporting mail between machines.

 • Mail delivery agent (MDA)—For delivering mail to the recipients’ mailboxes.

In this three-tier arrangement, the mail user agent (MUA) like mailx or pine acts as 

the user’s frontend. The MUA reads incoming mail from the mailbox and hands over 

outgoing mail to the mail transport agent (MTA).
The MTA also has two functions: it both sends and receives mail. At the send-

ing end, the MTA identifies the recipient’s address and delivers the message directly 
to the MTA at the other end. At the receiving end, the MTA passes on mail to the mail 
delivery agent (MDA). Both of these functions are handled universally by the Simple 
Mail Transfer Protocol (SMTP).

The MTA doesn’t deliver mail. It’s the MDA that accepts mail from the receiving 

MTA and delivers it to the actual user’s mailbox. This is handled by separate programs 

like /usr/lib/mail.local on Solaris and procmail on Linux.

A fourth tier comes in when the user’s host connects to the mail server intermit-

tently. This is the case with dialup lines. In this arrangement, users typically use their 

ISP’s facilities to handle their mail. The ISP stores the user’s mail on their server, and 

the user fetches the mail using a separate program. There are two protocols in use today 

for fetching mail—Post Office Protocol (POP3) and Internet Message Access Protocol 
(IMAP).

Most character-based clients like mailx and pine can only view mail that has 

been delivered to the host on which they are running; they can’t retrieve mail from a 

POP/IMAP server. However, if you compose and receive mail on your own workstation 

using a GUI client like Mozilla Thunderbird, then you need to specify the following 

parameters as part of your client’s setup:

 • The outgoing SMTP server.

 • The incoming server that may use the POP3 or IMAP protocol.

 • Your user-id on these servers.

If your own workstation is set up to act as a mail server, then you can use the generic 

name localhost to signify your own hostname or 127.0.0.1 if you prefer to specify 

the IP address.

DNS Identifies the Mail Server
Apart from performing FQDN-address resolution, DNS also specifies the mail 

servers (called mail exchangers) meant to handle mail for that domain. When a 

message is addressed to juliet floyd <juliet@heavens.com>, the resolver of the 

sending host contacts its own DNS server to obtain the IP address of the mail server 

for heavens.com (which could be, say, mail.heavens.com). The MTA of the sending 

host then transfers the mail to the MTA of mail.heavens.com.

das76205_Ch11_296-328.indd   316das76205_Ch11_296-328.indd   316 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 317

 11.10.1  ~/.signature and ~/.forward: Two Important Files
Most mailers make use of the signature facility to append some static text to every 

outgoing message. This text is often the sender’s personal details that are saved in 

$HOME/.signature. The contents of this file are attached to the user’s outgoing mes-

sages, provided the MUA is configured properly. Some mailers like Mozilla also use 

the .signature file, but it is located differently.

When you travel, you can consider the automatic forwarding facility to redirect 

all of your incoming messages to another address. Simply place the address where you 

want all mail to be forwarded to in $HOME/.forward. If romeo’s .forward contains an 

entry like this:

romeo@oldstamps.com

the local MTA forwards the mail to the mail server of the oldstamps.com domain with-

out delivering it to romeo’s local mailbox. No mailer needs to be configured to use this 

facility because forwarding through .forward is a feature of sendmail—the program 

that uses SMTP and delivers most of our mail on the Internet.

A problem arises when you forward mail with .forward to another host and then set up a 
reverse forwarding facility there to redirect it back. This situation can occur for mobile users. 
Forwarding at both ends creates a loop, and your message never gets delivered. It shuttles to 
and fro before sendmail intervenes and breaks the loop.

 11.11  MIME: Handling Binary Attachments in Mail

Every mail message consists of several lines of header information. Some of them are 

inserted by the MUA and the others by the MTA. A typical message shows at least the 

first four of the following fields:

Subject: creating animations in macromedia director from GIF89a images
Date: Fri, 08 Nov 2002 15:42:38 +0530
From: joe winter <winterj@sasol.com>
To: heinz@xs4all.nl
Cc: psaha@earthlink.net

The message body follows next, preceded by a blank line. The body contains mostly 

text, but it can also contain attachments, which are held as a single multipart message. 

The original SMTP protocol had two limitations that disallowed the mailing of binary 

attachments:

 • Only 7-bit ASCII characters could form a mail message.

 • The line length could not exceed 1000 characters.

The Multipurpose Internet Mail Extensions (MIME) standard addresses these issues. 

MIME extends the definition of mail to include binary files and multiple data formats in 

a single message. MIME also imposes no restriction on line length. Binary attachments 

Caution

das76205_Ch11_296-328.indd   317das76205_Ch11_296-328.indd   317 12/13/11   10:47 AM12/13/11   10:47 AM



318 Your UNIX/Linux: The Ultimate Guide

are encoded (converted to printable characters) so they can be saved in text format in 

the user’s mailbox. But the MIME standard requires two additional headers to be sent 

with the message:

Content-Type: application/pdf; name=”interior.pdf”
Content-Transfer-Encoding: base64

The Content-Type: header defines the type/subtype of the data following the header. 

Here, pdf is a subtype of application. The Content-Transfer-Encoding: header 

defines the encoding techniques used on the data. We have here a PDF document as an 

attachment having application/pdf as its content type and encoded using the base64 
technique.

These two headers provide the necessary information that would enable a MIME-

compliant mail application at the other end to decode the content. Two configuration files 

play a vital role here: mime.types on the sender’s side and mailcap on the receiver’s 

side. When you attach a PDF document to an outgoing message, your MUA looks up 

the file’s extension in mime.types to determine the Content-Type: header. Here’s a 

sample entry for a PDF file (extension: .pdf):

application/pdf         pdf

The MUA sets the content type for the PDF portion of the message to application/pdf. 

At the receiving end, the MUA may not have the capability to handle this content type. 

It then looks up the file mailcap for the helper application (an external program) that 

is specified for this content type. Here’s an entry from this file:

application/pdf; acroread %s                Note the delimiter is ;

This entry directs the MUA to call up the Acrobat Reader (the executable acroread) to 

view the PDF document. Many UNIX systems maintain a systemwide mailcap database 

in /etc, but many MUAs (like Netscape Messenger) maintain their own. If mailcap 

doesn’t specify a helper application for a content type, then the MUA will seek your 

approval for saving the file to disk.

Even though MIME was designed to deliver multimedia attachments with mail 

messages, the standard applies equally well to newsgroup messages and Web resources. 

We’ll revisit MIME when we discuss HTTP.

The sender looks up mime.types to identify the content type to be inserted in the mail 
header. The receiver looks at mailcap to identify the helper application that can handle the 
attachment.

 11.12  Using X Window on a TCP/IP Network

The X Window system that was first discussed in Section 2.15 provides UNIX with a 

graphical user interface (GUI). X was also built to run in a network, but using a reversed 

client-server paradigm. Its architecture places the responsibility of handling the display 

on the server, while the application itself runs as a client. The server in X is called 

Note

das76205_Ch11_296-328.indd   318das76205_Ch11_296-328.indd   318 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 319

the display, which comprises the screen, terminal, and mouse. X enables you to run a 

graphical program (client) on a remote machine and have its display on the local one 

(and vice versa).

 11.12.1  The Display
You may decide to run a client on a remote machine, possibly because of its superior 

computing power or because it’s not available on your machine. Imagine that you want 

to run the xcalc program that is available on a remote machine (uranus). However, the 

display of the program must appear on your local machine (saturn) so you can input 

data from your keyboard. There are two things that you have to ensure before you can 

make that happen:

 • The server (on your machine, saturn) must enable others to write to its display. 

This is done by using the xhost command on the local machine.

 • The client program (on the remote machine, uranus) must be directed to write its 

output to another display. This is achieved by setting either the DISPLAY variable 

or by using the -display option with the client.

We’ll first use xhost on our local machine to enable any user on uranus to write to our 

display:

$ xhost +uranus
uranus being added to access control list

You can turn off the xhost setting with the - symbol or enable your display for all 

machines with +:

$ xhost -                            Disables display for others

access control enabled, only authorized clients can connect
$ xhost +                            Enables display for others

access control disabled, clients can connect from any host

You can now run xcalc on uranus by logging on to the host using telnet or ssh. You 

then have two ways of running an X client on that host, and they are considered in 

Sections 11.12.2 and 11.12.3.

 11.12.2  Using the DISPLAY variable
X uses the DISPLAY shell variable to determine where the output of an X client should 

be displayed. After you have logged in to uranus, define and export the DISPLAY variable 

at the shell prompt of a terminal emulator (like xterm or dtterm):

DISPLAY=saturn:0.0                      uranus must be able to access saturn by name

export DISPLAY                           Else use the IP address

Here, saturn is the hostname, :0 is the instance of the X server program, and .0 is the 

screen number of the display. The hostname should either be present in /etc/hosts 

or be accessible using DNS. If it is not, then you have to use the IP address in place of 

the hostname.

das76205_Ch11_296-328.indd   319das76205_Ch11_296-328.indd   319 12/13/11   10:47 AM12/13/11   10:47 AM



320 Your UNIX/Linux: The Ultimate Guide

The preceding setting signifies that any X client that will subsequently be run on 

uranus will use the display of saturn, rather than its own. Now you can run the program 

xcalc on uranus:

xcalc &

You executed xcalc on a remote machine, and the calculator pops up on your local 

machine!

 11.12.3  Using the -display Option
The other technique is to use the -display option offered by every X client. The param-

eter to this option is the complete display name—the same value assigned to DISPLAY:

xcalc -display saturn:0.0 &

Depending on the system you are using, the -display option may override any previous 

DISPLAY setting. If that happens on your system (as in Linux), you don’t need to use the 

-display option any more to run client programs from this emulator.

If you have a number of clients to run on a remote machine with the display on your local one, 
then it is preferable to use DISPLAY, which needs to be set only once. Many Linux systems set 
DISPLAY automatically when you log in, so you may not need to set it at all!

 11.13  HTTP and the World Wide Web

The World Wide Web was originally conceived by Tim Berners-Lee at CERN in 

Switzerland as a simple mechanism for interconnecting documents. It quickly went 

beyond the original vision of its creator, and today it functions as a “one-stop shop” 

for practically everything that’s discussed in this chapter. The Web kept the traditional 

Internet services (email, FTP, and Net News) alive, but made obsolete its immediate 

ancestors, Archie and Gopher.

Even though the Web appears to be a conglomeration of multiple services, it 

works within the framework of the simple client-server model. Web service uses 

the Hyper Text Transfer Protocol (HTTP), and Web servers, also known as HTTP 

servers, listen for requests at port 80. If ps -e shows httpd running, then your host 

is a Web server.

The Web’s access (client) tool is called the browser. A Web browser fetches a 

document (or any resource) residing on Web servers and formats it using the formatting 

instructions provided in the document itself. It also displays pictures if they are in GIF, 

JPEG, or PNG formats. If there’s a format it can’t understand, it will call up a plugin 
or a helper application (11.11).

The World Wide Web is indeed a “web”—a vast collection of hypertext (or 

hyperlinked) documents that are linked to one another. This linkage is based on the 

principle that if a resource is available on one server, then it makes no sense to have 

it on another. These links are specified by Uniform Resource Locators (URLs). In this 

Tip

das76205_Ch11_296-328.indd   320das76205_Ch11_296-328.indd   320 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 321

way, the user “wanders and roams” without needing to know where she is, and initiates 

a new connection with a simple keystroke or a mouse click.

Web documents are written in the Hyper Text Markup Language (HTML), a text-

based portable language. HTML can specify the text attributes that should appear on the 

display (like bold, red in color, etc.), but its real power lies in its hypertext capability: 

HTML text contains hypertext links to other Web pages. Activating a link can take you 

to another place in the same document, another document on the same server, or any 

page anywhere on the Internet. Text and pictures can also point to each other.

 11.13.1  The Uniform Resource Locator (URL)
A resource is described by a Uniform Resource Locator (URL) or Uniform Resource 
Identifier (URI)—a form of addressing that combines the FQDN of the site and the 

pathname of the resource. The simplest URL is one that specifies only the FQDN of the 

server, and is entered through the URL window of the browser:

http://www.oracle.com                     

This displays the home page of Oracle’s site. Web servers are often configured to send 

the file index.html when you specify the FQDN as above. The home page shows a 

number of hyperlinks in the form of underlined text. Clicking on a link fetches a differ-

ent page, and your URL could change to something like this:

http://www.oracle.com/technetwork/articles/java/index.html               

The URL syntax ranges from the simple to the complex, but in general, a URL is a 

combination of three or four things:

 • The protocol (usually http:// ) used in transferring the resource. A Web browser 

supports other protocols, so you can use ftp:// to transfer a file. HTTP is the 

default protocol, so you may drop the protocol prefix from the URL.

 • The port number, which is not usually specified if the server uses the default port, 

80. The preceding URL is equivalent to 

 http://www.oracle.com:80/technetwork/articles/java/index.html

 Note the colon before the port number.

 • The FQDN of the host (here, www.oracle.com).

 • The pathname of the resource (here, /technetwork/articles/java/index.html ). 
This need not always be a resource to fetch, but could be a program to run on 

the server.

The Web has a strong UNIX tradition, so frontslashes are the rule. Like FTP servers, 

Web servers also have their own root directory, which is distinctly different from the file 

system’s root. In other words /technetwork is not under the system’s root.

The URL or URI string is not fully case-insensitive. The FQDN is case-insensitive all right, but 
whether the pathname is case-insensitive or not depends on the server’s operating system. 

Note

das76205_Ch11_296-328.indd   321das76205_Ch11_296-328.indd   321 12/13/11   10:47 AM12/13/11   10:47 AM



322 Your UNIX/Linux: The Ultimate Guide

UNIX is case-sensitive, so if you have seen the pathname /Docs/index.html, then enter it just 
that way.

 11.13.2  HTTP: The Protocol of the Web
Like the other Internet services, HTTP has separate client and server components. A Web 

page typically contains links to many resources that may be distributed across multiple 

servers. The client requests the server for a document, and the server responds by send-

ing it. The client then extracts the URLs of the other resources from the document and 

then makes separate requests for each resource that has to be fetched to complete the 

page display. The life cycle of a connection using HTTP/1.1 is as follows:

1. The client contacts the server and opens a connection at port number 80.

2. The client requests the Web server for some service. This service may be to ask 

for a document or post some form data back to the server. The request consists of 

a request header followed by the data sent by the client.

3. The server now sends a response, which consists of a response header followed 

by data.

4. The server waits for more requests and finally closes the connection. On older 

HTTP/1.0 servers, the server would close the connection after each request.

Most Web servers today use HTTP/1.1 and its Keep-Alive feature, which makes con-

nections persistent. This implies that if a Web page contains five graphic files, a single 

connection can fetch them using Keep-Alive. Without Keep-Alive, six connections would 

be needed. The protocol is also stateless in that each connection is unaware of the other 

even though they took place sequentially.

The server’s response header describes the type of data sent from the server. HTTP 

uses the MIME feature that was first used in email for specifying the content type of the 

data that is to follow. For HTML documents, this is text/html.

 11.13.3  Running External Programs
The previous URL specifications referred to static resources—files that reside on a Web 

server. However, a lot of content on the Web is generated dynamically; i.e., it doesn’t 

exist as files on the server. Take for instance this URL, which specifies a search for the 

string unix system calls on the Teoma site:

http://s.teoma.com/search?q=unix+system+calls&qcat=1&qsrc=1

Here, the string search following the FQDN is not the filename of a Web page, but of 

a program to be run on the server. The remaining string following the ? symbol comp-

rises the data to be used by this program, suitably encoded to avoid conflict with the 

characters used in the rest of the URL string. A Web server has no capacity to run these 

programs.

The server passes on the request to a Common Gateway Interface (CGI), which 

makes arrangements to execute the program and returns its standard output to the Web 

server for onward transmission back to the client. We call them CGI programs, and 

such programs could be written in any language. perl is the language of choice for CGI 

das76205_Ch11_296-328.indd   322das76205_Ch11_296-328.indd   322 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 323

because of its parsing capabilities using regular expressions. However, Java servlets are 

increasingly being used in this domain.

 11.13.4  HTML: The Language of Web Pages
Web pages are written in HTML. Even though the HTML acronym expands to Hyper 

Text Markup Language, it’s not really a programming language like C, which produces 

binary executables from text sources. Rather, HTML uses tags to “mark up” text. It 

owes its origin to the nroff/troff suite of UNIX systems that used some of these tags 

several years before the Web was born. A few sample lines from a Web page show the 

use of these tags:

<BODY>
   <H1> Perl: Larry Wall’s Brainchild </H1>
      <STRONG>perl</STRONG> is an interpretive language and is probably the
      best     language yet         available for text manipulation.
      <IMG SRC=”perl.gif” ALIGN=LEFT VSPACE=10 HSPACE=10>
      It was created by Larry Wall, and made freely available to the world.
      <EM><STRONG> You don’t have to pay for using perl</STRONG></EM>,
      It’s     distributed      under the GNU General Public License,
      which means that no one can impose any restrictions on its distribution.
      You can know more about <STRONG>perl</STRONG> by visiting
      <A HREF=”http://www.perl.org”> the Perl site</A>.
</BODY>

Each tag begins with a < and ends with a >, and most tags have some formatting capability. 

For instance, <STRONG> and its closing counterpart, </STRONG>, serve to boldface text. In this 

HTML source, the word perl appears twice in boldface as shown in Fig. 11.2. The browser 

ignores extra spaces and blank lines, and combines multiple adjacent spaces in a single space.

Two tags provide the actual hyptertext capability—<IMG> and <A>. Both of them 

take on attributes in the form attribute=value. The <IMG> tag and its SRC attribute are 

used to specify the URL of a graphic. The browser fetches the graphic file from the 

server (which could be a different one) and displays it inline within the Web page. Here, 

the tag places the picture of a pearl on the page.

The anchor tag, <A>, and the HREF attribute behave in a similar manner except 

that they allow you to click on a section of text or an image to fetch another resource. 

Here, the words the Perl site appear underlined, indicating a hyperlink. Clicking on 

it replaces the current page with the home page of www.perl.org.

Because HTML documents are text files, they are portable, and you can view them 

on any browser on any machine running any operating system. They are also small in 

size and thus are ideally suited for use on the Web, where network bandwidth is often 

a constraint.

 11.13.5  The Web Browser
The Web browser is the HTTP client. It accepts a URL either from the URL win-

dow or from a bookmark, and fetches the resource from the server. If the document 

contains <IMG SRC> tags, the browser fetches the images the tags link to—using 

das76205_Ch11_296-328.indd   323das76205_Ch11_296-328.indd   323 12/13/11   10:47 AM12/13/11   10:47 AM



324 Your UNIX/Linux: The Ultimate Guide

a single Keep-Alive connection, wherever possible. Every browser is also expected to 

offer these features:

 • Step back and forth through documents viewed in a session.

 • Save HTML files (and graphics) to the local machine.

 • Bookmark important URLs so they can be fetched later without actually entering 

the URL.

 • Support other application protocols like FTP and TELNET.

 • Automatically invoke helper applications and special software (plugins) when 

encountering a file format it can’t handle.

Like email clients, the earliest Web browsers were character-based, and the lynx browser 

remained popular until the advent of graphics and X Window. Mozilla Firefox, Konqueror, 

and Opera are the most popular browsers for UNIX and Linux systems today. 

 11.14  Multimedia on the Web: MIME Revisited

Web documents today feature a variety of multimedia objects like Java applets, 

RealAudio, RealVideo, and Shockwave technology. MIME technology (11.11) also 

applies to multimedia files on the Web. However, these files are sent by Web servers not 

as multipart messages but as independent files. The server sends the content type to the 

F I G U R E  1 1 . 2  An HTML Web Page

das76205_Ch11_296-328.indd   324das76205_Ch11_296-328.indd   324 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 325

client before it sends the file. It does this by looking up mime.types, which associates 

the content type with the file’s extension, as shown here for a PDF document:

type=application/acrobat   exts=pdf                          Solaris

application/pdf         pdf                                  Linux

When a browser encounters an unfamiliar data format, it first sees whether there is a 

plugin in its arsenal. A plugin is a piece of software installed (“plugged”) in the browser. 

It is normally small and has the minimal features required for simple viewing (or, in case 

of audio and video, playing). You can’t invoke a plugin separately as you can call up a 

helper application (explained next) like Acrobat Reader. When a file is viewed with a 

plugin, it appears inline with the HTML text, and not in a separate window.

If the browser is not able to locate a plugin for a specific content type, it looks up 

mailcap to determine the helper application. This is a separate standalone application 

that can also be invoked separately from the UNIX command line. We saw one entry in this 

file in Section 11.11 that specified acroread for application/pdf. Unlike in Windows, 

Firefox doesn’t have this file configured well, so you’ll have to fill it up yourself.

S U M M A R Y

TCP/IP is a suite of protocols that connects heterogeneous machines in a network. It 

splits data into packets and ensures reliable transmission with full error control. Packets 

pass through routers to reach their destination.

A host is represented by a unique hostname and a unique IP address comprising 

four dot-separated octets. A host can be accessed both by its IP address and hostname, 

but TCP/IP packets contain only IP addresses.

The hostname-IP address translation is performed by /etc/hosts or the Domain 
Name System (DNS). The hosts file is maintained on all machines of a network. DNS 

understands a host by its fully qualified domain name (FQDN) and distributes the map-

pings across a number of name servers. The resolver queries the hosts file or DNS to 

perform the translation.

TCP/IP works in the client-server model. Server programs are known as daemons, 

which run in the background and listen for requests at certain ports.

telnet is used to run commands on a remote machine and display the output 

on the local machine. ftp transfers files between two hosts. You can upload one or 

more files (put and mput) or download them (get and mget). Anonymous FTP lets you 

download files from the Internet.

The secure shell is more secure than telnet and ftp as it encrypts the entire 

session, including the password. It uses a symmetric key for encryption of bulk data, 

but uses asymmetric keys (public and private) for host and user authentication and key 

distribution. You can log in in a secure manner (ssh and slogin), transfer files (scp and 

sftp), and run a command remotely (ssh).

Internet mail is handled by three agencies. You read and compose mail using a 

Mail User Agent (MUA). The Mail Transport Agent (MTA) transports mail to the MTA 

at the receiving end using the Simple Mail Transfer Protocol (SMTP). The Mail Delivery 
Agent (MDA) delivers the mail to the user’s mailbox.

das76205_Ch11_296-328.indd   325das76205_Ch11_296-328.indd   325 12/13/11   10:47 AM12/13/11   10:47 AM



326 Your UNIX/Linux: The Ultimate Guide

The Web works on the Hyper Text Transfer Protocol (HTTP) at port 80. Web 

documents written in the Hyper Text Markup Language use hypertext to link one docu-

ment with another resource. An HTML document is cross-platform and can be viewed 

in any environment.

The Uniform Resource Locator (URL) combines the FQDN of the site with a 

pathname. It can point to a static resource like a file or a program to be run, using the 

Common Gateway Interface (CGI). perl is the language of choice for CGI programming.

The Multipurpose Internet Mail Extensions (MIME) standard enables 

transmission of binary data in both email and HTTP. The Content-Type: and 

Content-Transfer-Encoding: headers together define the type of data and encoding 

techniques used. The file mime.types associates the content type with a file’s extens ion, and 

mailcap specifies the helper application that will handle a specific content type.

S E L F - T E S T

11.1 Why is TCP termed a reliable protocol?

11.2 What is the significance of the port number? How will you find out the port 

number finger uses?

11.3 Why are the TELNET and FTP services increasingly being disabled on most 

networks? What are they being replaced with?

11.4 How can you be sure whether you are working on the local machine or have 

used telnet or ssh to log on to a remote machine?

11.5 You copied a graphics file with ftp and the file appears to be corrupted. What 

could be the reason?

11.6 With which command do you upload files to an anonymous FTP site?

11.7 What is a brute force attack? Why does the security of data mainly depend on 

the size of the key?

11.8 To send a large volume of data securely over a network connection, what form 

of encryption would you adopt?

11.9 What is the difference between a password and a passphrase? Why is it neces-

sary to have a passphrase?

11.10 Using scp, how will you noninteractively copy all files from juliet’s home 

directory on host saturn without knowing the absolute pathname of her home 

directory?

11.11 What does this command do? ssh jupiter date \> .date.

11.12 How does X solve the problem of running the same program on different displays 

with different characteristics?

11.13 Can an X client like xterm running on a Solaris machine display its output on 

a HP-UX machine?

11.14 What is the problem with /etc/hosts?

11.15 Name three top-level domains that were added to the Internet namespace in the 

year 2000. Is the domain name WWW.suse.COm valid?

11.16 Explain the significance of the MUA and MTA. Whom does the MTA hand over 

mail to?

das76205_Ch11_296-328.indd   326das76205_Ch11_296-328.indd   326 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 11: Networking Tools 327

11.17 How are binary files included in mail messages even though SMTP handles only 

7-bit data? Name the two mail headers that play an important role here.

11.18 The browser can display three types of images without needing external help. 

What are they?

11.19 What is hypertext? Is it confined to text only?

11.20 What is HTTP? Which port number does it use?

11.21 What are CGI programs? How are they invoked?

11.22 How do you access the home page of the Web server running on your own 

machine?

E X E R C I S E S

11.1 How is a TCP/IP network different from a telephone network?

11.2 What is an FQDN? Why are hostnames not used on the Internet, but only 

FQDNs?

11.3 Describe the role of the resolver when handling (i) simple hostnames (ii) FQDNs.

11.4 Name three important features of DNS. What advantages does DNS have over 

the hosts file?

11.5 Explain the role of a name server. What does a name server do if it can’t handle 

an FQDN?

11.6 When you change your local directory from inside ftp, will the changed direc-

tory still be in place after you quit ftp, and why or why not?

11.7 When A sends data to B over a network connection using public key cryptography, 

how does A achieve the goals of (i) authentication, (ii) confidentiality?

11.8 Public key cryptography is more suitable for key distribution than bulk data 

encryption. Explain how you can use this mechanism to distribute a symmetric 

key.

11.9 To use SSH, why does a host also need to have a public and private key?

11.10 Explain how you can generate a public/private key pair for yourself.

11.11 Explain how the ssh-agent and ssh-add programs enable noninteractive 

logins.

11.12 Cite two reasons why scp is preferable to ftp.

11.13 How is the client-server mechanism in X different from others?

11.14 How can romeo running Netscape on his machine saturn write its output to 

juliet’s display on a remote machine uranus? Do both users need to run X?

11.15 Why is the DISPLAY variable more convenient to use than the -display 

option?

11.16 Explain how the general mail handling scheme changes when a user connects to 

the mail server over a dialup line.

11.17 Explain the significance of each word in the acronym URL. What happens if you 

leave out the port number in the URL?

11.18 Why is HTTP called a stateless protocol? What is meant by the Keep-Alive 
feature?

11.19 Why is the HTML formate especially suitable for Web documents?

das76205_Ch11_296-328.indd   327das76205_Ch11_296-328.indd   327 12/13/11   10:47 AM12/13/11   10:47 AM



328 Your UNIX/Linux: The Ultimate Guide

11.20 Can you use WWW.PLANETS.COM/CATALOG.HTML  instead of 

www.planets.com/catalog.html as the URL?

11.21 To download a Web page with 10 graphics, how many connections are required 

in (i) HTTP 1.0, (ii) HTTP 1.1?

11.22 If a browser passes data from an HTML form to the server, how does the server 

handle the data?

11.23 What is a helper application, and how does it differ from a plugin? Explain the 

role of the files mime.types and mailcap when using a helper application.

11.24 What is MIME? How are the limitations of SMTP in handling mail attachments 

overcome by MIME?

das76205_Ch11_296-328.indd   328das76205_Ch11_296-328.indd   328 12/13/11   10:47 AM12/13/11   10:47 AM



P A R T  II
UNIX for

 the Programmer

das76205_Ch12_329-358.indd   329das76205_Ch12_329-358.indd   329 12/13/11   10:47 AM12/13/11   10:47 AM



das76205_Ch12_329-358.indd   330das76205_Ch12_329-358.indd   330 12/13/11   10:47 AM12/13/11   10:47 AM



331

12 
C H A P T E R  12

Filtering and Programming
 with awk

This chapter begins Part II, which presents the programming features of UNIX. 

We begin with the awk command, which made a late entry into the UNIX sys-

tem in 1977 to augment the toolkit with suitable report formatting capabilities. Named 

after its authors, Aho, Weinberger, and Kernighan, awk, until the advent of perl, was the 

most powerful utility for text manipulation and report writing. awk also appears as nawk 

(newer awk) on most systems and gawk (GNU awk) in Linux. The POSIX specification 

and our discussions are based on nawk.

Like sed, awk doesn’t belong to the do-one-thing-well family of UNIX commands. 

It combines features of several filters, but it has two unique features. First, it can identify 

and manipulate individual fields in a line. Second, awk is one of the few UNIX filters 

(bc is another) that can perform computation. Further, awk also accepts extended regular 

expressions (EREs) for pattern matching, has C-type programming constructs, and has 

several built-in variables and functions. Learning awk will help you understand perl, 

which uses most of the awk constructs, sometimes in an identical manner.

  Objectives
 • Understand awk’s unusual syntax, including its selection criteria and action 

components.

 • Split a line into fields and format the output with printf.

 • Understand the special properties of awk variables and expressions.

 • Use the comparison operators to select lines on practically any condition.

 • Use the ~ and !~ operators with extended regular expressions (EREs) for pattern 

matching.

 • Handle decimal numbers and use them for computation.

 • Do some pre- and post-processing with the BEGIN and END sections.

 • Use arrays and access an array element with a nonnumeric subscript.

 • Examine awk’s built-in variables.

 • Use the built-in functions for performing string handling tasks.

 • Make decisions with the if statement. 

 • Use the for and while loops to perform tasks repeatedly.

das76205_Ch12_329-358.indd   331das76205_Ch12_329-358.indd   331 12/13/11   10:47 AM12/13/11   10:47 AM



332 Your UNIX/Linux: The Ultimate Guide

 12.1 awk Preliminaries

awk is a little awkward to use at first, but if you feel comfortable with find and sed, then 

you’ll find a friend in awk. Even though it is a filter, awk resembles find in its syntax:

awk options ‘selection_criteria {action}’ file(s)

Note the use of single quotes and curly braces. The selection_criteria (a form of address-

ing) filters input and selects lines for the action component to act on. This component is 

enclosed within curly braces. The selection_criteria and action constitute an awk pro-
gram that is surrounded by a set of single quotes. These programs are often one-liners, 

though they can span several lines as well. A sample awk program is shown in Fig. 12.1.

Let’s have a brief look at each of the constituents of the syntax. Unlike other filters, 

awk uses a contiguous sequence of spaces and tabs as the default delimiter. This default 

has been changed in the figure to a colon using the -F option.

Fields in awk are numbered $1, $2, and so on, and the selection criteria here test 

whether the third field is greater than 200. awk also addresses the entire line as $0. In 

Chapter 13, you’ll find the shell also using the same parameters to represent command-

line arguments. To prevent the shell from performing variable evaluation, we need to 

single-quote any awk program that uses these parameters.

Even though we haven’t seen relational tests in command syntax before, selection 

criteria in awk are not limited to a simple comparison. They can be a regular expression to 

search for, one- or two-line addresses, or a conditional expression. Here are some examples:

awk ‘/negroponte/ { print }’ foo Lines containing negroponte

awk ‘$2 ~ /^negroponte$/ { print }’ foo Tests for exact match on second field

awk ‘NR == 1, NR == 5 { print }’ foo Lines 1 to 5

awk ‘$6 > 2000 { print }’ foo Sixth field greater than 2000

That awk also uses regular expressions as patterns is evident from the second example, 

which shows the use of ^ and $ in anchoring the pattern. The third example uses awk’s 

built-in variable, NR, to represent the record number. The term record is new in this text. 

By default, awk identifies a single line as a record, but a record in awk can also comprise 

multiple contiguous lines.

The action component is often a print or printf statement, but it can also be a 

program. We’ll learn to use the if, while, and for constructs here before they show up 

F I G U R E  1 2 . 1  Components of an awk Program

ActionSelection
criteria

awk -F: print $1, $3 }' /etc/passwd'$3 > 200 {

das76205_Ch12_329-358.indd   332das76205_Ch12_329-358.indd   332 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 333

again in the shell, perl, and C programming. Moreover, the selection criteria in all of 

the four preceding examples can also be implemented in the action component.

Let’s consider a simple awk command that selects the Subject: lines from mbox, 

the mailbox file:

$ awk ‘/^Subject:/ { print }’ $HOME/mbox
Subject: RE: History is not bunk
Subject: Mail server problem
Subject: Take our Survey, Win US$500!

When used without any field specifiers, print writes the entire line to the standard 

output. Printing is also the default action of awk, so all following forms could be con-

sidered equivalent:

awk ‘/^Subject:/’ mbox Printing is the default action

awk ‘/^Subject:/{ print }’ mbox Whitespace permitted

awk ‘/^Subject:/ { print $0}’ mbox $0 is the complete line

Observe that the first example doesn’t have an action component. If the action is miss-

ing, the entire line is printed. If the selection criteria are missing, the action applies to 

all lines. One of them has to be specified.

The selection criteria in these examples used the ^ to anchor the pattern. For pat-

tern matching, awk uses regular expressions in sed-style:

$ awk ‘/wilco[cx]k*s*/’ emp.lst
3212:bill wilcocks :d.g.m. :accounts :12/12/55: 85000
2345:james wilcox :g.m. :marketing :03/12/45:110000

However, the regular expressions used by awk belong to the basic BRE (but not the IRE 

and TRE) and ERE variety. The latter is used by grep -E (10.5) or egrep. This means 

that you can also use multiple patterns using (, ) and |:

awk ‘/wood(house|cock)/’ emp.lst
awk ‘/wilco[cx]k*s*|wood(cock|house)/’ emp.lst
awk ‘/^$/’ emp.lst

Henceforth, the input for many awk programs used in this chapter will come from the 

file empn.lst. We created this file with sed in Section 10.12.1. The lines here are of 

variable length:

$ head -n 4 empn.lst
2233:charles harris:g.m.:sales:12/12/52: 90000
9876:bill johnson:director:production:03/12/50:130000
5678:robert dylan:d.g.m.:marketing:04/19/43: 85000
2365:john woodcock:director:personnel:05/11/47:120000

We need to use the -F option to specify the delimiter (:) whenever we select fields 

from this file.

das76205_Ch12_329-358.indd   333das76205_Ch12_329-358.indd   333 12/13/11   10:47 AM12/13/11   10:47 AM



334 Your UNIX/Linux: The Ultimate Guide

An awk program must have either the selection criteria or the action, or both, but within single 
quotes. Double quotes will create problems unless used judiciously.

 12.2 Using print and printf

awk uses the print and printf statements to write to standard output. print produces 

unformatted output, and since our new sample database contains lines of variable length, 

print maintains the field widths in its output. This is how we use print to invert the 

first and second fields of the sales people:

$ awk -F: ‘/sales/ { print $2, $1 }’ empn.lst
charles harris 2233
gordon lightfoot 1006
p.j. woodhouse 1265
jackie wodehouse 2476

A comma in the field list ($2, $1) ensures that the fields are not glued together. The default 

delimiter is the space, but we’ll learn to change it later by setting the built-in variable, FS.

What about printing all fields except, say, the fourth one? Rather than explicitly 

specify all remaining field identifiers, we can reassign the one we don’t want to an 

empty string:

$ awk -F: ‘{ $4 = “” ; print }’ empn.lst | head -n 2
2233 charles harris g.m.  12/12/52  90000
9876 bill johnson director  03/12/50 130000

When placing multiple statements in a single line, use the ; as their delimiter. print 

here is the same as print $0.

With the C-like printf statement, you can use awk as a stream formatter. printf 

uses a quoted format specifier and a field list. awk accepts most of the formats used 

by the printf function in C and the printf command. In this chapter, we’ll stick to 

these formats:

%s — String

%d — Integer

%f — Floating-point number

Let’s produce formatted output from unformatted input, using a regular expression this 

time in the selection criteria:

$ awk -F: ‘/true?man/ { 
> printf(“%-20s %-12s %6d\n”, $2, $3, $6) }’ empn.lst
ronie trueman executive 75000
julie truman g.m. 95000

The name and designation have been printed in spaces 20 and 12 characters wide, re-

spectively; the - symbol left-justifies the output. Note that unlike print, printf requires 

\n to print a newline after each line.

Note

das76205_Ch12_329-358.indd   334das76205_Ch12_329-358.indd   334 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 335

C Shell

Note that awk gets multiline here. It’s a shell belonging to the Bourne family (like Bash) 

that’s running this command, which considers a command to be complete only when 

it encounters the closing quote. Don’t forget to place a \ after { and before you press 

[Enter] if you run this command in the C shell.

awk is the only filter that uses whitespace as the default delimiter. cut and paste use the tab, 
and sort uses a contiguous set of spaces as the default delimiter.

 12.2.1 Redirecting Standard Output
Every print and printf statement can be separately redirected with the > and | sym-

bols. However, make sure the filename or the command that follows these symbols is 

enclosed within double quotes. For example, the following statement sorts the output 

of the printf statement:

printf “%s %-10s %-12s %-8s\n”, $1, $3, $4, $6 | “sort”

If you use redirection instead, the filename should be enclosed in quotes in a similar 

manner:

printf “%s %-10s %-12s %-8s\n”, $1, $3, $4, $6 > “mslist”

awk thus provides the flexibility of separately manipulating the different output streams. 

But don’t forget the quotes!

 12.3 Number Processing

awk supports computation using the arithmetic operators from the list shown in Table 12.1. 

The +, -, *, and / perform the four basic functions, but we’ll also use % (modulo) in 

some of our scripts. awk (along with bc) also overcomes the inability of expr and the 

shell to handle floating-point numbers. Let awk take, as its input, two numbers from 

the standard input:

Note

T A B L E  1 2 . 1  Arithmetic Operators Used by awk and perl

Operator Description

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo (5 % 3 = 2)
^ Exponentiation (2 ^ 10 = 1024) (awk only)
** Exponentiation ( 2 ** 10 = 1024) (perl only)

das76205_Ch12_329-358.indd   335das76205_Ch12_329-358.indd   335 12/13/11   10:47 AM12/13/11   10:47 AM



336 Your UNIX/Linux: The Ultimate Guide

$ echo 22 7 | awk ‘{print $1/$2}’
3.14286
$ echo 22 7 | awk ‘{printf “%1.20f\n”, $1/$2}’
3.14285714285714279370

The second example uses the %1.20f format string to print a floating-point number with 

20 digits to the right of the decimal point.

Salespeople often earn a bonus apart from their salary. We’ll assume here that the 

bonus amount is equal to one month’s salary. We’ll print the pay slip for these people 

using a variable to print the serial number:

$ awk -F: ‘/sales/ { 
> kount = kount + 1 
> printf “%3d %-20s %-12s %6d %8.2f\n”, kount, $2, $3, $6, $6/12 }’ empn.lst
  1 charles harris g.m. 90000 7500.00
  2 gordon lightfoot director 140000 11666.67
  3 p.j. woodhouse manager 90000 7500.00
  4 jackie wodehouse manager 110000 9166.67

The last column shows the bonus component, obtained by dividing the salary field by 12 

($6/12). As in C, the =  operator can be combined with any of the arithmetic operators. For 

instance, += is an assignment operator that adds the value on its right to the variable on its left 

and also reassigns the variable. These two operations mean the same thing in awk, perl, and C:

kount = kount + 5
kount += 5

When the operand on the right is a 1 (one), awk offers the increment operator, ++, as a 

synonym. So all of the following three forms are equivalent:

kount = kount + 1           kount += 1           kount++

The same line of reasoning applies to the other arithmetic operators too. So, x-- decre-

ments the existing value of x by 1 and x *= 5 reassigns x by multiplying its existing 

value by 5. The assignment operators are listed in Table 12.2.

T A B L E  1 2 . 2  Assignment Operators
(i = 5 initially; result used as initial value by next line)

Operator Description Example Value of i

++ Adds one to itself i++   6
+= Adds and assigns to itself i += 5 11
-- Subtracts one from itself i-- 10
-= Subtracts and assigns to itself i -= 2   8
*= Multiplies and assigns to itself i *= 3 24
/= Divides and assigns to itself i /= 6   4

das76205_Ch12_329-358.indd   336das76205_Ch12_329-358.indd   336 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 337

The ++ and -- operators are special; they can be used as both prefix and postfix 

operators. The statements x++ and ++x are similar but not identical:

kount = count = 5
print ++kount Increments kount first and then prints 6

print count++ Prints 5 and then sets count to 6

 12.4 Variables and Expressions

Throughout this chapter, we’ll be using variables and expressions with awk. Expressions 

comprise strings, numbers, variables, and entities that are built by combining them with 

operators. For example, (x + 5)*12 is an expression. Unlike in programming languages, 

awk doesn’t have char, int, long, double, and so forth as primitive data types. Every 

expression can be interpreted either as a string or a number, and awk makes the neces-

sary conversion according to context.

awk also allows the use of user-defined variables but without declaring them. 

Variables are case-sensitive: x is different from X. A variable is deemed to be declared 

the first time it is used. Unlike shell variables, awk variables don’t use the $ either in 

assignment or in evaluation:

x = “5”
print x

A user-defined variable needs no initialization. It is implicitly initialized to zero or a 

null string. As discussed before, awk has a mechanism of identifying the type and initial 

value of a variable from its context.

Strings in awk are always double-quoted and can contain any character. Like echo, 

awk strings can also use escape sequences and octal values, but strings can also include 

hex values. There’s one difference, however: octal and hex values are preceded by only 

\ and \x, respectively:

x =”\t\tBELL\7”
print x Prints two tabs, the string BELL and sounds a beep

awk provides no operator for concatenating strings. Strings are concatenated by simply 

placing them side-by-side:

x = “sun” ; y = “com”
print x y Prints suncom

print x “.” y Prints sun.com

Concatenation is not affected by the type of variable. A numeric and string value can 

be concatenated with equal ease. The following examples demonstrate how awk makes 

automatic conversions when concatenating and adding variables:

x = “5” ; y = 6 ; z = “A”
print x y  y converted to string; prints 56

das76205_Ch12_329-358.indd   337das76205_Ch12_329-358.indd   337 12/13/11   10:47 AM12/13/11   10:47 AM



338 Your UNIX/Linux: The Ultimate Guide

print x + y x converted to number; prints 11

print y + z z converted to numeric 0; prints 6

Even though we assigned “5” (a string) to x, we could still use it for numeric computa-

tion. Also observe that when a number is added to a string, awk converts the string to 

zero since the string doesn’t have numerals.

Expressions also have true and false values associated with them. Any nonempty 

string is true; so is any positive number. The statement

if (x)

is true if x is a nonnull string or a positive number.

Variables are neither declared nor is their type specified. awk identifies their type and initializes 
them to zero or null strings. String variables are always double-quoted, but they can contain 
escape sequences. Nonprintable characters can be represented by their octal or hex values.

 12.5 The Comparison and Logical Operators

awk has a single set of comparison operators for handling strings and numbers and two 

separate operators for matching regular expressions (Table 12.3). You’ll find the sce-

nario quite different in perl and shell programming; both use separate sets of operators 

for comparing strings and numbers. In this section, we’ll demonstrate the use of these 

operators in the selection criteria, but they can also be used with modifications in the 

action component.

 12.5.1 String and Numeric Comparison
Both numeric and string equality are tested with the == operator. The operator != tests 

inequality. Programmers already know that == is different from =, the assignment operator. 

Note

T A B L E  1 2 . 3  The Comparison and Logical Operators

Operator Significance

< Less than
<= Less than or equal to
== Equal to
!= Not equal to
>= Greater than or equal to
> Greater than
~ Matches a regular expression
!~ Doesn’t match a regular expression
&& Logical AND
|| Logical OR
! Logical NOT

das76205_Ch12_329-358.indd   338das76205_Ch12_329-358.indd   338 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 339

(x == 5 tests whether x is equal to 5, but x = 5 assigns 5 to x.) This is how you test 

for string and numeric equality using awk’s built-in variables:

$4 == “sales”  Fourth field matched completely

$4 != “sales”
NR == 5
NR == 5, NR == 10 Lines 5 to 10

The first two examples match a string with the fourth field. The other two examples make 

use of awk’s built-in variable, NR, that stores the record number. Like sed addresses, awk 

also enables specification of a range of addresses using the comma as a delimiter. This 

example prints four lines:

$ awk -F: ‘NR == 3, NR == 6 { print NR, $2,$3,$6 }’ empn.lst
3 robert dylan d.g.m.  85000
4 john woodcock director 120000
5 barry wood chairman 160000
6 gordon lightfoot director 140000

You can also use the >, <, >=, and <= operators when comparing numeric data:

$6 > 100000
$6 <= 100000 Sixth field less than or equal to 100000

You can now print the pay slips for those people whose salary exceeds 120,000 dollars:

$ awk -F: ‘$6 > 120000 { print $2, $6 }’ empn.lst
bill johnson 130000
barry wood 160000
gordon lightfoot 140000
derryk o’brien 125000

This is the first time we made a numeric comparison test on a field—here, the sixth 

field ($6). In fact, field matching is implemented only in awk and perl. Even though 

the operators >, <, and so on are mostly used for numeric comparison, they can be used 

to compare two strings. The comparison “abc” > “a” is true. But is 0.0 greater than 

0? It all depends on whether awk interprets them as numbers or strings. Consider these 

three sets of examples:

x=0.0 ; y = 0
x > y   Compared numerically; not true

x=”0.0” ; y =”0”
x > y Compared as strings; true

x=0.0 ; y =”0”
x > y y converted to number; not true

Observe the automatic conversions that take place here. While 0 and 0.0 are numeri-

cally equal, they are two different strings when quoted. awk forces conversion of “0” to 

numeric 0 when compared with 0.0.

das76205_Ch12_329-358.indd   339das76205_Ch12_329-358.indd   339 12/13/11   10:47 AM12/13/11   10:47 AM



340 Your UNIX/Linux: The Ultimate Guide

When faced with the situation of comparing a string to a number, you need to ensure that 
awk does exactly the type of conversion you want. If you want the string to be converted to 
a number, add zero to it. If the number is to be converted to a string, concatenate it with an 
empty string.

 12.5.2 ~ and !~: The Regular Expression Operators
How does one match regular expressions? Previously we had used awk with a regular 

expression in this manner:

awk ‘/wilco[cx]k*s*/’ emp.lst

This matches a pattern anywhere in the line and not in a specific field. For matching a 

regular expression with a field, awk offers the ~ operator; the !~ operator negates the 

match. The left operand is a variable (like the field number), and the right operand is 

the regular expression enclosed by a pair of /s:

$2 ~ /wilco[cx]k*s*/ Matches second field

$3 !~ /director|chairman/ Neither director nor chairman

The anchoring characters, ^ and $, could have a different significance when used with 

regular expression operators. They anchor the pattern at the beginning and end of a field, 

unless you use them with $0. You can’t search /etc/passwd for UID 0 in this way:

$ awk -F: ‘$3 ~ /0/’ /etc/passwd
root:x:0:0:root:/root:/bin/bash
ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
sumit:x:500:100:sumitabha das:/home/sumit:/bin/bash

All four lines contain an embedded 0 in the third field. We are actually looking for a 

solitary zero here, so anchoring is necessary:

$ awk -F: ‘$3 ~ /^0$/’ /etc/passwd
root:x:0:0:root:/root:/bin/bash

However, numeric comparison would have been more appropriate here; use $3 == 0. 

We now have been able to match patterns using both the string comparison and regular 

expression operators. Table 12.4 highlights examples of their usage.

To match a string embedded in a field, you must use ~ instead of ==. Similarly, to negate a 
match, use !~ instead of !=.

 12.5.3 The Logical Operators
awk supports three logical or boolean operators and expressions, and uses them to return 

true or false values. They are &&, ||, and ! and are used by C, perl, and the shell with 

identical significance:

Tip

Tip

das76205_Ch12_329-358.indd   340das76205_Ch12_329-358.indd   340 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 341

exp1 && exp2 True if both exp1 and exp2 are true.

exp1 || exp2 True if either exp1 or exp2 is true.

!exp True if exp is false.

We’ll now use these operators in combination with string, numeric, and regular expres-

sion tests that we have just seen. The following examples illustrate the use of the logical 

operators:

$3 == “director” || $3 == “chairman” Either director or chairman

$3 != “director” && $3 != “chairman” Neither director nor chairman

NR < 5 || NR > 10 Either lines 1 to 4 or 11 and above

The selection criteria in the second example translate to this: “Select those lines where 

the third field doesn’t (!=) completely match the string director and (&&) also doesn’t 

(!=) completely match the string chairman.

Boolean operators let us make complex searches, even on multiple fields. In the 

following example, we look up /etc/passwd for lines containing details of two users: 

root and the one with UID 4:

$ awk -F: ‘$1 ~ /^root$/ || $3 == 4’ /etc/passwd
root:x:0:0:root:/root:/bin/bash
lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash

The operators can also be used multiple times. Parentheses may have to be used to over-

ride the normal associativity rules:

awk -F: ‘($3 > 1 && $3 < 4) || ($3 >=7 && $3 <=12)’ /etc/passwd

T A B L E  1 2 . 4  Matching Regular Expressions

Selection Criteria Matches

/negroponte/ negroponte anywhere in line
$0 ~ /negroponte/ Same as above
! /negroponte/ Lines not containing negroponte
$1 = “negroponte” Wrong; negroponte assigned to $1
$1 == “negroponte” negroponte as the first field
$1 == “^negroponte” ^negroponte ; not a regular expression
$1 ~ /negroponte/ negroponte embedded in first field
$1 ~ /^negroponte$/ Exactly negroponte in first field
$0 !~ /negroponte/ Lines not containing negroponte
$0 ~ /negroponte$/ negroponte at end of line
$0 ~ /^negroponte$/ negroponte as only string in line
$0 ~ /^$/ Blank line 
/^$/ Same as above

das76205_Ch12_329-358.indd   341das76205_Ch12_329-358.indd   341 12/13/11   10:47 AM12/13/11   10:47 AM



342 Your UNIX/Linux: The Ultimate Guide

This selects users with UID between 2 and 3 or between 7 and 12. Associativity and the 

logical operators are discussed in Chapter 15, which features a C primer. 

 12.6 The -f Option: Storing awk Programs in a File

You should hold large awk programs in separate files and provide them with the .awk 

extension for easier identification. Consider the following program, which is stored in 

the file empawk.awk:

$ cat empawk.awk
$3 == “director” && $6 > 120000 {
printf “%4d %-20s %-12s %d\n”, ++kount,$2,$3,$6 }

Observe that this time we haven’t used any quotes to enclose the awk program. You can 

now use awk with the -f filename option:

awk -F: -f empawk.awk empn.lst

If you use awk with the -f option, make sure the program stored in the file is not enclosed 
within quotes. awk uses quotes only when the program is specified in the command line or 
the entire awk command line is held in a shell script.

 12.7 The BEGIN and END Sections

If you have to print something before processing the first line, for example, a heading, 

then the BEGIN section can be used quite gainfully. Similarly, the END section is useful 

in printing some totals after processing is over.

The BEGIN and END sections are optional and take the form

BEGIN { action } Both require curly braces

END { action }

When present, these sections are delimited by the body of the awk program. You can 

use them to print a suitable heading at the beginning and the average salary at the end. 

Store this awk program in a separate file empawk2.awk (Fig. 12.2).

Like the shell, awk uses the # for providing comments. The BEGIN section prints 

a suitable heading, offset by two tabs (\t\t), while the END section prints the average 

salary (tot/kount) for the selected lines:

$ awk -F: -f empawk2.awk empn.lst
 Employee abstract

  1 bill johnson director 130000
  2 barry wood chairman 160000
  3 gordon lightfoot director 140000
  4 derryk o’brien director 125000

 The average salary is 138750

Note

das76205_Ch12_329-358.indd   342das76205_Ch12_329-358.indd   342 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 343

Like all filters, awk reads standard input when the filename is omitted. We can make awk 

behave like a simple scripting language by doing all work in the BEGIN section. This is 

how you perform floating-point arithmetic:

$ awk ‘BEGIN { printf “%f\n”, 22/7 }’
3.142857

This is something you can do with bc (13.10.2) but not with expr (13.10.1). Depending 

on your version of awk, the prompt may or may not be returned, which means that awk 

may still be reading standard input. Use [Ctrl-d] to return the prompt.

Always start the opening brace in the same line in which the section (BEGIN or END) begins. If 
you don’t, awk will generate some strange messages!

 12.8 Positional Parameters

The program in empawk2.awk could take a more generalized form if the number 120000 

is replaced with a variable. A shell script uses special parameters like $1, $2, and so on 

to represent the command-line arguments passed to the script. Because awk also uses 

the same parameters as field identifiers, quoting helps to distinguish between a field 

identifier and a shell parameter.

When you run a shell script with one argument, this argument is accessed inside 

the script as $1. An awk program placed in the script accesses it as ‘$1’ but only if the 

entire awk command (not just the program) is stored in the script (say, empabs.sh). Let’s 

make a nominal change to the script containing the entire awk program:

$6 > ‘$1’ Instead of $6 > 120000

Now place the entire awk command line in a shell script. A shell script needs execute 

permission, so follow the instructions given in Section 6.12. Now invoke the shell script 

with an argument, and the argument will be visible inside the awk program:

empabs.sh 100000

Caution

F I G U R E  1 2 . 2  empawk2.awk

BEGIN {
   printf “\t\tEmployee abstract\n\n”
} $6 > 120000 { # Increment variables for serial number and pay
   kount++ ; tot+= $6 # Multiple assignments in one line
   printf “%3d %-20s %-12s %d\n”, kount,$2,$3,$6
}
END {
   printf “\n\tThe average salary is %6d\n”, tot/kount
}

das76205_Ch12_329-358.indd   343das76205_Ch12_329-358.indd   343 12/13/11   10:47 AM12/13/11   10:47 AM



344 Your UNIX/Linux: The Ultimate Guide

You are now able to build a facility to query a database to select those lines that satisfy a 

selection criterion, i.e., the salary exceeding a certain figure. With a nominal amount of 

awk programming, you could also calculate the average salary of the persons selected. You 

couldn’t have done all of this with grep or sed; they simply can’t perform computations.

 12.9 Arrays

An array is also a variable except that this variable can store a set of values or elements. 

Each element is accessed by a subscript called the index. Arrays in awk differ from the 

ones used in other programming languages in many respects:

 • They are not formally defined. An array is considered declared the moment it is used.

 • Array elements are initialized to zero or an empty string unless initialized explicitly.

 • Arrays expand automatically.

 • The index can be virtually anything; it can even be a string.

We’ll save discussions on the last point for Section 12.10. For now, we’ll use the BEGIN 

section to test the other features. We set three array elements subscripted by 1, 2, and 

1000 before printing their values. We then insert an element into the array using a large 

index value and then delete one array element:

$ awk ‘BEGIN { 
>     mon[1] = “jan” ; mon[2] = “feb” ; mon[1000] = “illegal month” ;
>     printf(“Month 1 is %s and month 1000 is %s\n”, mon[1], mon[1000]) ;
>     printf(“Month 500 is %s and month 5000 is %s\n”, mon[500], mon[5000]);
>
>     # Now delete mon[1]
>     delete mon[1] ; 
>     printf(“Month 2 still remains %s\n”, mon[2]) ; 
> }’
Month 1 is jan and month 1000 is illegal month
Month 500 is  and month 5000 is
Month 2 still remains feb

Observe that subscripts 500 and 5000 of the mon[ ] array point to null strings. Deletion 

of an array element only sets it to a null string and doesn’t rearrange the elements.

In the program empawk3.awk (Fig. 12.3), we use an array to store the totals of 

the salary and commission (@20% of salary) for the sales and marketing people. The 

program outputs the averages of the two elements of pay:

$ awk -f empawk3.awk empn.lst
  Salary Commission
 Average 105625 21125

C programmers should find the program quite comfortable to work with except that awk 

simplifies a number of things that require explicit specification in C. There are no type 

declarations, no initializations, and no statement terminators.

das76205_Ch12_329-358.indd   344das76205_Ch12_329-358.indd   344 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 345

 12.9.1 Associative (Hash) Arrays
Even though we used integers as subscripts in arrays mon[ ] and tot[ ], awk doesn’t 

treat array indexes as integers. awk arrays are associative, where information is held as 

key–value pairs. The index is the key that is saved internally as a string. When we set 

an array element using mon[1] = “jan”, awk converts the number 1 to a string. There’s 

no specified order in which the array elements are stored. As the following example 

suggests, the index “1” is different from “01”:

$ awk ‘BEGIN { 
>     direction[“N”] = “North” ; direction[“S”] = “South” ; 
>     direction[“E”] = “East” ; direction[“W”] = “West” ; 
>     printf(“N is %s and W is %s\n”, direction[“N”], direction[“W”]) ; 
>
>     mon[1] = “jan” ; mon[“1”] = “january” ; mon[“01”] = “JAN” ;
>     printf(“mon[1] is %s\n”, mon[1]) ; 
>     printf(“mon[01] is also %s\n”, mon[01]) ; 
>     printf(“mon[\”1\”] is also %s\n”, mon[“1”]) ; 
>     printf(“But mon[\”01\”] is %s\n”, mon[“01”]) ; 
> }’
N is North and W is West
mon[1] is january
mon[01] is also january
mon[“1”] is also january
But mon[“01”] is JAN

There are two important things to be learned from this output. First, the setting with 

index “1” overwrites the setting made with index 1. Accessing an array element with 

subscripts 1 and 01 actually locates the element with subscript “1”. Also note that 

mon[“1”] is different from mon[“01”].

 12.9.2 ENVIRON[ ]: The Environment Array
You may sometimes need to know the name of the user running the program or the 

home directory. awk maintains the associative array, ENVIRON[ ], to store all 

environment variables. This POSIX requirement is met by recent versions of awk, 

BEGIN { FS = “:” ; printf “%44s\n”, “Salary     Commission” }
$4 ~ /sales|marketing/ {
   commission = $6*0.20
   tot[1] += $6 ; tot[2] += commission
   kount++
}
END { printf “\t     Average   %5d    %5d\n”, tot[1]/kount, tot[2]/kount }

F I G U R E  1 2 . 3  empawk3.awk

das76205_Ch12_329-358.indd   345das76205_Ch12_329-358.indd   345 12/13/11   10:47 AM12/13/11   10:47 AM



346 Your UNIX/Linux: The Ultimate Guide

including nawk and gawk. This is how we access the shell variables, HOME and PATH, 

from an awk program:

$ nawk ‘BEGIN {
> print “HOME” “=” ENVIRON[“HOME”]
> print “PATH” “=” ENVIRON[“PATH”]
> }’
HOME=/users1/home/staff/sumit
PATH=/usr/bin::/usr/local/bin:/usr/ccs/bin

In Section 12.13.1, we’ll use a special form of a for loop to print all environment variables.

 12.10 Built-In Variables

awk has several built-in variables (Table 12.5). They are all assigned automatically, 

though it is also possible for a user to reassign some of them. You have already used 

NR, which signifies the record number of the current line. We’ll now have a brief look 

at some of the other variables.

The FS Variable As stated elsewhere, awk uses a contiguous string of spaces as the de-

fault field delimiter. FS redefines this field separator.  When used at all, it must occur in the 

BEGIN section so that the body of the program knows its value before it starts processing:

BEGIN { FS = “:” }

This is an alternative to the -F: option of the command, which does the same thing.

The OFS Variable When you used the print statement with comma-separated argu-

ments, each argument was separated from the other by a space. This is awk’s default 

output field separator, and it can be reassigned using the variable OFS in the BEGIN section:

BEGIN { OFS=”~” }

T A B L E  1 2 . 5  Built-In Variables

Variable Function Default Value

NR Cumulative number of lines read -
FS Input field separator space
OFS Output field separator space
OFMT Default floating-point format %.6f

RS Record separator newline
NF Number of fields in current line -
FILENAME Current input file -
ARGC Number of arguments in command line -
ARGV Array containing list of arguments -
ENVIRON Associative array containing all environment variables -

das76205_Ch12_329-358.indd   346das76205_Ch12_329-358.indd   346 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 347

When you reassign this variable with a ~ (tilde), awk uses this character for delimiting 

the print arguments. This is a useful variable for creating lines with delimited fields.

The RS Variable awk uses the term record to define a group of lines. The record sepa-

rator is stored in the RS variable. By default it is a newline, so each line is also a record. 

We’ll soon take up an example where we manipulate the value of RS to combine a group 

of three lines as a single record.

The NF Variable NF represents the number of fields in each record. It comes in quite 

handy in identifying lines that don’t contain the correct number of fields:

$ awk  ‘BEGIN { FS = “:” }
> NF != 6 {
> print “Record No “, NR, “has “, NF, “ fields”}’ empx.lst
Record No 6 has 4 fields
Record No 17 has 5 fields

If a record has seven fields, then NF has the value seven, and $NF would be $7. This is how 

you can print the last two fields without even knowing the number of fields in each line:

$ awk -F: ‘/^root/ { print $1, $(NF-1), $NF }’ /etc/passwd
root /root /bin/bash

The FILENAME variable FILENAME stores the name of the current file being processed. 

Like grep and sed, awk can also handle multiple filenames in the command line. By 

default, awk doesn’t print the filename, but you can instruct it to do so:

‘$6 < 4000 { print FILENAME, $0 }’

With FILENAME, you can devise logic that does different things depending on the file 

being processed.

 12.10.1 Applying the Built-in Variables
Let’s use some of these variables in our next example, which works with a revised form 

of the address book used in Section 9.9. Our address book contains three records, each 

comprising three lines. This time, we’ll have a blank line between two records:

$ cat addressbook
barry wood
woodb@yahoo.com
245-690-4004
                A blank line between two records

charles harris
charles_harris@heavens.com
345-865-3209
  
james wilcocks
james.wilcocks@heavens.com
190-349-0743

das76205_Ch12_329-358.indd   347das76205_Ch12_329-358.indd   347 12/13/11   10:47 AM12/13/11   10:47 AM



348 Your UNIX/Linux: The Ultimate Guide

We’ll now manipulate the built-in variables to have the details of each person on a single 

line, using the : as delimiter (OFS = “:”). Our record separator needs to be defined as a 

blank line (RS =””). Each line is treated like a field here, so FS should be set to newline. 

Our new address book can be created by this simple two-liner:

$ awk ‘BEGIN {FS = “\n” ; OFS = “:” ; RS = “” } 
> { print $1, $2, $NF }’ addressbook | tee addressbook3
barry wood:woodb@yahoo.com:245-690-4004
charles harris:charles_harris@heavens.com:345-865-3209
james wilcocks:james.wilcocks@heavens.com:190-349-0743

We tried out a similar exercise with paste before, but that address book didn’t have blank lines. 

Can we now have our original address book back from this output saved in addressbook3?

 12.11 Functions

awk has several built-in functions, performing both arithmetic and string operations 

(Table 12.6). The arguments are passed to a function in C-style, delimited by commas, 

and enclosed by a matched pair of parentheses. Even though awk allows the use of func-

tions with and without parentheses (like printf and printf()), POSIX discourages the 

use of functions without parentheses.

Some of these functions take a variable number of arguments, and one (length()) 

uses no argument as a variant form. The functions are adequately explained here, so you 

can confidently use them in perl, which often uses identical syntaxes.

T A B L E  1 2 . 6  Built-in Functions

Function Description

Arithmetic

int(x) Returns integer value of x

sqrt(x) Returns square root of x

String

length() Returns length of complete line

length(x) Returns length of x

tolower(s) Returns string s after conversion to uppercase

toupper(s) Returns string s after conversion to lowercase

substr(stg,m) Returns remaining string from position m in string stg

substr(stg,m,n) Returns portion of string of length n, starting from position m 

in string stg

index(s1,s2) Returns position of string s2 in string s1

split(stg,arr,ch) Splits string stg into array arr using ch as delimiter; returns 

number of fields

system(“cmd”) Runs UNIX command cmd and returns its exit status

das76205_Ch12_329-358.indd   348das76205_Ch12_329-358.indd   348 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 349

length() length() determines the length of its argument, and if no argument is pres-

ent, then it assumes the entire line as its argument. You can use length() to locate lines 

whose length exceeds 1024 characters:

awk -F: ‘length() > 1024’ empn.lst Same as length($0)

You can use length() with a field as argument as well. The following program selects 

those people who have short names:

awk -F: ‘length($2) < 11’ empn.lst

index() index(s1,s2) determines the position of a string s2 within a larger string s1. 

This function is especially useful in validating single-character fields. If you have a field 

which can take the values a, b, c, d, or e, you can use this function to find out whether 

this single-character field can be located within the string abcde:

x = index(“abcde”,”b”)

This returns the value 2.

substr() The substr(stg,m,n) function returns a substring from a string stg. Here,  

m represents the starting point of extraction, and n indicates the number of characters to 

be extracted. If n is omitted, then extraction continues to the end of stg. Because string 

values can also be used for computation, the returned string from this function can be 

used to select those born between 1946 and 1951:

$ awk -F: ‘substr($5,7,2) > 45 && substr($5,7,2) < 52’ empn.lst
9876:bill johnson:director:production:03/12/50:130000
2365:john woodcock:director:personnel:05/11/47:120000
4290:neil o’bryan:executive:production:09/07/50: 65000
3564:ronie trueman:executive:personnel:07/06/47: 75000

Note that awk does indeed possess a mechanism of identifying the type of expression 

from its context. It identified the date field as a string for using substr() and then 

converted it to a number for making a numeric comparison.

split() split(stg,arr,ch) breaks up a string stg on the delimiter ch and stores the 

fields in an associative array arr[]. Here’s how you can convert the date field to the 

format YYYYMMDD:

$ awk -F: ‘{split($5,ar,”/”) ; print “19”ar[3]ar[1]ar[2]}’ empn.lst
19521212
19500312
19430419
  .....

You can also do this with sed, but this method is superior because it explicitly picks up 

the fifth field, whereas sed would transform the only date field it finds.

das76205_Ch12_329-358.indd   349das76205_Ch12_329-358.indd   349 12/13/11   10:47 AM12/13/11   10:47 AM



350 Your UNIX/Linux: The Ultimate Guide

system() You may want to print the system date at the beginning of the report. For 

running any UNIX command within awk, you’ll have to use the system() function. 

Here are two examples:

BEGIN {
    system(“tput clear”) Clears the screen

    system(“date”) } Executes the UNIX date command

You should be familiar with all of the functions discussed in this section as they are used 

in a wide variety of situations. We’ll use them again in perl. awk features some more 

built-in variables and functions, and also allows the user to define her own functions.

 12.12 Control Flow—The if Statement

Like any programming language, awk supports conditional structures (the if statement) 

and loops (while and for). They all execute a body of statements as long as their con-
trol command evaluates to true. This control command is simply a condition that is 

specified in the first line of the construct.

The if statement permits two-way decision making, and its behavior is well known 

to all programmers. The construct has also been elaborated in Section 13.6 where it ap-

pears in three forms. The statement in awk takes this form:

if ( condition is true ) {
   statements
} else { else is optional

   statements
}

The control command itself must be enclosed in parentheses. As in C, the statements 

form a code block delimited by curly braces. As in C, the { and } are required only when 

multiple statements are executed. The else section is optional.

Most of the selection criteria used so far reflect the logic normally used in the if 

statement. In a previous example, you selected lines where the salary exceeded 120,000 

dollars by using the condition as the selection criterion:

‘$6 > 120000 {...}’

An alternative form of this logic places the condition inside the action component. But 

this form requires the if statement:

awk -F: ‘{ if ($6 > 120000) printf  .....

To illustrate the use of the optional else statement, let’s assume that the commission is 

15 percent of salary when the latter is less than 100,000 dollars, and 10 percent otherwise. 

The if-else structure that implements this logic looks like this:

if ( $6 < 100000 )
 commission = 0.15*$6
else
 commission = 0.10*$6

das76205_Ch12_329-358.indd   350das76205_Ch12_329-358.indd   350 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 351

Let’s now use the if-else form to combine every three lines of our original address 

book (9.9) in a single line. We have done this with paste before (9.9); we’ll do it again 

using the program addressbook.awk (Fig. 12.4).

Each record of this address book has three lines, and the modulo function helps 

determine the line that is currently being processed. What paste could do with a single 

line of code is done by awk with 10 lines:

$ awk -f addressbook.awk addressbook
barry wood woodb@yahoo.com 245-690-4004
charles harris charles_harris@heavens.com 345-865-3209
james wilcocks james.wilcocks@heavens.com 190-349-0743

 12.13 Looping with for

awk supports two loops—for and while. They both execute the loop body as long as 

the control command returns a true value. for has two forms. The easier one resembles 

its C counterpart:

for ( k=1 ; k<=9 ; k+= 2 )

Three components control the behavior of the loop. The first component (k=1) initializes the 

value of k, the second (k <= 9) checks the condition with every iteration, while the third 

(k += 2) sets the increment used for every iteration. The program reverse_fields.awk 

(Fig. 12.5) uses a for loop to print fields of /etc/passwd in reverse.

With every iteration of the for loop, the variable line accumulates each field of 

a line, delimited by the colon. The variable is printed when the iteration ends and is 

{
    mod = NR % 3 # Either a 0, 1 or 2
    if (mod == 1) # First line of record
       line = $0
    else { # Lines 2 or 3
       line = line “ “ $0 # Join on space
       if (mod == 0) {
          print line
          line = “” # Prepare for next record
       }
    }
}

F I G U R E  1 2 . 4  addressbook.awk

das76205_Ch12_329-358.indd   351das76205_Ch12_329-358.indd   351 12/13/11   10:47 AM12/13/11   10:47 AM



352 Your UNIX/Linux: The Ultimate Guide

initialized to a null string before the iteration begins. We now run this program to act 

on the entries for root and uucp:

$ awk -f reverse_fields.awk /etc/passwd
:/usr/bin/bash:/:Super-User:1:0:x:root
::/usr/lib/uucp:uucp Admin:5:5:x:uucp

The program logic isn’t perfect; each line begins with a :, which you can eliminate 

through some additional programming.

 12.13.1 Using for with an Associative Array
The second form of the for loop exploits the associative feature of awk’s arrays. This 

form is similar to the foreach function of perl and the enhanced for loop in Java 5, 

but is not seen in C. The loop selects each index of an array:

for ( k in arr ) {
    statements
}

Here, k is the subscript of the array arr. Because k can also be a string, we can use this 

loop to print all environment variables. We simply have to pick up each subscript of 

the ENVIRON array:

$ nawk ‘BEGIN { 
>   for (key in ENVIRON)
>      print key “=” ENVIRON[key]
> }’
LOGNAME=sumit
MAIL=/var/mail/sumit
PATH=/usr/bin::/usr/local/bin:/usr/ccs/bin
TERM=xterm
HOME=/users1/home/staff/sumit
SHELL=/usr/bin/bash
    ......

BEGIN{ FS=”:”} {
    if ($1 ~ /^root$|^uucp$/) {
        line = “”
        for (i = NF ; i> 0 ; i--)
           line = line “:” $i
        print line
    }
}

F I G U R E  1 2 . 5  reverse_fields.awk

das76205_Ch12_329-358.indd   352das76205_Ch12_329-358.indd   352 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 353

Because the index is actually a string, we can use any field as the index. We can even 

use elements of the array as counters. Using our sample database, we can display a count 

of the employees, grouped according to designation (the third field). You can use the 

string value of $3 as the subscript of the array kount[ ]:

$ awk -F: ‘{ kount[$3]++ }          
> END { for ( desig in kount)      
> printf “%-10s %4d\n”, desig, kount[desig] }’ empn.lst
d.g.m. 2
g.m. 4
director 4
executive 2
manager 2
chairman 1

The program here analyzes the database to group employees according to their designa-

tion and count their occurrences. The array kount[] takes as its subscript nonnumeric 

values like g.m., chairman, executive, and so forth. The for loop is invoked in the 

END section to print the subscript (desig) and the number of occurrences of the subscript 

(kount[desig]). Note that you don’t need to sort the input file to print this report!

The same logic has already been implemented by using three commands in a pipeline—cut, 
sort, and uniq (9.11.1). That one used only a single line of code!

 12.14 Looping with while

The while loop has a similar role to play; it repeatedly iterates the loop as long as the 

control command succeeds:

while (condition is true) {
    statements
}

Many for loops can be replaced with a while loop. Which loop to use in a particular 

situation is often a matter of taste. We’ll use a while loop to generate email addresses 

using the GCOS field (the fifth) of /etc/passwd. Here, this field contains the full name 

of the user as shown by a few lines:

henry:!:501:100:henry higgins:/home/henry:/bin/ksh
julie:x:508:100:julie andrews:/home/julie:/bin/ksh
steve:x:510:100:steve wozniak:/home/steve:/bin/ksh

The addresses have to be of the form henry_higgins@heavens.com. The program 

email_create.awk (Fig. 12.6) should do the job. It uses the split() function both for 

its side-effect and return value.

The split() function splits the GCOS field ($5) on a space to the array name_arr. 

split() also returns the number of elements found, and the variable array_length 

Note

das76205_Ch12_329-358.indd   353das76205_Ch12_329-358.indd   353 12/13/11   10:47 AM12/13/11   10:47 AM



354 Your UNIX/Linux: The Ultimate Guide

stores this value. The for loop picks up each name from the array and concatenates it 

with the previous one with the _ character. This has to be done for all elements except 

the last one. When you run the program with the password file, you’ll see properly 

formatted email addresses:

$ awk -f email_create.awk /etc/passwd
henry_higgins@heavens.com
julie_andrews@heavens.com
steve_wozniak@heavens.com
....

Like for, while also uses the continue statement to start a premature iteration and 

break to exit the loop. awk also supports a do-while  loop, which is similar to while 

except that at least one iteration takes place. We’ll examine the continue and break 

statements when we take up shell programming and the do-while loop in perl. All of 

these statements are found in C and will be discussed in Chapter 15.

 12.15 Conclusion

awk, like sed, violates the do-one-thing-well philosophy that generally characterizes all 

UNIX tools. Although presented in this chapter as a utility filter, it’s more of a scripting 

language. You can now intermingle strings with numbers. Partly because of the absence 

of type declarations and initializations, an awk program is often a fraction of the size 

of its C counterpart.

awk has been completely overwhelmed in sheer power by perl—the latest and 

most notable addition to the UNIX toolkit for several years. There is nothing that any 

UNIX filter can do that perl can’t. In fact, perl is even more compact, faster, and in 

every sense better than any UNIX filter. This chapter was prepared for you to more fully 

understand perl because so many of the constructs are also used there. perl is taken 

up in Chapter 14.

F I G U R E  1 2 . 6  email_create.awk

BEGIN { FS = “:” }
{ fullname = “” ; x=0 ;
  array_length = split($5, name_arr,” “) ;
  while ( x++ <= array_length )  {
     if (x < array_length)
         name_arr[x] = name_arr[x] “_” ;
     fullname = fullname name_arr[x] ;
  }
  printf “%s@heavens.com\n”, fullname
}

das76205_Ch12_329-358.indd   354das76205_Ch12_329-358.indd   354 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 355

S U M M A R Y

awk combines the features of several filters and can manipulate individual fields ($1, $2, 

etc.) in a line ($0). It uses sed-type addresses and the built-in variable NR to determine 

line numbers.

Lines are printed with print and printf. The latter uses format specifiers to for-

mat strings (%s), integers (%d), and floating-point numbers (%f). Each print or printf 

statement can be used with the shell’s operators for redirection and piping.

awk uses all of the comparison operators (like >, ==, <= etc.). The ~ and !~ opera-

tors are used to match regular expressions and negate a match. Operators and regular 

expressions can be applied both to a specific field and to the entire line.

awk variables and constants have no explicit data type. awk identifies the type 

from its context and makes the necessary string or numeric conversions when perform-

ing computation or string handling. By handling decimal numbers, awk also overcomes 

a limitation of the shell. 

awk can take instructions from an external file (-f). The BEGIN and END sections are 

used to do some pre- and post-processing work. Typically, a report header is generated 

by the BEGIN section, and a numeric total is computed in the END section.

awk’s built-in variables can be used to specify the field delimiter (FS), the number 

of fields (NF), and the filename (FILENAME). awk uses one-dimensional arrays, where the 

array subscript can be a string as well.

awk has a number of built-in functions, and many of them are used for string han-

dling. You can find the length (length()), extract a substring (substr()), and find the 

location (index()) of a string within a larger string. The system() function executes 

a UNIX command.

The if statement uses the return value of its control command to determine program 

flow. if also uses the operators || and && to handle complex conditions.

awk supports loops. The first form of the for loop uses an array and can be used 

to count occurrences of an item using a nonnumeric subscript. The other form resembles 

its C counterpart. The while loop repeats a set of instructions as long as its control 

command returns a true value.

perl is better than awk.

S E L F - T E S T

Some questions use the file empn.lst, whose contents are shown in Section 12.1.

12.1 What is the difference between print and print $0? Is the print statement 

necessary for printing a line?

12.2 Select from empn.lst the people who were born in either September or December.

12.3 Implement the following commands in awk: (i) head -n 5 foo, (ii) sed -n ‘5,10p’ foo, 

(iii) tail +20 foo, (iv) grep negroponte foo.

12.4 Use awk to renumber the lines:

1. fork
3. execve
2. wait
5. sleep

das76205_Ch12_329-358.indd   355das76205_Ch12_329-358.indd   355 12/13/11   10:47 AM12/13/11   10:47 AM



356 Your UNIX/Linux: The Ultimate Guide

12.5 Use awk to delete all blank lines (including those that contain whitespace) from 

a file.

12.6 What is wrong with this statement? printf “%s %-20s\n”, $1, $6 | sort.

12.7 How do you print only the odd-numbered lines of a file?

12.8 Split empn.lst so that lines are saved in two separate files depending on whether 

the salary exceeds 100,000 dollars.

12.9 How do you print the last field without knowing the number of fields in a line?

12.10 How do you locate lines longer than 100 and smaller than 150 characters?

12.11 Devise a sequence to display the total size of all ordinary files in the current 

directory.

12.12 Using arrays, invert the name of the individual in empn.lst so that the last name 

occurs first.

12.13 Calculate from empn.lst the average pay and store it in a variable.

12.14 Display the files in your home directory tree that have been last modified on 

January 6 of the current year at the 11th hour.

12.15 Use a for loop to center the output of the command echo “DOCUMENT LIST”, 

where the page width is 55 characters.

12.16 Repeat Problem 12.15 with a while loop.

E X E R C I S E S

Some questions use the file empn.lst, whose contents are shown in Section 12.1.
12.1 Display from /etc/passwd a list of users and their shells for those using the 

Korn shell or Bash. Order the output by the absolute pathname of the shell used.

12.2 Find out the next available UID in /etc/passwd after ignoring all system users 

placed at the beginning and up to the occurrence of the user nobody.

12.3 The tar command on one system can’t accept absolute pathnames longer than 

100 characters. How can you generate a list of such files?

12.4 Devise a sequence to  recursively examine all ordinary files in the current di-

rectory and display their total space usage. Hard-linked files will be counted 

only once.

12.5 Use awk in a shell script to kill a process by specifying its name rather than 

the PID.

12.6 From a tar archive print only the pathnames of directories. Directory pathnames 

end with a /, but the tar output may contain a variable number of fields.

12.7 How do you list the users currently using the system along with a count of the 

number of times they have logged in?

12.8 Develop an awk program to summarize from the list of all processes a count of 

processes run by every user (including root).

12.9 Write an awk sequence in a shell script which accepts input from the standard 

input. The program should print the total of any column specified as script argu-

ment. For instance, prog1 | awk_prog 3 should print the total of the third column 

in the output of prog1.

12.10 A shell script uses the LOGNAME variable, which is not set on your system. Use the 

string handling features of awk to set LOGNAME from the output of the id command. 

das76205_Ch12_329-358.indd   356das76205_Ch12_329-358.indd   356 12/13/11   10:47 AM12/13/11   10:47 AM



Chapter 12: Filtering and Programming with awk 357

This assignment will be made at the shell prompt, but its value must be visible in 

the script.

12.11 A stamp dealer maintains a price list that displays the country, the Scott catalog 

number, year of issue, description, and price:

Kenya 288-92 1984 Heron Plover Thrush Gonolek Apalis $6.60
Surinam 643-54 1983 Butterflies $7.50
Seychelles 831-34 2002 WWF Frogs set of 4 $1.40
Togo 1722-25 1996 Cheetah, Zebra, Antelope $5.70

 Write an awk program to print a formatted report of the data as well as the total 

price. Note that the description contains a variable number of words.

12.12 Write an awk program to provide extra spaces at the end of a line (if required) 

so that the line length is maintained at 127.

12.13 A file contains a fixed number of fields in the form of space-delimited numbers. 

Write an awk program to print the lines as well as a total of its rows and columns. 

The program doesn’t need to know the number of fields in each line.

12.14 Develop an awk program that reads /etc/passwd and prints the names of those 

users having the same GID in the form GID name1 name2 ...... Does the input 

data need to be sorted?

12.15 Improve addressbook.awk (12.12) to place the entire awk program in a shell 

script. The script must accept three parameters: the number of lines comprising 

a record, the input file, and the desired delimiter.

12.16 Develop a control-break awk program that reads empn.lst and prints a report 

that groups employees of the same department. For each department, the report 

should print:

(i) the department name at the top.

(ii) the remaining details of every person in the department.

(iii) total salary bill for that department.

 Do you need to process the input before it is read by awk?

12.17 Observe a few lines of the output of the last command, which displays infor-

mation on every login session of every user. The last field shows the usage in 

hours:minutes for that session:

henry pts/5 pc134.pdsit.becs Tue Sep 16 15:10 - 18:08  (02:57)
romeo pts/7 pc126.pdsit.becs Tue Sep 16 16:52 - 17:14  (00:22)
juliet pts/2 pc127.pdsit.becs Tue Sep 16 11:53 - 13:09  (01:15)
romeo pts/2 pc126.pdsit.becs Mon Sep 15 12:17 - 12:40  (00:22)
root console :0 Sat Feb 23 07:54 - 08:23  (00:28)
henry pts/4 pc134.pdsit.becs Sat Sep    6 20:49 - 20:59 (00:10)

 Print a summary report for each user that shows the total number of hours and 

minutes of computer time that she has consumed. Note that the output contains 

a variable number of fields, and a user can occur multiple times.

12.18 Your task is to create an empty directory structure bar2 from a nonempty 

das76205_Ch12_329-358.indd   357das76205_Ch12_329-358.indd   357 12/13/11   10:47 AM12/13/11   10:47 AM



358 Your UNIX/Linux: The Ultimate Guide

directory tree bar1. Both bar1 and bar2 will be at the same hierarchical level. 

You have to use mkdir in an efficient manner so that intermediate directories are 

automatically created. This is what you have to do:

(i) Create a directory list from bar1 with find and order it if necessary.

(ii)  Using an awk program, remove all branches from the list so that you can 

run mkdir only on the leaves.

(iii) Run mkdir with the list to replicate the directory structure of bar1.

 Specify the complete sequence of operations needed for the job. If mkdir fails 

because the number of arguments is too large, can you divide the job into man-

ageable portions using xargs (Section 6.15—Going Further)?

das76205_Ch12_329-358.indd   358das76205_Ch12_329-358.indd   358 12/13/11   10:47 AM12/13/11   10:47 AM



359

13C H A P T E R  13
Shell Programming

The activities of the shell are not restricted to command interpretation alone. 

The shell has a whole set of internal commands that can be strung together 

as a language—with its own variables, conditionals, and loops. Most of its constructs 

are borrowed from C, but there are syntactical differences between them. What makes 

shell programming powerful is that the external UNIX commands blend easily with the 

shell’s internal constructs in shell scripts.

In this chapter, we examine the programming features of the lowest common 

denominator of all shells—the Bourne shell. However, everything discussed here applies 

to both Korn and Bash. The C shell uses totally different programming constructs that 

are presented in Appendix A. The exclusive programming-related features of Korn and 

Bash are featured in Appendix B.

  Objectives
 • Discover how shell scripts are executed and the role of the she-bang line.

 • Make shell scripts interactive using read.

 • Use positional parameters to read command-line arguments.

 • Understand the significance of the exit status and the exit statement.

 • Learn rudimentary decision making with the || and && operators.

 • Learn comprehensive decision making with the if conditional.

 • Discover numeric and string comparison and file attribute testing with test.

 • Use the pattern matching features of case for decision making.

 • Learn computing and string handling using bc, expr, and basename.

 • How hard links and $0 can make a script behave as different programs.

 • Use a for loop to iterate with each element of a list.

 • Use a while loop to repeatedly execute a set of commands.

 • Manipulate the positional parameters with set and shift.

 • Review three real-life applications that make use of these features.

 • Use a here document to run an interactive shell script noninteractively. (Going Further)

 • Develop modular code using shell functions. (Going Further)

 • Handle signals using trap to control script behavior. (Going Further)

 • Use eval to evaluate a command line twice. (Going Further)

 • Overlay the current program with another using exec. (Going Further)

das76205_Ch13_359-403.indd   359das76205_Ch13_359-403.indd   359 12/13/11   5:13 PM12/13/11   5:13 PM



360 Your UNIX/Linux: The Ultimate Guide

BASH Shell

 13.1  Shell Scripts

When a group of commands have to be executed regularly, they should be stored in a file, 

and the file executed as a shell script or shell program. Though it’s not mandatory, using 

the .sh or .bash extension for shell scripts makes it easy to match them with wild cards.

A shell script needs to have execute permission when invoked by its name. It is not 

compiled to a separate executable file as a C program is. It runs in interpretive mode and 

in a separate child process. The calling process (often, the login shell) forks a sub-shell, 

which reads the script file and loads each statement into memory when it is to be executed.

Shell scripts are thus slower than compiled programs, but speed is not a constraint 

with certain jobs. Shell scripts are not recommended for number crunching. They are 

typically used to automate routine tasks and are often scheduled to run noninteractively 

with cron. System administrative tasks are often best handled by shell scripts, the rea-

son why the UNIX system administrator must be an accomplished shell programmer.

Generally, Bourne shell scripts run without problem in the Korn and Bash shells. 

There are two issues in Bash, however. First, Bash evaluates $0 differently. This has 

to be handled by appropriate code in the script. Second, some versions of Bash don’t 

recognize escape sequences used by echo (like \c and \n) unless the -e option is used. 

To make echo behave in the normal manner, place the statement shopt -s xpg_echo 

in your rc file (probably, ~/.bashrc).

 13.1.1  script.sh: A Simple Script
Use your vi editor to create the shell script, script.sh (Fig. 13.1). The script runs 

three echo commands and shows the use of variable evaluation and command substitu-

tion. It also shows the important terminal settings, so you know which key to press to 

interrupt your script.

The first line is discussed in Section 13.1.2. Note the comment character, #, which 

can be placed anywhere in a line. The shell ignores all characters placed on its right. To 

run the script, make it executable first:

$ chmod +x script.sh
$ script.sh                                    PATH must include the dot

Today’s date: Mon Sep  8 18:25:36 GMT 2003         or else use ./script.sh

My login shell: /usr/bin/bash

F I G U R E  1 3 . 1  script.sh

#!/bin/sh
# script.sh: Sample shell script -- She-bang points to Bourne shell.
echo “Today’s date: `date`”          # Double quotes protect single quote
echo “My login shell: $SHELL”        # $SHELL signifies login shell only
echo ‘Note the stty settings’        # Using single quotes here
stty -a | grep intr

das76205_Ch13_359-403.indd   360das76205_Ch13_359-403.indd   360 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 361

Note the stty settings
intr = ̂ c; quit = ^\; erase = ^?; kill = ^u;

This script takes no inputs or command-line arguments and uses no control structures. 

We’ll be progressively adding these features to our future scripts. If your current direc-

tory is not included in PATH, you may either include it in your profile or execute the 

script as ./script.sh (3.8).

If you are using vi to edit your shell and perl scripts, then you need not leave the editor to 
execute the script. Just make two mappings of the [F1] and [F2] function keys in $HOME/.exrc:

:map #1 :w^M:!%^M For scripts that use no arguments

:map #2 :w^M:!% For scripts that use arguments

You can now press [F1] and [F2] in the Command Mode to execute any shell script that has the 
execute bit set. Both keys save the buffer (:w^M) before executing the file (:!%). The character 
^M represents the  [Enter] key (5.3.5). (You can use the alias cx defined in Table 8.2 to make 
the script executable.)

 13.1.2  The She-Bang Line
The first line of script.sh contains a string beginning with #!. This is not a comment line. 

It is called the interpreter line, hash-bang, or she-bang line. When the script executes, the 

login shell (which could even be a C shell) reads this line first to determine the pathname 

of the program to be used for running the script. Here, the login shell spawns a Bourne 

sub-shell which actually executes each statement in sequence (in interpretive mode).

If you don’t provide the she-bang line, the login shell will spawn a child of its 

own type to run the script—which may not be the shell you want. You can also explicitly 
spawn a shell of your choice by running the program representing the shell with the 

script name as argument:

bash script.sh                        Will spawn a Bash shell

When used in this way, the Bash sub-shell opens the file but ignores the interpreter line. 

The script doesn’t need to have execute permission, either. We’ll make it a practice to 

use the she-bang line in all of our scripts.

The pathname of the shell specified in the she-bang line may not match the actual pathname 
on your system. This sometimes happens with downloaded scripts. To prevent these scripts from 
breaking, make a symbolic link between the two locations. Note that root access is required 
to make a symbolic link between /bin/bash and /usr/bin/bash.

 13.2  read: Making Scripts Interactive

The read statement is the shell’s internal tool for taking input from the user, i.e., making 

scripts interactive. It is used with one or more variables that are assigned by keyboard 

input. The statement

read name                                        No $ here

Tip

Tip

das76205_Ch13_359-403.indd   361das76205_Ch13_359-403.indd   361 12/13/11   5:13 PM12/13/11   5:13 PM



362 Your UNIX/Linux: The Ultimate Guide

makes the script pause at that point to take input from the standard input. Whatever you 

enter is stored in the variable name. Since this is a form of assignment, no $ is used 

before name. The script, emp1.sh (Fig. 13.2), uses read to take a search string and 

filename from the terminal.

You know what the sequence \c does (2.6). Run the script and specify the inputs 

when the script pauses twice:

$ emp1.sh
Enter the pattern to be searched: director
Enter the file to be used: shortlist
Searching for director from file shortlist
9876:bill johnson    :director :production:03/12/50:130000
2365:john woodcock   :director :personnel :05/11/47:120000
Selected lines shown above

The script pauses twice. First, the string director is assigned to the variable pname. 

Next, shortlist is assigned to flname. grep then runs with these two variables as its 

arguments.

A single read statement can be used with one or more variables to let you enter 

multiple words:

read pname flname

Note that when the number of words keyed in exceeds the number of variables, the 

remaining words are assigned to the last variable. To assign multiple words to a single 

variable, quote the string.

 13.3  Using Command-Line Arguments

Scripts not using read can run noninteractively and be used with redirection and pipe-

lines. Like UNIX commands (which are written in C), such scripts take user input from 

command-line arguments. They are assigned to certain special “variables,” better known 

F I G U R E  1 3 . 2  emp1.sh

#!/bin/sh
# emp1.sh: Interactive version - uses read to take two inputs
#
echo “Enter the pattern to be searched: \c”    # No newline
read pname
echo “Enter the file to be used: \c”
read flname 
echo “Searching for $pname from file $flname”
grep “$pname” $flname    # Quote all variables
echo “Selected lines shown above”

das76205_Ch13_359-403.indd   362das76205_Ch13_359-403.indd   362 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 363

as positional parameters. The first argument is available in $1, the second in $2, and so 

on. In addition to these positional parameters, there are a few other special parameters 

used by the shell (Table 13.1).  Their significance is:

$* — Stores the complete set of positional parameters as a single string.

$# — Is set to the number of arguments specified. This lets you design scripts that check 

whether the right number of arguments have been entered.

$0 — Holds the script filename itself. You can link a shell script to be invoked by more 

than one name. The script logic can check $0 to behave differently depending on 

the name by which it is invoked. Section 13.8.2 exploits this feature.

The next script, emp2.sh (Fig. 13.3), runs grep with two positional parameters, $1 and 

$2, that are set by the script arguments, director and shortlist. It also evaluates $# 

and $*. Observe that $# is one less than argc, its C language counterpart:

$ emp2.sh director shortlist
Program: emp2.sh
The number of arguments specified is 2
The arguments are director shortlist
9876:bill johnson    :director :production:03/12/50:130000
2365:john woodcock   :director :personnel :05/11/47:120000
  
Job Over

The first word (the command itself) is assigned to $0. The first argument (director) 

is assigned to $1, and the second argument is assigned (shortlist) to $2. You can 

go up to $9 (and, using the shift statement, you can go beyond). These parameters 

are automatically set, and you can’t use them on the left-hand side of an assignment 

($1=director is illegal).

Every multiword string must be quoted to be treated as a single command-line 

argument. To look for robert dylan, use emp2.sh “robert dylan” shortlist. If 

you don’t quote, $# would be three and dylan would be treated as a filename by grep. 

You have also noted this quoting requirement when using grep (10.2.1).

F I G U R E  1 3 . 3  emp2.sh

#!/bin/sh
# emp2.sh: Non-interactive version -- uses command line arguments
#
echo “Program: $0”                  # $0 contains the program name
echo “The number of arguments specified is $#”
echo “The arguments are $*”        # All arguments stored in $*
grep “$1” $2
echo “\nJob Over”

das76205_Ch13_359-403.indd   363das76205_Ch13_359-403.indd   363 12/13/11   5:13 PM12/13/11   5:13 PM



364 Your UNIX/Linux: The Ultimate Guide

BASH Shell

$0 in Bash prepends the ./ prefix to the script name. In the preceding example, it 

would have shown ./emp2.sh instead of emp2.sh. You need to keep this in mind 

when you make use of $0 to develop portable scripts.

 13.4  exit and $?: Exit Status of a Command

All programs and shell scripts return a value called the exit status to the caller, often 

the shell. The shell waits for a command to complete execution and then picks up this 

value from the process table. Shell scripts return the exit status with the exit statement:

exit                                  Default value is 0

exit 0                                 True; everything went fine

exit 1                                 False; something went wrong

A program is designed in such a way that it returns a true exit status when it runs suc-

cessfully and false otherwise. What constitutes success or failure is determined by the 

designer of the program. Once grep couldn’t locate a pattern (10.2.2); we said then that 

the command failed. That is to say that the designer of grep made the program return 

a false exit status on failing to locate a pattern.

The parameter $? stores the exit status of the last command. It has the value 0 if 

the command succeeds and a nonzero value if it fails. This parameter is set by exit’s 

argument. If no exit status is specified, then $? is set to zero (true). Try using grep in 

these ways, and you’ll see it returning three different exit values:

$ grep director emp.lst >/dev/null; echo $?
0                                    Success

$ grep manager emp.lst >/dev/null; echo $?
1                                     Failure—in finding pattern

$ grep manager emp3.lst >/dev/null; echo $?
grep: can’t open emp3.lst            Failure—in opening file

2

T A B L E  1 3 . 1  Special Parameters Used by the Shell

Shell Parameter     Significance

$1, $2...      Positional parameters representing command-line arguments

$#                 Number of arguments specified in command line

$0                 Name of executed command

$*                 Complete set of positional parameters as a single string

“$@”               Each quoted string treated as a separate argument 

(recommended over $*)

$?                 Exit status of last command

$$                 PID of current shell (7.2)

$!                 PID of last background job (7.10.1)

das76205_Ch13_359-403.indd   364das76205_Ch13_359-403.indd   364 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 365

The if and while constructs implicitly check $? to control the flow of execution. As 

a programmer, you should also place exit statements with meaningful exit values at 

appropriate points in a script. For example, if an important file doesn’t exist or can’t be 

read, there’s no point in continuing with script execution. You could then use exit 1 at that 

point. The next program then knows that the previous program failed—and why it failed.

Success or failure isn’t as intuitive as it may seem. The designer of grep interpreted grep’s 
inability to locate a pattern as failure. The designer of sed thought otherwise. The command 
sed -n ‘/manager/p’ emp.lst returns a true value even if manager is not found!

 13.5  The Logical Operators && and ||—Conditional Execution

We didn’t use grep’s exit status in the script emp1.sh to prevent display of the message, 

Selected lines shown above, when the pattern search fails. The shell provides two 

operators that allow conditional execution—the && and || (also used by C), which 

typically have this syntax:

cmd1 && cmd2                  cmd2 executed if cmd1 succeeds

cmd1 || cmd2                  cmd2 executed if cmd1 fails

When && is used to delimit two commands, cmd2 is executed only when cmd1 succeeds. 

You can use it with grep in this way:

$ grep ‘director’ shortlist >/dev/null && echo “pattern found in file”
pattern found in file

The || operator does the opposite; the second command is executed only when the 

first fails:

$ grep ‘manager’ shortlist || echo “Pattern not found”
Pattern not found

These operators go pretty well with the exit statement. The script emp2.sh can be 

modified in this way:

grep “$1” $2  || exit 2                No point continuing if search fails

echo “Pattern found - Job Over”    Executed only if grep succeeds

To display a message before invoking exit, you need to group commands, but remember 

to use only curly braces (7.7) because the enclosed commands are then executed in the 

current shell:

grep joker /etc/passwd || { echo “Pattern not found” ; exit 2 ; }

Use of parentheses here won’t terminate a script. If the {} sequence is executed at the 

shell prompt, you would be logged out.

The && and || operators are recommended for making simple decisions. When 

complex decision making is involved, they have to make way for the if statement.

Note

das76205_Ch13_359-403.indd   365das76205_Ch13_359-403.indd   365 12/13/11   5:13 PM12/13/11   5:13 PM



366 Your UNIX/Linux: The Ultimate Guide

 13.6  The if Conditional

The if statement makes two-way decisions depending on the fulfillment of a certain 

condition. In the shell, the statement uses the following forms, much like the ones used 

in other languages:

if command is successful 
then                  
         execute commands
fi

if command is successful    
then                      
         execute commands
else                     
         execute commands
fi                        

if  command is successful
then
        execute commands
elif command is successful
then...
else...
fi

Form 1 Form 2 Form 3

if requires a then and is closed with a fi. It evaluates the success or failure of the 

control command specified in its “command line.” If command succeeds, the sequence 

of commands following it is executed. If command fails, then the commands following 

the else statement (if present) are executed. This statement is not always required, as 

shown in Form 1.

The control command here can be any UNIX command or any program, and its 

exit status solely determines the course of action. This means that you can use the if 

construct like this:

if grep “$name” /etc/passwd

Here, if tests $? after grep completes execution. You can also negate the control com-

mand using if ! condition. The condition

if ! grep “$name” /etc/passwd

is true only if grep fails. You can’t use sed and awk in place of grep simply because 

they don’t fail in making a pattern search (11.2.2).
We’ll use the next script, emp3.sh (Fig. 13.4), to search /etc/passwd for the 

existence of two users; one exists in the file, and the other doesn’t. A simple if–else 

construct tests grep’s exit status:

$ emp3.sh ftp
ftp:*:325:15:FTP User:/users1/home/ftp:/bin/true
Pattern found - Job Over
$ emp3.sh mail
Pattern not found

We’ll discuss the third form of the if statement when we discuss test, which is dis-

cussed in Section 13.7.

das76205_Ch13_359-403.indd   366das76205_Ch13_359-403.indd   366 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 367

 13.7  Using test and [ ] to Evaluate Expressions

The if conditional can’t handle relational tests directly, but only with the assistance of 

the test statement. test uses certain operators to evaluate the condition on its right 

and returns an exit status, which is then used by if for making decisions. test works 

as a frontend to if in three ways:

 • Compares two numbers (like test $x -gt $y).

 • Compares two strings or a single one for a null value (like test $x = $y).

 • Checks a file’s attributes (like test -f $file).

These tests can also be used with the while loop, but for now we’ll stick to if. Also, 

test doesn’t display any output but simply sets $?. In the following sections, we’ll 

check this value.

 13.7.1  Numeric Comparison
The numerical comparison operators (Table 13.2) used by test have a form different 

from what you would have seen anywhere. They always begin with a -, followed by a 

two-character word, and enclosed on either side by whitespace. Here’s a typical operator:

-ne         Not equal

F I G U R E  1 3 . 4  emp3.sh

#!/bin/sh
# emp3.sh: Using if and else
#
if grep “^$1:” /etc/passwd   # ^ anchors pattern
then   # : removes embedded pattern
       echo “Pattern found - Job Over”
else
       echo “Pattern not found”
fi

T A B L E  1 3 . 2  Numerical Comparison Operators Used with test

Operator     Meaning

-eq          Equal to

-ne          Not equal to

-gt          Greater than

-ge          Greater than or equal to

-lt          Less than

-le          Less than or equal to

das76205_Ch13_359-403.indd   367das76205_Ch13_359-403.indd   367 12/13/11   5:13 PM12/13/11   5:13 PM



368 Your UNIX/Linux: The Ultimate Guide

The operators are quite mnemonic: -eq implies equal to, -gt implies greater than, and 

so on. Remember, however, that numeric comparison in the shell is confined to integer 

values only; decimal values are simply truncated:

$ x=5; y=7; z=7.2
$ test $x -eq $y ; echo $?
1         Not equal

$ test $x -lt $y ; echo $?
0         True

$ test $z -gt $y ; echo $?
1         7.2 is not greater than 7!

$ test $z -eq $y ; echo $?
0         7.2 is equal to 7!

Having used test as a standalone feature, you can now use it as if’s control command. 

The next script, emp3a.sh (Fig. 13.5), uses test in an if-elif-else-fi construct 

(Form 3) to evaluate the shell parameter, $#. It displays the usage when no arguments are 

input, runs grep if two arguments are entered, and displays an error message otherwise.

Why did we redirect the echo output to /dev/tty? Simple, we want the script to 

work both with and without redirection. In either case, the output of the echo statements 

must appear only on the terminal. These statements are used here as “error” messages 

even though they are not directed to the standard error. Now run the script four times 

and redirect the output every time:

$ emp3a.sh > foo
Usage: emp3a.sh pattern file
$ emp3a.sh ftp > foo
You didn’t enter two arguments
$ emp3a.sh henry /etc/passwd > foo
henry not found in /etc/passwd
$ emp3a.sh ftp /etc/passwd > foo
$ cat foo
ftp:*:325:15:FTP User:/users1/home/ftp:/bin/true

F I G U R E  1 3 . 5  emp3a.sh

#!/bin/sh
# emp3a.sh: Using test, $0 and $# in an if-elif-fi construct
#
if test $# -eq 0 ; then
    echo “Usage: $0 pattern file” >/dev/tty
elif test $# -eq 2 ; then
    grep “$1” $2 || echo “$1 not found in $2” >/dev/tty
else
    echo “You didn’t enter two arguments” >/dev/tty
fi

das76205_Ch13_359-403.indd   368das76205_Ch13_359-403.indd   368 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 369

The importance of /dev/tty as a mechanism of explicitly redirecting an output stream 

shows up in this example. But there’s another way of achieving this objective: Use 1>&2 

instead of >/dev/tty:

echo “You didn’t enter two arguments” 1>&2

You’ll recall (6.6.1) that 1>&2 redirects the standard output to the standard error. You 

must appreciate this and use this feature with statements that need to be immune to 

redirection. The preceding script works just as well even if you don’t redirect it.

An application may need to be designed in a flexible manner to allow redirection of an entire 
script or its participation in a pipeline. In that case, you need to ensure that messages meant 
to draw the attention of the user (mainly from echo) are not written to the standard output. 
We used >/dev/tty here, but henceforth we’ll be mostly using 1>&2.

 13.7.2  [ ]: Shorthand for test
test is so widely used that fortunately there exists a shorthand method of executing it. 

A pair of rectangular brackets enclosing the expression can replace it. Thus, the follow-

ing forms are equivalent:

test $x -eq $y
[ $x -eq $y ]

Note that you must provide whitespace around the operators (like -eq), their operands 

(like $x), and inside the [ and ]. The second form is easier to handle and will be used 

henceforth. Programmers must note that [ is a shell builtin and is executed as a com-

mand, so [$x is not a valid command!

It is a feature of most programming languages that you can use a condition like if (x), which 
returns true if x is greater than 0 or is nonnull. The same feature applies to the shell; we can 
use if [ $x ] as a shorthand form of if [ $x -gt 0 ].

 13.7.3  String Comparison
test can be used to compare strings with yet another set of operators (Table 13.3). 

Equality is performed with = (not ==) and inequality with the C-type operator !=. Here’s 

how you compare two strings:

Tip

Note

T A B L E  1 3 . 3  String Tests with test

Test            True if

s1 = s2     String s1 = s2

s1 ! = s2     String s1 is not equal to s2

-n stg          String stg is not a null string

-z stg          String stg is a null string

stg           String stg is assigned and not null

s1 == s2    String s1 = s2 (Korn and Bash only)

das76205_Ch13_359-403.indd   369das76205_Ch13_359-403.indd   369 12/13/11   5:13 PM12/13/11   5:13 PM



370 Your UNIX/Linux: The Ultimate Guide

if [ “$option” = “y” ]              True if $option evaluates to y

if [ “$option” != “y” ]             True if $option doesn’t evaluate to y

There are two ways of checking for a null string:

if [ -z “$option” ]                     True if $option is a null string

if [ ! -n “$option” ]                         Same

Observe that we have been quoting our variables and strings wherever possible. Quoting is 
essential when you assign multiple words to a variable. To try that out, drop the quotes in 
the statement if [ -z “$option” ]. When you input two words, or even a null string to be 
assigned to option, you’ll encounter an error. Quoting is safe with no adverse consequences.

 13.7.4  File Attribute Tests
Like perl and the system call library, test can be used to test practically all file at-

tributes stored in the inode using operators that begin with - (Table 13.4). For instance, 

the -f operator tests for the existence of a file, and -d does the same for a directory:

$ [ -f /etc/passwd ] && echo “This file always exists”
This file always exists
$ [ -d foobar ] || echo “Directory foobar doesn’t exist”
Directory foobar doesn’t exist

The next script, filetest.sh (Fig. 13.6), checks whether a file exists and is readable. 

This time we use command grouping as a compact replacement of the if statement for 

argument checking. The script also features nesting of the if statement.

Let’s now run it with and without a filename as argument:

$ filetest.sh
Usage: filetest.sh file

Tip

T A B L E  1 3 . 4  File Attribute Testing with test

Test                True If File

-f file     file exists and is a regular file

-r file     file exists and is readable

-w file     file exists and is writable

-x file     file exists and is executable

-d file     file exists and is a directory

-s file     file exists and has a size greater than zero

-u file    file exists and has SUID bit set

-k file    file exists and has sticky bit set

-e file     file exists (Korn and Bash only)

-L file    file exists and is a symbolic link (Korn and Bash only)

f1 -nt f2    f1 is newer than f2 (Korn and Bash only)

f1 -ot f2    f1 is older than f2 (Korn and Bash only)

f1 -ef f2    f1 is linked to f2 (Korn and Bash only)

das76205_Ch13_359-403.indd   370das76205_Ch13_359-403.indd   370 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 371

$ filetest.sh /etc/shadow
File exists but is not readable
$ ls -l /etc/shadow
-r--------   1 root     sys         5425 Nov 28 15:30 /etc/shadow

The file is unreadable to all except root. This feature of checking for readability is sup-

ported by most programming languages, but test conditions are quite exhaustive. Korn 

and Bash can even check whether one file is newer than another (Table 13.4).

 13.7.5  Using Compound Conditions
if and test can also be used with compound conditions. There are two forms: one 

uses the && and || operators, and the other uses -a and -o. Here’s how they are used:

if [ “$0” = “lm” ] || [ “$0” = “./lm” ] ; then
if [ “$0” = “lm”  -o “$0” = “./lm” ] ; then

$0 is evaluated by Bash differently. The preceding represents a section of code 

you need to use to make Bash scripts portable. What happens if there are too many 

alternatives to account for? Rather than create a lengthy control command, we should 

consider using the perfect string matching tool. The case construct is discussed in 

Section 13.9.

Even though we used test with the if statement in all of our examples, test returns an exit 
status only, and can thus be used with any shell construct (like while) that uses an 
exit status.Note

F I G U R E  1 3 . 6  filetest.sh

#!/bin/sh
# filetest.sh -- Checks whether file exists and is readable
#
[ $# -ne 1 ] && { echo “Usage: $0 file” ; exit 1 ; }
#
if [ -f $1 ] ; then                                # if file exists
   if [ ! -r $1 ] ; then                           # but is not readable
       echo “File exists but is not readable”
   else
       echo “File is readable”
   fi
else
   echo “File doesn’t exist”
fi

das76205_Ch13_359-403.indd   371das76205_Ch13_359-403.indd   371 12/13/11   5:13 PM12/13/11   5:13 PM



372 Your UNIX/Linux: The Ultimate Guide

 13.8  Two Important Programming Idioms

Time to take a break. Your applications must support certain features that people have 

taken for granted. For instance, many scripts turn interactive when used without argu-

ments. Some commands (like gzip and gunzip) behave differently even though they 

represent the same file. These features are taken up next.

 13.8.1  Running a Task Both Interactively and Noninteractively
We developed a noninteractive script, emp3a.sh (Fig. 13.5), to conduct a pattern search. 

Now suppose that we want to do the same task interactively. Do we develop one from 

scratch? No, we learn to make scripts reusable. We place the interactive features in the 

new script and invoke emp3a.sh from there.

The next script, emp4.sh (Fig. 13.7), behaves both interactively and noninterac-

tively. When run without arguments, it turns interactive and takes two inputs from you. 

It then runs emp3a.sh with the supplied inputs as arguments. However, when emp4.sh 

itself is run with at least one argument, it runs emp3a.sh with the same arguments. This 

script also highlights the limitations of $* and why it should be replaced with “$@”.

In interactive mode, the script checks the input strings for nonnull values and then 

invokes emp3a.sh with these values as the script’s arguments. In the noninteractive mode, 

however, it passes on the arguments to emp3a.sh using $*. In either case, emp3a.sh is 

run, which finally checks for the actual number of arguments entered before making a 

search with grep. Let’s first run the script interactively:

$ emp4.sh
Enter the string to be searched: [Enter]
You have not entered the string

F I G U R E  1 3 . 7  emp4.sh

#!/bin/sh
# Script: emp4.sh - Checks user input for null values - Finally runs emp3a.sh
#                                                          developed previously
if [ $# -eq 0 ] ; then
 echo “Enter the string to be searched: \c”
 read pname
 echo “Enter the filename to be used: \c”
 read flname
 if [ -z “$pname” ] || [ -z “$flname” ] ; then
      echo “At least one input was null” ; exit 2
 fi
 emp3a.sh “$pname” “$flname”    # Runs the script that will do the job
else      # When script is run with argument(s)
 emp3a.sh $*      # We’ll change $* to “$@” soon 
fi

das76205_Ch13_359-403.indd   372das76205_Ch13_359-403.indd   372 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 373

$ emp4.sh
Enter the string to be searched: root
Enter the filename to be used: /etc/passwd
root:x:0:1:Super-User:/:/usr/bin/bash                      From emp3a.sh

See how two scripts cooperated in displaying root’s entry from /etc/passwd? When 

we run the script with arguments, emp4.sh bypasses all of these activities and calls 

emp3a.sh to perform all validation checks:

$ emp4.sh barry
You didn’t enter two arguments
$ emp4.sh barry emp.lst
5423:barry wood      :chairman :admin     :08/30/56:160000
$ emp4.sh “barry wood” emp.lst
You didn’t enter two arguments

Surprise, surprise! Using quotes, we provided two arguments, and $* and $# in emp4.sh 

are also assigned correctly. But the same parameters are interpreted differently in 

emp3a.sh. In fact, barry and wood are embedded in $* as separate arguments, and $# 

in emp3a.sh thus makes a wrong argument count. The solution to this is simple: Replace $* 

in the script with “$@” (with quotes) and then run the script again:

$ emp4.sh “barry wood” emp.lst
5423:barry wood      :chairman :admin     :08/30/56:160000

It’s safer to use “$@” instead of $*. When you employ multiword strings as arguments to a 
shell script, it’s only “$@” that interprets each quoted argument as a separate argument. As the 
preceding output suggests, if you use $*, the shell makes an incorrect count of the arguments.

 13.8.2  Calling a Script by Different Names ($0)
The shell parameter, $0, stores the filename (13.3). We can use this feature in tandem 

with the linking facility to make a script do different things depending on the name by 

which it is called. The script, lm.sh (Fig. 13.8), displays the listing ordered by the last 

modification time when invoked as lm, and the last access time when invoked by la.

Tip

F I G U R E  1 3 . 8  lm.sh

#!/bin/sh
# lm.sh: Linked file to run ls with two different sets of options
#
filename=$0
if [ “$filename” = “lm” ] || [ “$filename” = “./lm” ] ; then
   echo “Executing ls -lt $*” ; ls -lt $*
elif [ “$filename” = “la” ] || [ “$filename” = “./la” ] ; then
   echo “Executing ls -lut $*” ; ls -lut $*
fi

das76205_Ch13_359-403.indd   373das76205_Ch13_359-403.indd   373 12/13/11   5:13 PM12/13/11   5:13 PM



374 Your UNIX/Linux: The Ultimate Guide

We used compound conditions to take care of Bash, which evaluates $0 with the 

./ prefix. Now link lm.sh with lm and la and then see how they behave when invoked 

by these two names:

$ ln lm.sh lm ; ln lm la
$ lm /etc/passwd
Executing ls -lt /etc/passwd
-r--r--r--   1 root     sys        11189 Aug 20 20:39 /etc/passwd
$ la /etc/passwd
Executing ls -lut /etc/passwd
-r--r--r--   1 root     sys        11189 Sep  6 09:27 /etc/passwd

After you have written a a fairly large number of scripts, you’ll find that some of them 

have very few differences between them. These scripts are ideal candidates for conver-

sion to a single script. Isolate the common features, use $0 to handle the differing ones, 

and make as many links as required.

 13.9  The case Conditional

We now resume our discussions on the other shell constructs with the case statement, 

the second conditional offered by the shell. This statement (which is somewhat similar 

to the switch statement of C), easily surpasses the string matching feature of if. It 

uses a compact construct to match a pattern with a list of alternatives. Each alternative 

is associated with a corresponding action:

case expression in
     pattern1) commands1 ;;
     pattern2) commands2 ;;
     pattern3) commands3 ;;
        .....
esac Reverse of case

case first matches expression with pattern1 and executes commands1(which may be 

one or more commands) if the match succeeds. If the match fails, then case tries with 

pattern2, and so forth. Each command list is terminated with a pair of semicolons, and 

the entire construct is closed with esac. What makes case a powerful pattern match-

ing tool is that its patterns are borrowed from the best of both worlds: wild cards and 

extended regular expressions (EREs).

Consider a simple script, menu.sh (Fig. 13.9), that accepts values from 1 to 5 and 

performs some action depending on the number keyed in. The five menu choices are 

displayed with a multiline echo statement.

case matches the value of $choice with the strings 1, 2, 3, 4, and 5. If the user 

enters a 1, the ls -l command is executed. Option 5 quits the program. The last option 

(*) matches any option not matched by the previous options. You can see today’s date 

by choosing the third option:

das76205_Ch13_359-403.indd   374das76205_Ch13_359-403.indd   374 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 375

$ menu.sh
         MENU
  
1. List of files
2. Processes of user
3. Today’s Date
4. Users of system
5. Quit to UNIX
Enter your option: 3
Tue Jan  7 18:03:06 IST 2003

The same logic would require a larger number of lines if implemented with if. Thus, 

case becomes an automatic choice when the number of matching options is high.

 13.9.1  Using Wild Cards and the |
Like egrep, case  also delimits multiple patterns with a |. It is also very effective 

when the string is fetched by command substitution. If you cut out the first field from 

the date output, you can use this case construct to do different things, depending on 

the day of the week:

case ̀ date | cut -d” “ -f1` in         Outputs three-character day string

    Mon|Wed) tar -cvf /dev/fd0 $HOME ;;
    Tue|Fri) scp -r $HOME/projects mercury:/home/henry ;;
           Thu) find $HOME -newer .last_full_backup_time -print > tarilist ;;
              *) ;;
esac

F I G U R E  1 3 . 9  menu.sh

#!/bin/sh
# menu.sh: Uses case to offer 5-item menu
#
echo “         MENU\n
1. List of files\n2. Processes of user\n3. Today’s Date
4. Users of system\n5. Quit to UNIX\nEnter your option: \c”
read choice
case “$choice” in
    1) ls -l ;;
    2) ps -f ;;
    3) date  ;;
    4) who   ;;
    5) exit  ;;
    *) echo “Invalid option”     # ;; not really required for the last option
esac

das76205_Ch13_359-403.indd   375das76205_Ch13_359-403.indd   375 12/13/11   5:13 PM12/13/11   5:13 PM



376 Your UNIX/Linux: The Ultimate Guide

The first field of the date output displays the day, which we extracted with cut to provide 

input to case. The first and second options show two patterns each. The tar command 

is executed only on Mondays and Wednesdays. The script can be run on any day, and 

the right command will be automatically invoked.

We used simple patterns here (1, 2, Mon, Wed, etc.), but case also supports the Bourne 

shell’s set of wild cards, but only to match strings and not files in the current directory. 

The following hypothetical construct suggests that case is ideal for pattern matching:

x=”[0-9][0-9]”
case “$reply” in
 [A-Z]) echo “Don’t use an uppercase letter” ;;
 [!a-zA-Z]) echo “Must enter a single letter” ;;
 ????*) echo “Can’t exceed three characters” ;;
 $x$x/$x$x/$x$x) echo “Correct format for date” ;;
 *[0-9]*) echo “No numerals permitted” ;;
 *.c|*.java) echo “This is a C or Java program” ;;
 n|N|[nN][oO]) echo “You entered n, N, no, NO, No, etc” ;;
 “”) echo “You simply pressed [Enter]” ;;
esac

There are a couple of things to keep in mind when using case. First, a solitary * must be the 
last option because it serves as a refuge for matching anything not matched by the previous 
options. Second, case can also match a number as a string. You can match $# directly (without 
using test) with specific values (0, 1, 2|3, [2-5], etc.).

 13.10  expr, bc and basename: Computation and String Handling

Unlike any programming language, the Bourne shell doesn’t have computing or string 

handling features at all. It depends on the external commands, expr and bc, for integer 

and floating-point computing, respectively. For string handling, this shell must be used 

with expr and basename. Integer computing and string handling are built into the Korn 

and Bash shells, though neither of these shells can perform floating-point computation. 

The POSIX shell specification was based on the Korn shell, the reason why POSIX rec-

ommends use of the shell rather than these external commands  for these tasks. You can’t 

do that with legacy code, so we need to understand how these three commands work.

 13.10.1  Computation with expr
expr performs the four basic arithmetic operations and the modulus (remainder) function. 

It handles only integers; decimal portions are simply truncated or ignored.

$ x=3 y=5            Multiple assignments without a ;

$ expr 3 + 5           Whitespace required

8
$ expr $x - $y
-2
$ expr 3 \* 5         Escaping keeps the shell out

15

Note

das76205_Ch13_359-403.indd   376das76205_Ch13_359-403.indd   376 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 377

KORN Shell

BASH Shell

$ expr $y / $x
1                         Decimal portion truncated

$ expr 13 % 5
3

You’ll often use expr with command substitution to assign a variable. Some scripts in 

this chapter use it for incrementing a number:

$ x=6 ; y=2
$ z=`expr $x + $y` ; echo $z
8
$ x=`expr $x + 1`                This is the same as C’s x++

$ echo $x
7

Refer to Appendix B for a discussion of the built-in let statement and the (( and )) 
symbols in handling computation. let and (()) are faster than expr or bc.

 13.10.2  Floating-Point Computation with bc
Unlike expr, but like awk, bc can handle floating-point calculations. This command 

was discussed in the first edition of this book but has subsequently been removed. bc 

is quite useful in the standalone mode as a simple calculator, so let’s have a look at this 

feature first:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty’. 
scale=2 Two places of decimal

5 * 3
15
scale=5
22/7
3.14285
quit Or [Ctrl-d]

$

When the command is invoked without arguments bc turns interactive. Input has to 

be keyed in through the standard input, and bc interprets it either as its own internal 

command or as an expression. By default, bc performs integer computation, so the 

das76205_Ch13_359-403.indd   377das76205_Ch13_359-403.indd   377 12/13/11   5:13 PM12/13/11   5:13 PM



378 Your UNIX/Linux: The Ultimate Guide

scale statement must be used to set the number of decimal places. The bc command 

supports the standard arithmetic operators, but what makes it very useful in Linux is the 

history feature that lets you recall the previous commands of the current session. (Press 

the Up cursor key to recall previous commands.)

Because bc accepts standard input, we can use it in a pipeline. The following 

statement also computes the value of 22 / 7 expressed up to five decimal places. Note 

the use of the ; as the statement terminator:

$ echo “scale = 5 ; 22 / 7” | bc
3.14285

To increment a number, enclose the expression in double quotes (even though quotes 

are not necessary for this trivial example):

$ x=5
$ echo “$x + 1” | bc
6 Value of x is still 5

$ x=`echo $x + 1 | bc` No quotes necessary

$ echo $x
6 x reassigned

Even though awk can also perform floating-point computation, trivial tasks are better 

performed with bc since it has a smaller footprint. Remember that floating-point issues 

are not resolved in Korn and Bash, so bc remains useful even if you use these shells.

 13.10.3  String Handling with expr
For manipulating strings, expr uses two expressions separated by a colon. The string 

itself is placed on its left, and a regular expression is placed on its right. We’ll use expr 

to determine the length of a string and to return a substring.

The Length of a String The length of a string is handled by the regular expression 

.*. It signifies the number of characters matching the pattern, i.e., the length of the 

entire string:

$ expr “robert_kahn” : ‘.*’                 Note whitespace around :

11

To validate a string so that it doesn’t exceed, say, 20 characters in length, you need to 

use expr like this:

if [ ̀ expr “$name” : ‘.*’`  -gt 20 ] ; then

Extracting a Substring expr supports the TRE that was first seen in sed (10.13.3), 
but only to extract a substring. Unlike in sed, however, there’s no \1 and \2; the expres-

sion enclosed by \( and \) is actually returned by expr as its output. This is how you 

extract the two-digit year from a four-digit string:

das76205_Ch13_359-403.indd   378das76205_Ch13_359-403.indd   378 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 379

KORN Shell

BASH Shell

$ stg=2004
$ expr “$stg” : ‘..\(..\)’        Extracts last two characters

04

Here, expr ignores the first two characters and returns the remaining ones. You can also 

extract a file’s base name from an absolute pathname:

$ pathname=”/usr/include/sys”
$ expr “$pathname” : ‘.*/\(.*\)’
sys

The .*/ at the beginning of the expression matches the longest string up to the last /. 

There’s a separate command that handles this task, though, the basename command, 

which is taken up next.

 13.10.4  basename: Changing Filename Extensions
The previous string extraction function can be easily performed by basename. The com-

mand by default extracts the “base” filename from an absolute pathname:

$ basename /usr/include/sys
sys

When basename is used with a second argument, it strips off the string represented by 

this argument from the first argument:

$ basename hello.java .java
hello                                        Easier than expr

In Section 13.12.2, we’ll use basename in a for loop to change filename extensions.

Refer to Appendix B for a discussion on the built-in string handling features of these 

shells. They are faster than basename and expr.

 13.11  Sample Program 1: Automatically Selects 
Last C Program

It’s time for our first sample program, comc.sh (Fig. 13.10), which is useful for C pro-

grammers. The program needs to be linked to three filenames (vic, comc, and runc) 

and then it edits, compiles, and executes the last-modified C program file depending on 

the name by which it is invoked. Before we examine the script, let’s understand some 

essential aspects of C programming. This topic is treated in some detail in Chapter 15.

das76205_Ch13_359-403.indd   379das76205_Ch13_359-403.indd   379 12/13/11   5:13 PM12/13/11   5:13 PM



380 Your UNIX/Linux: The Ultimate Guide

A C program has the .c extension. When compiled with cc filename, it produces 

a file named a.out. However, we can provide a different name to the executable using 

the -o option. For instance, cc -o foo foo.c creates an executable named foo. It’s 

customary to have executable names derived from the source filename (foo from foo.c), 

and this is what our script does.

First, we check whether there’s any C program in the current directory. We store 

the name of the last-modified program in the variable lastfile. Using expr, we extract 

the base filename by dropping the .c extension. case now checks the name (saved in 

the variable command) by which the program is invoked. Observe that the first option 

(runc) simply executes the value evaluated by the variable executable. The only thing 

left to do now is to create three links:

ln comc.sh comc ; ln comc.sh runc ; ln comc.sh vic

Now you can run vic to edit the program, comc to compile it, and runc to execute the 

object code. We’ll only compile it here:

$ comc
hello.c compiled successfully

This script also works without modification in Bash. There’s one limitation, though. The 

script can’t compile programs whose functions are stored in separate files.

 13.12  for: Looping with a List

The shell features the for, while, and until loops that let you perform a set of instruc-

tions repeatedly. The for loop doesn’t support the three-part structure used in C, but 

uses a list instead:

F I G U R E  1 3 . 1 0  comc.sh

#!/bin/sh
# comc.sh: Script that is called by different names
#
lastfile=`ls -t *.c 2>/dev/null | head -n 1`
[ -z $lastfile ]  && { echo “No C program found” ; exit 1 ; } 

command=$0
# Either use expr like this:
executable=`expr $lastfile : ‘\(.*\).c’`     # Removes .c; foo.c becomes foo
# or use executable=`basename “$lastfile” .c`
case $command in
    runc|./runc) $executable ;;                # Runs the executable
       vic|./vic) vi $lastfile ;;
    comc|./comc) cc -o $executable $lastfile &&
                  echo “$lastfile compiled successfully” ;;
esac

das76205_Ch13_359-403.indd   380das76205_Ch13_359-403.indd   380 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 381

for variable in list
do
   commands             Loop body

done

The keywords do and done delimit the loop body. Loop iteration is controlled by the 

keywords variable and list. At every iteration, each word in list is assigned to variable, 

and commands are executed. The loop terminates when list is exhausted. A simple ex-

ample can help you understand things better:

$ for file in chap20 chap21 chap22 chap23 ; do
>    cp $file ${file}.bak
>    echo $file copied to $file.bak
> done
chap20 copied to chap20.bak
chap21 copied to chap21.bak
chap22 copied to chap22.bak
chap23 copied to chap23.bak

The list here comprises a series of character strings representing filenames. Each string 

(chap20 and onwards) is assigned to the variable file. Each file is then copied with a 

.bak extension followed by a completion message.

Words by default are separated by whitespace, but a quoted string comprising multiple words 
is treated as a single word by for.

 13.12.1  Sources of the List
As in case, the list can come from anywhere. It can come from variables and wild cards:

for var in $PATH $HOME $MAIL                      From variables

for file in *.htm *.html                          From all HTML files

When the list consists of wild cards, the shell interprets them as filenames. Often, the 

list is either very large, or its contents are known only at runtime. In these situations, 

command substitution is the preferred choice. You can change the list without having 

to change the script:

for file in ̀ cat clist`                           From a file

for is also used to process positional parameters that are assigned from command-line 

arguments:

for file in “$@”                                  From command-line arguments

Note that “$@” is preferred to $*. for will behave erroneously with multiword strings 

if $* is used.

Note

das76205_Ch13_359-403.indd   381das76205_Ch13_359-403.indd   381 12/13/11   5:13 PM12/13/11   5:13 PM



382 Your UNIX/Linux: The Ultimate Guide

 13.12.2  Important Applications Using for
Substitution in Files for is indispensable for making substitutions in a set of files 

with sed. Take, for instance, this loop, which works on every HTML file in the current 

directory:

for file in *.htm *.html ; do
   sed ‘s/strong/STRONG/g
   s/img src/IMG SRC/g’ $file > $$
   mv $$ $file
done

In this loop, each HTML filename is assigned to the variable file in turn. sed performs 

some substitution on each file and writes the output to a temporary file, which is written 

back to the original file with mv.

Changing Filename Extensions The basename command is mostly used in a for 

loop to change filename extensions. This loop changes the extension from txt to doc:

for file in *.txt ; do
   leftname=`basename $file .txt`     Stores left part of filename

   mv $file ${leftname}.doc
done

If for picks up seconds.txt as the first file, leftname stores seconds (without a dot). 

mv simply adds the .doc extension to the extracted string (seconds). This job can also 

be done by expr, but basename is easier to use.

 13.13  while: Looping

Apart from for, the shell also supports a while loop. This construct also uses the key-

words do and done but doesn’t work with a list. It uses a control command to determine 

the flow of execution:

while condition is true

do                             
    commands

done                             

The commands enclosed by do and done are executed repeatedly as long as condition 
remains true. As in if, you can use any UNIX command or test as the condition. Here’s 

an example that displays the ps -e output five times:

$ x=5
$ while [ $x -gt 0 ] ; do 
>   ps -e ; sleep 3 Sleeps for three seconds

>   x=`expr $x - 1`
> done

das76205_Ch13_359-403.indd   382das76205_Ch13_359-403.indd   382 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 383

And if you want to do the same thing an infinite number of times, then use ps itself as 

the control command inside an infinite loop:

$ while ps -e ; do                 Always true as ps returns true

>   sleep 3
> done

The interrupt key terminates this loop, but all loops (including for) also support the 

break statement that does the same thing. We’ll discuss the break and continue state-

ments later.

 13.13.1  Handling Redirection in a Loop
Redirection in a loop needs to be handled carefully. We’ll first do it in a rudimentary 

manner in the next script, while.sh (Fig. 13.11), and then make a small but significant 

change later. The script repeatedly prompts a user to input a telephone number and 

name, and writes out the line to addressbook. The loop iteration is controlled by the 

value of $answer.

In Fig. 13.5, we used >/dev/tty to prevent some messages from being redirected; 

this time we are going to use 1>&2. Let’s add two entries and then view the last two 

lines of addressbook:

$ while.sh
Enter telephone number and name: 9830897890 john williams
Any more entries (y/n)? y
Enter telephone number and name: 9876034581 max steiner
Any more entries (y/n)? n
$ tail -n 2 addressbook

F I G U R E  1 3 . 1 1  while.sh

#!/bin/sh
# while.sh: Shows use of the while loop
#
answer=y                        # Required to enter the loop
while [ “$answer” = “y” ] ; do     # The control command
    echo “Enter telephone number and name: \c” 1>&2
    read number name                 # Read both together
    echo “$name:$number” >> addressbook    # Append a line to addressbook
    echo “Any more entries (y/n)? \c”  1>&2
    read anymore
    case $anymore in
         y*|Y*) answer=y ;;   # Also accepts yes, YES etc.
             *) answer=n ;;   # Any other reply means n
    esac
done

das76205_Ch13_359-403.indd   383das76205_Ch13_359-403.indd   383 12/13/11   5:13 PM12/13/11   5:13 PM



384 Your UNIX/Linux: The Ultimate Guide

john williams:9830897890
max steiner:9876034581

Did redirection with 1>&2 achieve anything here? No, nothing yet, but after we make a 

small change in the script, it will. Note that appending a line to addressbook with >> 

causes addressbook to be opened and closed with every iteration. This is expensive, so 

remove redirection from there and provide it instead at the done keyword:

done >> addressbook                        addressbook opened only once

This redirects the standard output of all statements in the loop body. The messages that 

have been sent to the standard error with 1>&2 are thus unaffected. In the present case, 

only one statement is affected. The technique is also efficient because addressbook is 

opened and closed only once.

Redirection is also available at the fi and esac keywords, and includes input redirection and 
piping:

done < param.lst        Statements in loop take input from param.lst

done | while read name  while loop takes input from standard input

fi > foo                Affects statements between if and fi

esac > foo                Affects statements between case and esac

We’ll be using the second form in Section 13.13.3 where the loop takes input from a pipeline.

 13.13.2  Using while to Wait for a File
There are situations when a program needs to read a file created by another program, 

but it also has to wait until the file is created. The script, monitfile.sh (Fig. 13.12), 

Note

F I G U R E  1 3 . 1 2  monitfile.sh

#!/bin/sh
# monitfile.sh: Waits for a file to be created
#
case $# in
   2) case $2 in
      0|*[!0-9]*) echo “You must specify a nonzero waiting time”
                    exit 1 ;;
                *) while [ ! -r $1 ] ; do # while $1 can’t be read
                      sleep $2 # Sleep for $2 seconds
                    done
                    cat $1 ;; # Executed after $1 is found
      esac;; # Closes inner case
   *) echo “Usage: $0 file_to_read sleep_time” ; exit ;;
esac

das76205_Ch13_359-403.indd   384das76205_Ch13_359-403.indd   384 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 385

uses the external sleep command to periodically poll (monitor) the disk and then dis-

play the contents the moment it finds the file. The file to wait for and sleep time are 

supplied as arguments.

This script features two nested case constructs. The outer case checks whether 

two arguments have been input. If so, the inner case checks whether the second argu-

ment is greater than 0. Note that the wild-card pattern *[!0-9]* matches a string that 

contains at least one nonnumeric character.

If the usage is right, the while loop in tandem with sleep checks the current 

directory every $2 seconds as long as the file $1 can’t be read. If the file later becomes 

readable, the loop is terminated and the contents of the file are displayed. This script is 

an ideal candidate to be run in the background:

$ monitfile.sh foo 30 &
124

Now create a file foo with some data, and you’ll find the script returns after 30 seconds 

with foo’s contents on the terminal.

 13.13.3  Finding Out Users’ Space Consumption
Unlike for, the while loop itself can behave like a filter. Refer to Section 19.11.2 to 

view the output of the du -s /home/* command, which displays the disk usage sum-

mary of every user. Here are a few sample entries:

166     /home/enquiry
4054    /home/henry
647     /home/image
64308   /home/sumit

We assume that home directories are maintained in /home. We can use a while loop to 

read every line of this output and then mail root a list of users who have either exceeded a 

specified figure or the default of 4000 blocks. This means the script, du.sh (Fig. 13.13), 

either accepts no arguments or just one.

Here, the du output serves as input to the while loop. The loop’s control com-

mand reads each line into two variables, blocks and user. The test statement then 

compares the du summary figure either with 4000 (if no arguments are specified) or 

with the number specified as argument. By redirecting the loop at the done keyword, 

we ensured that a single mail message goes to root containing the entire list. We can 

run this command in two ways:

du.sh
du.sh 8000     Selects only those users who exceed 8000 blocks

Now, when the root user opens her mailbox, she’ll see a message showing the users 

who have exceeded the limit:

/home/sumit : 64308 blocks
/home/enquiry : 15567 blocks

das76205_Ch13_359-403.indd   385das76205_Ch13_359-403.indd   385 12/13/11   5:13 PM12/13/11   5:13 PM



386 Your UNIX/Linux: The Ultimate Guide

This script is useful for the system administrator who has to constantly monitor the disk 

space and identify the users who consume more space than they are supposed to. And 

what better way of running it than as a cron job using this crontab entry:

0 10,13,16,19 * * 1-5 /home/admin/scripts/du.sh    

The script is executed on working days every three hours between 10 a.m. and 7 p.m.

 13.13.4  break and continue
Sometimes, you’ll find it difficult to specify when a loop must terminate. You may also 

need to make a premature iteration from any point in the loop body. All loops support 

the break and continue keywords that perform these tasks—often in an infinite loop. 

We implemented one using the ps command (13.13), but often we don’t need a com-

mand to run repeatedly. We can then use one of these:

while true                            The true command returns 0

while :                               : also returns a true value

true and : do nothing except return a true exit status. Another command named false 

returns a false value. The while construct developed in Fig. 13.12 can now be reframed 

as an infinite loop:

while true ; do
    [ -r $1 ] && break
    sleep $2             # Sleep for $2 seconds
done
cat $1                  # Executed after $1 is found

F I G U R E  1 3 . 1 3  du.sh

#!/bin/sh
# du.sh -- Program to monitor free space on disk
#
case $# in
      0) size=4000 ;;                     # Default size without user input
      1) size=$1 ;;                       # Specified on invocation
      *) echo “Usage: $0 [blocks]” ; exit ;;
esac
  
du -s /home/* |                           # Pipe the output to the while loop
while read blocks user ; do
   [ $blocks -gt $size ] && echo “$user : $blocks blocks”
done | mailx root                                           # List goes to root

das76205_Ch13_359-403.indd   386das76205_Ch13_359-403.indd   386 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 387

The break statement causes control to break out of the loop. That’s done here when the 

file $1 is found to be readable.

The continue statement suspends execution of all statements following it and 

starts the next iteration. Both break and continue have their namesakes in C and Java 

(and in awk), but it’s only in the shell that they can be used with arguments too. A sample 

script discussed in Section 13.16 uses break 2.

The shell also offers an until statement whose control command uses a reverse logic used 
in while. With until, the loop body is executed as long as the condition remains false. Thus,  
while [ ! -r $1 ] is the same as until [ -r $1 ].

 13.14  Sample Script 2: Providing Numeric 
Extensions to Backup Files

We’ll consolidate the knowledge that we have acquired so far to develop two more sample 

scripts. Sample script 2, cpback.sh (Fig. 13.14), behaves as an enhanced and nonin-

teractive cp command. It provides a file (say, foo) with a numeric extension (say, .1) 

if it exists at the destination. A file with this extension could exist, so it increments the 

number repeatedly to finally copy the file without overwriting.

From the argument list (“$@”), we need to separate the directory name from the 

file list. The UNIX shell doesn’t have a symbol that identifies the last argument, so we’ll 

have to use our knowledge of sed to do this job. The first sed command uses a TRE to 

match zero or more occurrences of a nonspace character. The second sed matches the 

expression not matched previously to create the file list. Note that the regular expres-

sion is the same in both cases except that grouping has been done on different portions 

of the expression.

Let’s start copying to the safe directory using multiple filenames. We’ll assume 

that a file toc.pl, but not index, exists in the directory safe. We’ll run the same com-

mand line a number of times:

$ cpback.sh vvi.sh toc.pl index safe
File vvi.sh copied to vvi.sh.3
File toc.pl copied to toc.pl.1
$ cpback2.sh vvi.sh toc.pl index safe     Run again

File vvi.sh copied to vvi.sh.4
File toc.pl copied to toc.pl.2
File index copied to index.1
$ cpback2.sh vvi.sh toc.pl index safe     ... and again

File vvi.sh copied to vvi.sh.5
File toc.pl copied to toc.pl.3
File index copied to index.2

You now have a tool that will copy one or more files but won’t overwrite the destination. 

Keep it in your local bin directory and link it to a shorter name—say, cp2.

Note

das76205_Ch13_359-403.indd   387das76205_Ch13_359-403.indd   387 12/13/11   5:13 PM12/13/11   5:13 PM



388 Your UNIX/Linux: The Ultimate Guide

F I G U R E  1 3 . 1 4  cpback.sh: Script to Copy Multiple Files Without Overwriting

#!/bin/sh
# cpback.sh: Copies multiple files to a directory
# Makes backups instead of overwriting the destination files
# Copies foo to foo.1 if foo exists or foo.2 if foo.1 exists .......
#
if [ $# -lt 2 ] ; then
   echo “Usage: $0 source(s) destination” ; exit
fi
  
# Separate the directory from the argument list
dest=`echo “$@” | sed ‘s/.* \([^ ]*\)/\1/’`
  
# ... and the files from the argument list
filelist=`echo “$@” | sed ‘s/\(.*\) [^ ]*/\1/’`
  
if [ ! -d $dest ] ; then
    echo “Directory $dest doesn’t exist” ; exit 1
fi
  
for file in $filelist ; do
   if [ ! -f $file ] ; then # If file doesn’t exist
       echo “$file doesn’t exist”
       continue # Take up next file
   elif [ ! -f $dest/$file ] ; then # If file doesn’t exist
       cp $file $dest # copy it
   else # File exists at destination
         # Starting with .1 see the
       ext=1 #largest extension available
       while true ; do
           if [ ! -f $dest/$file.$ext ] ; then      # If file doesn’t exist
               cp $file $dest/$file.$ext       # with this extension
               echo “File $file copied to $file.$ext”
               break # No further iteration needed
           else
               ext=`expr $ext + 1` # File exists with this
           fi # extension, so keep trying
       done
   fi
done

das76205_Ch13_359-403.indd   388das76205_Ch13_359-403.indd   388 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 389

 13.15  Manipulating Positional Parameters with set and shift

At this stage, we have covered the essential programming constructs that will do a lot 

of work for us. But then UNIX is known for its text manipulation skills, and some of 

these skills are available in the shell as well. Many shell applications require processing 

of single-line command output:

$ date
Tue Dec  9 10:39:37 IST 2003
$ ls -l /etc/passwd
-r--r--r--   1 root     sys         9953 Nov 28 15:30 /etc/passwd
$ ps -e | grep find
1149 tty1     00:00:00 find

How about developing applications that know the day of the week, the day /etc/passwd 

was last modified, or killing the find command without knowing its PID? When discuss-

ing case, we had to use cut to extract the day of the week from the date output (13.9):

case ̀ date | cut -d” “ -f1` in

This is overkill, and this technique has limitations. We may need to extract all words from 

single-line command output without using the services of cut and awk. The shell’s set 

statement does a perfect job of this. set assigns the values of its arguments to positional 

parameters (like $1, $2, etc.) as well as $#, $*, and “$@”:

$ set 9876 2345 6213
$ echo “\$1 is $1, \$2 is $2, \$3 is $3”
$1 is 9876, $2 is 2345, $3 is 6213
$ echo “The $# arguments are “$@””
The 3 arguments are 9876 2345 6213

The arguments to set are often obtained from command substitution. This is how we 

can access every field of the date output:

$ set ̀ date`
$ echo “$@”
Wed Jan 8 09:40:35 IST 2003
$ echo “The day is $1 and the date is $2 $3, $6”
The day is Wed and the date is Jan 8, 2003

Using the set feature, the case construct simplifies to case $1 in. Though date 

didn’t create problems, there are two things we need to take care of when using set 

with command substitution:

 • The command may produce no output, and set responds by displaying its default 

output:

    $ set ̀ find $HOME -name a.out -print`     File not found

            ..... All shell variables shown .....

das76205_Ch13_359-403.indd   389das76205_Ch13_359-403.indd   389 12/13/11   5:13 PM12/13/11   5:13 PM



390 Your UNIX/Linux: The Ultimate Guide

 • The output may begin with a hyphen as in the listing, which set interprets as a 

“bad option”:

   $ set ̀ ls -l unit01`                        First character of listing

   -rw-r--r--: bad option(s)                       is a hyphen

The solution is to use set --, in which case set suppresses its normal behavior:

set -- ̀ ls -l unit01`     The first - now taken care of

set -- ̀ find $HOME -name a.out -print`     Null output is no problem

 13.15.1  Killing a Process by Name
We’ll now use set to develop a script, killbyname.sh (Fig. 13.15), that kills a pro-

cess by specifying its name rather than its PID. We use ps -u $LOGNAME to extract all 

processes run by this user, and grep matches the pattern at the end (“ $1$”). If grep 

succeeds in locating a single line, $# will be equal to four. This means that the script 

will work only if there’s a single instance of the process running.

If you have access to two terminals, run vi in one of them and invoke this script 

in the other:

killbyname.sh vi

The vi program should get killed since we used the SIGKILL signal here with kill. 

Now, run two instances of the shell and then run the script again:

$ sh
$ sh
$ killbyname.sh sh                      Run exit twice after this

Either process 1120 not running or more than one instance running”

Note that, in this script, $1 is no longer sh but the PID of the sh process (assigned by 

set). The script argument, sh, is no longer visible in the script after set is invoked. We 

ignored this important lesson: If a script uses both set and command-line arguments, 

then make sure you save the script arguments before invoking set.

F I G U R E  1 3 . 1 5  killbyname.sh

#!/bin/sh
# killbyname.sh: Kills a process by name -- but only a single instance
#
set -- `ps -u $LOGNAME | grep “ $1$”`     # $1 here is different from
if [ $# -eq 4 ] ; then
     kill -KILL $1     # the one here
else
     echo “Either process $1 not running or more than one instance running”
fi

das76205_Ch13_359-403.indd   390das76205_Ch13_359-403.indd   390 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 391

 13.15.2  shift: Shifting Positional Parameters Left
Many programs use a loop to iterate through the program’s arguments but without 

including the first argument. This argument could represent a directory, and the remaining 

could be ordinary filenames. We need “$@” here, but only after removing the first argu-

ment and renumbering the remaining arguments. This is what shift does. Each call to 

shift transfers the contents of a positional parameter to its immediate lower-numbered 

one. $2 becomes $1, $3 becomes $2, and so on:

$ set -- ̀ date`
$ echo “$@”                 Here, “$@” and $* are interchangeable

Wed Jan 8 09:48:44 IST 2003
$ shift
$ echo $1 $2 $3
Jan 8 09:48:44
$ shift 3 Three arguments lost!

$ echo $1
IST

Observe that the contents of the leftmost parameter, $1, are lost when shift is invoked. 

If $1 is important, then you must save it in a separate variable before invoking shift. 

Note that shift also works with an integer argument; shift n shifts n words to the left.

Let’s design a script, ln.sh (Fig. 13.16), that creates a number of symbolic links 

to a single target. The first argument is the target, and the remaining are the symlinks to 

be created. This means that $1 must be saved before shift is invoked.

We make sure that the target exists, save its name before invoking shift, and then 

create multiple symlinks inside a for loop. The -f option to ln ensures that existing 

destination files are removed:

$ ln.sh df.sh df1.sh df2.sh
$ ls -l df*.sh
lrwxrwxrwx    1 sumit    users 5 Dec 12 17:01 df1.sh -> df.sh
lrwxrwxrwx    1 sumit    users 5 Dec 12 17:01 df2.sh -> df.sh
-rwxr-xr-x    1 sumit    users 229 Dec 11 13:54 df.sh

You can also use this shift feature to search for multiple names in an address book, 

where the name of the address book is specified as the first argument.

F I G U R E  1 3 . 1 6  ln.sh

#!/bin/sh
# ln.sh: Creates multiple symbolic links; first argument is the target
#
original=$1 # The target
[ ! -f $original ] && { echo “$original doesn’t exist” ; exit 1 ; }
shift # Left-most argument lost
for file in $* ; do
    ln -sf $original $file
done

das76205_Ch13_359-403.indd   391das76205_Ch13_359-403.indd   391 12/13/11   5:13 PM12/13/11   5:13 PM



392 Your UNIX/Linux: The Ultimate Guide

 13.15.3  The IFS Variable: set’s Default Delimiter
The shell’s IFS variable contains a string whose characters are used as word separators 

in the command line. The string normally comprises the whitespace characters. We need 

od -bc to view them:

$ echo “$IFS” | od -bc
0000000 040 011 012 012           Space, tab and newline constitute IFS

               \t  \n  \n
0000004

set uses IFS to determine its delimiter. We normally ignore IFS, but if a line needs to 

be parsed on a different delimiter, then IFS must be temporarily set to that delimiter. 

Consider this line of /etc/passwd:

henry:x:501:100:henry blofeld:/home/henry:/bin/ksh

You can extract the sixth field by changing the value of IFS before using set:

$ IFS=:
$ set -- ̀ grep “^henry” /etc/passwd`
$ echo $6
/home/henry

Positional parameters can lose their values in two ways. First, set reassigns them in scripts used 
with command-line arguments. Second, every time you use shift, the leftmost variable gets lost. 
So, save all arguments and parameters in separate variables before invoking set and shift. If 
you have to start iteration from the fourth parameter, save the first three before you use shift 3.

 13.16  Sample Script 3: A Table of Contents 
for Downloaded Files

Time now for our final sample script, and this one, toc_download.sh (Fig. 13.17), will 

benefit those who frequently download files from the Internet. Files are often downloaded 

at a faster pace than they are used, and it doesn’t take long to forget the significance of 

the filename. The script looks in a certain directory to locate those filenames that are 

missing in the table of contents (TOC). After the description for the file is input, the 

TOC is updated with a new entry in the form filename: description.

This time, our script file will make use of a configuration file, download_TOC
.conf. This file contains two variable assignments. Exporting the variables makes them 

available to all scripts that are run from the main script:

$ cat download_TOC.conf
# download_TOC.conf:, Configuration file for download_TOC.sh
#
DOWNLOAD_DIR=$HOME/download
DOWNLOAD_TOC=$DOWNLOAD_DIR/TOC_download.txt
export DOWNLOAD_DIR DOWNLOAD_TOC

Note

das76205_Ch13_359-403.indd   392das76205_Ch13_359-403.indd   392 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 393

F I G U R E  1 3 . 1 7  toc_download.sh

#!/bin/sh
# toc_download.sh: Script to create a table of contents for files
# Prompts user for description for filename not found in TOC
#
. ./download_TOC.conf
count=0 ; kount=0
cd $DOWNLOAD_DIR || { “Failed to cwd” ; exit ; }
for file in * ; do
    if ! grep “^${file}: “ $DOWNLOAD_TOC >/dev/null ; then
          count=`expr $count + 1`
    fi
done
case $count in
   0) echo “All entries documented; nothing to do” ; exit ;;
   *) echo “$count entries need to be documented\n”
esac  
for file in * ; do
    if ! grep “^${file}: “ $DOWNLOAD_TOC >/dev/null ; then
         echo “Downloaded filename: $file”  1>&2
         echo “Description for $file: \c”  1>&2
         read description
         if [ -n “$description” ] ; then
           echo “$file: $description”   # No redirection here
           kount=`expr $kount + 1`      # Use let kount++ for ksh and bash
           [ $kount -eq $count ] && break
         fi
    else # Filename already in TOC
        continue # so take up next file
    fi
    while echo “Move on to next filename ?(y/n): \c” 1>&2; do
         read answer
         case $answer in
             y|Y) break ;; # continue 2 would also be OK
               *) break 2 ;; # Moves to sort statement
        esac
    done
done >> $DOWNLOAD_TOC               # Only one echo statement goes to file
[ $kount -gt 0 ] && sort -o $DOWNLOAD_TOC $DOWNLOAD_TOC

das76205_Ch13_359-403.indd   393das76205_Ch13_359-403.indd   393 12/13/11   5:13 PM12/13/11   5:13 PM



394 Your UNIX/Linux: The Ultimate Guide

G
O

IN
G

 F
U

R
T

H
E
R

We first execute (source) the configuration file with the dot command to make the two 

variables available to the script. Next, we switch to the directory containing downloaded 

files and check whether every file has an entry in the TOC. We also make a count (in 

the variable count) of the nondocumented entries. If all entries are documented, then 

the script has nothing to do but quit.

More often than not, some filenames won’t be documented. The script scans the 

file list again and prompts the user for the description of an undocumented filename. A 

separate variable (kount) keeps track of the number of entries that we keep adding, and 

we quit the program when kount = count. See how continue aborts further processing 

and repeats the exercise for the next file.

If there are too many entries left to document, the user could take a break. Note 

that break 2 breaks the enclosing loop and executes the last statement in the script, 

which always maintains the TOC in sorted condition.

Now set up the directory stored in DOWNLOAD_DIR, place some downloaded files 

there, and execute the script. The brief session adds only one entry:

$ toc_download.sh 
8 entries need to be documented
Downloaded filename: foo2zjs.tar.gz
Description for foo2zjs.tar.gz: [Enter]        Ignored, can enter later

Move on to next filename ?(y/n): y
Downloaded filename: realplayer8.exe
Description for realplayer8.exe: Real Player Version 8 for Windows
Move on to next filename ?(y/n): n

The session tells us that we have eight entries to document. We ignored one filename, 

and the one we documented added the following line to TOC_download.txt:

realplayer8.exe: Real Player Version 8 for Windows

This completes our discussions on the essential features of shell programming. You have 

seen for yourself the remarkable power of this language. If you are fairly proficient in 

shell scripting already, then you can move on to the Going Further section that follows. 

Korn and Bash users may switch to Appendix B if they don’t want to use expr and 

basename in their scripts.

 ➤ G O I N G  F U R T H E R
Due to space constraints, the advanced features  of the shell are discussed briefly. You 

can look on this book’s Web site for a detailed examination of all of these topics and 

many others, supported by useful examples.

 13.17  The Here Document (<<)

The here document is the fourth source of standard input, and it finds place here because 

it’s often used in a shell script to make a command take input from the script itself. This 

mechanism is very convenient to use with commands that take no filename as argument. 

das76205_Ch13_359-403.indd   394das76205_Ch13_359-403.indd   394 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 395

G
O

IN
G

 FU
R

T
H

E
R

mailx is one of them, so if the system administrator can store in a variable the message 

sent by the program in Fig. 13.13:

message=”/home/enquiry : 15567 blocks”

she can use a here document to send out mail to the offending user:

$ set -- “$message”
$ user=`basename $1` ; blocks=$3                $2 is :

$ mailx $user << MARK
> You have consumed $blocks blocks      Variable evaluation too

> and exceeded your quota on `date`.      Command substitution permitted

> MARK                                    No spaces permitted here

The here document symbol (<<) is followed by a delimiter string (MARK), some text, and 

the same delimiter string. mailx takes as its input all data between the delimiters. When 

this sequence is placed inside a script, execution is faster because mailx doesn’t have 

to read an external file; it’s here.

The here document is useful in running interactive programs noninteractively, especially in 
those situations where your response is the same. For instance, the interactive script emp1.sh 
(13.2) can also be run like this:

$ emp1.sh << END
> director
> shortlist
> END
Enter the pattern to be searched: Enter the file to be used: Searching for director
from file shortlist
9876:bill johnson    :director :production:03/12/50:130000
2365:john woodcock   :director :personnel :05/11/47:120000
Selected records shown above

This feature applies in general to all scripts that use the read statement to take input.

 13.18  Shell Functions

A shell function executes a group of statements enclosed within curly braces. It option-

ally returns a value with the return statement. Unlike in C, a function definition uses 

a null argument list, but requires ():

function_name() {
    statements

    return value                          Optional

}

Tip

das76205_Ch13_359-403.indd   395das76205_Ch13_359-403.indd   395 12/13/11   5:13 PM12/13/11   5:13 PM



396 Your UNIX/Linux: The Ultimate Guide

G
O

IN
G

 F
U

R
T

H
E
R

The function is invoked by its name (without the parentheses), optionally followed 

by its arguments. The value returned is numeric and represents the success or failure 

of the function. This is how you convert the sequence ls -l filenames | less to a 

function:

$ ll() {                    Function defined in the command line

> ls -l $* | less           is available in current shell only

> }

and then run it with or without arguments:

ll                                      () can’t be used

ll *.c *.java

Shell functions are better than aliases in every way. Like shell scripts, a shell function 

supports all positional parameters (including $#, “$@”, etc.). It can also return an exit 

status with the return statement. The following function can be gainfully used inside 

a loop to determine whether the user wants to continue or not:

$ anymore() {
>   echo “$1 ?(y/n) : \c” 1>&2           Prompt supplied as argument

>   read response
>   case “$response” in
>     y|Y) echo  1>&2 ; return 0 ;;
>       *) return 1 ;;
>   esac
> }

You can now invoke this function with a prompt string as argument and then use the 

return value to determine the subsequent course of action:

$ anymore “Wish to continue” || echo “You said no”
Wish to continue ?(y/n) : n
You said no

How does one return a string value? Just use a command that writes to the standard 

output (like echo) and save this output in a variable using command substitution. This 

function “returns” a string derived from today’s date:

$ dated_fname() {
>  set -- ̀ date`
>  year=`expr $6 : ‘..\(..\)’`         Last two characters from year

>  echo “$2$3_$year”
> }
$ fstring=`dated_fname`
$ echo $fstring
Jan28_03

das76205_Ch13_359-403.indd   396das76205_Ch13_359-403.indd   396 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 397

G
O

IN
G

 FU
R

T
H

E
R

Apart from the command prompt, shell functions can be defined at a number of places:

 • At the beginning of the script using them or at least preceding the function call. 

This is because shell statements are executed in the interpretive mode.

 • In the profile so they are available in the current shell. Korn and Bash users should 

place the definitions in the rc file.

 • In a separate “library” file. Every script using these functions needs to source the 

file at the beginning with the dot command.

The positional parameters made available to shell scripts externally are not available directly 
to a shell function. To make them available, store these parameters in shell variables first and 
then invoke the function with these variables as arguments.

 13.19  trap: How a Script Handles Signals

Shell scripts terminate when the interrupt key is pressed unless you use the trap state-

ment to specify a different action. trap is a signal handler, and it is normally placed at 

the beginning of a script. trap uses two lists:

trap ‘command_list’ signal_list

When a script is sent any of the signals in signal_list, trap executes the commands in 

command_list. The signal list can contain the integer values or names (without the SIG 

prefix) of one or more signals—the ones you use with the kill command. So instead 

of using 2 15 to represent the signal list, you can also use INT TERM (the recommended 

approach).

If you habitually create temporary files named after the PID number of the shell, 

you should use the services of trap to remove them on receipt of signals:

trap ‘rm $$* ; echo “Program interrupted” ; exit’ HUP INT TERM

When signals SIGHUP (1), SIGINT (2), or SIGTERM (15) are sent to the shell process 

running the script, files expanded from $$* are deleted, a message is displayed, and the 

process is terminated. 

You may also ignore the signal and continue processing using a null command list:

trap ‘’ 1 2 15                    Can’t be killed by normal means

The script will not be affected by three signals because no action is specified. This 

statement is often placed before a critical code section and overridden by another trap 

statement that occurs after the critical section. You can use multiple trap commands in 

a script; each one overrides the previous one.

Korn and Bourne don’t execute a file on logging out, but using trap, you can make them do 
that. Use the signal name EXIT (or 0) as a component of the signal list. These shells also use 
the statement trap - to reset the signal handling action to their default values.

Tip

Tip

das76205_Ch13_359-403.indd   397das76205_Ch13_359-403.indd   397 12/13/11   5:13 PM12/13/11   5:13 PM



398 Your UNIX/Linux: The Ultimate Guide

G
O

IN
G

 F
U

R
T

H
E
R

 13.20  eval: Evaluating Twice

Have you ever tried setting a variable to a pipeline and then executing it? Try 

running this:

cmd=”ls | more”
$cmd                            | and more are arguments to ls!

This doesn’t produce paged output as you might expect. Now, define a “numbered 

prompt” and try to evaluate it:

$ prompt1=”User Name:” ; x=1
$ echo $prompt$x                       $prompt is undefined

1

In the first case, ls treats | and more as two arguments and produces unpredictable 

output. In the second example, the shell first evaluates $prompt; it is undefined. It then 

evaluates $x, which has the value 1. To make these command sequences run properly, 

we need to use the eval statement to evaluate a command line twice.

eval suppresses some evaluation in the first pass and performs it only in the second 

pass. We can make the first sequence work by using eval like this:

eval $cmd

In its first pass, eval locates three arguments—ls, |, and more. It then reevaluates the 

command line and splits them on the | into two commands. The command should now 

run properly.

The second sequence can be made to work by hiding the first $ with a \, and then 

using eval:

$ x=1 ; eval echo \$prompt$x
User Name:

The first pass ignores the escaped $; this evaluation results in \$prompt1. The second 

pass ignores the \ and evaluates $prompt1 as a variable.

We used $NF to access the last field in awk (12.10), but can we do the same thing 

using eval? Since we have the value of $# available, we can:

$ tail -n 1 /etc/passwd
martha:x:605:100:martha mitchell:/home/martha:/bin/ksh
$ IFS=:
$ set ̀ tail -n 1 /etc/passwd`              set -- not required here

$ eval echo \$$#
/bin/ksh

This method is more efficient than using awk because eval is a shell builtin.

das76205_Ch13_359-403.indd   398das76205_Ch13_359-403.indd   398 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 399

G
O

IN
G

 FU
R

T
H

E
R

 13.21  The exec Statement

Your study of the mechanism of process creation (7.5) led you to the exec family of 

system calls. This feature has some importance to shell scripters who sometimes need 

to replace the current shell with another program. If you precede any UNIX command 

with exec, the current process is overlaid with the code, data, and stack of the command. 

You are obviously logged out:

$ exec date
Tue Jan 28 21:21:52 IST 2003                     Shell no longer exists!

login:

Sometimes, you may want to let a user run a single program automatically on logging 

in and deny her an escape to the shell. You can place the command in the profile, duly 

preceded by exec. When command execution is complete, the user is logged out (since 

there’s no shell waiting for it).

exec can also be used to generate file descriptors. For details, look on the Web 

site for this textbook.

S U M M A R Y

Shell scripts are executed in the interpretive mode—one line at a time. The she-bang 
line signifies the sub-shell that runs the script.

The read statement is used with one or more variables to provide input to a script 

from the keyboard. Command-line arguments passed to a script are read into positional 
parameters (like $1, $2, etc.). $# stores the number of arguments. Both $* and “$@” contain 

all arguments, but the use of “$@” is preferred. $0 contains the name of the script itself.

The exit statement terminates a script. Its argument is available in $?, which 

signifies success or failure. Zero denotes success.

The && and || operators are used as simple conditionals. The if statement (closed 

with fi) uses the exit status of a command (the control command) to determine control 

flow. It is often used with test or its synonym [ ] to compare numbers and strings, 

and to check file attributes.

Redirection with >/dev/tty protects those statements whose output must be 

written to the terminal. Alternatively, 1>&2 can be used to direct the standard output to 

the standard error.

case (closed with esac) is a compact string matching construct. It accepts the 

shell’s wild cards for matching patterns, and  it can also match multiple patterns of the 

type used in extended regular expressions (ERE). The * is often used as the last option.

expr can perform basic integer computing and limited string handling—like re-

turning the length of a string or a substring. basename is suitable for extracting the base 

filename or for returning a string after dropping the extension.

All loops use the keywords do and done. The for loop iterates through a list that 

can be obtained from a variety of sources, including command substitution. A while loop 

is used for repeatedly executing a group of commands. Both constructs use continue 

and break to control loop iteration.

das76205_Ch13_359-403.indd   399das76205_Ch13_359-403.indd   399 12/13/11   5:13 PM12/13/11   5:13 PM



400 Your UNIX/Linux: The Ultimate Guide

Redirection at the done keyword opens and closes a file only once. When used in 

that way, prompts and “error” messages inside the construct must be separately directed 

with >/dev/tty or 1>&2.

set places values into positional parameters. set -- is recommended for use 

with command substitution. shift renumbers these parameters by moving $2 to $1, 

and so on. Because the parameters used by set and shift conflict with command-line 

arguments, the latter should be saved before set and shift are invoked.

S E L F - T E S T

13.1  If x has the value 10, what is the value of (i) x$x$ (ii) $x$x?

13.2  Mention two ways you can run a script developed for the Korn shell (/usr/bin/ksh) 

even if your login shell is different.

13.3  A program stopped running when its name was changed. Why?

13.4  What is the exit status of a command, and where is it stored?

13.5  Search for a pattern with grep and sed and look for a file with find. Test the 

return value of each command when it displays no output. What conclusions do 

you draw?

13.6  Write a script that makes rm behave interactively whenever it is used with more 

than three filenames.

13.7  A script named test containing the date and stty commands displays nothing 

when executed. Why does that happen? State two ways of making the script 

behave properly.

13.8  Write script logic that allows only romeo and henry to execute a program, and 

only from the terminals tty05 and tty06.

13.9  Name the external UNIX commands that were introduced in this chapter, and 

explain why they had to be discussed here.

13.10 Explain what is wrong with this statement and correct it: 

 [ $# -ne 2 ] && echo “Usage: $0 min_guid max_guid” ; exit 

13.11  Write a script that displays, in head-style, the last three lines of each file in the 

current directory, duly preceded by the filename.

13.12  Write a script that prompts for a string and then checks whether it has at least 

10 characters using (i) case, (ii) expr.

13.13  Use expr to extract the parent directory from an absolute pathname stored in the 

variable x.

13.14  Write a script that accepts a compressed filename as argument (which could be 

.gz, .bz2 or .zip). It looks at the extension and decompresses the file using the 

correct decompression program, but only if the decompressed file (or one with 

the same name) doesn’t exist.

13.15  Devise a script that accepts two directory names, bar1 and bar2, and deletes 

those files in bar2 which are identical to their namesakes in bar1.

13.16  Specify how the script comc.sh (13.11) needs to be modified so that it also ac-

cepts a .c filename as argument. In that case, the script should work on that file.

13.17  Explain whether these while  loops will run: (i) while [ 5 ] , 

(ii) while [ x”$1” != x ].

das76205_Ch13_359-403.indd   400das76205_Ch13_359-403.indd   400 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 401

13.18  Display the processes in the system every 30 seconds five times using a (i) while 

loop, (ii) for loop. What is the unusual feature of the for loop that you used?

13.19  Write a script that accepts filenames as arguments. For every filename, it should 

first check whether it exists in the current directory and then convert its name to 

uppercase, but only if a file with the new name doesn’t exist.

13.20  Write a script to find the total size of all ordinary files owned by a user (which 

could be anywhere in the system) whose name is specified as argument. First 

check whether the user is available in /etc/passwd.

13.21  Write a script that looks in the entire file system to locate a filename supplied 

as argument. If the file is found, the script should display its absolute pathname 

and last modification time without saving any data in files.

13.22  If the command set `cat foo` generates the error unknown option, what 

could be the reason, assuming that foo is a small readable file?

13.23  If a script uses 12 arguments, how will you access the last one?

13.24  Devise a script that looks at every component of PATH and checks whether the 

directory exists and is also accessible.

E X E R C I S E S

13.1 When the script foo -l -t bar[1-3] runs, what values do $# and $* acquire? 

Does it make any difference if the options are combined?

13.2  Use a script to take two numbers as arguments and output their sum using (i) bc, 

(ii) expr. Include error checking to test whether two arguments were entered. 

Should you use bc or expr for computation? 

13.3  If x has the value 5, and you reassign it with x=”expr $x + 10”, what is the 

new value of x? What would have been the value if single quotes had been used? 

What’s wrong with all of this anyway?

13.4  There are at least six syntactical mistakes in this program. Locate them. (Line 

numbers are shown on left.)

1   ppprunning = yes
2   while $ppprunning = yes ; do
3      echo “   INTERNET MENU\n
4      1. Dial out
5      2. Exit
6      Choice:
7      read choice
8      case choice in
9        1) if [ -z “$ppprunning” ]
10              echo “Enter your username and password”
11          else
12              chat.sh
13          endif ;
14       *) ppprunning=no
15     endcase
16   done

das76205_Ch13_359-403.indd   401das76205_Ch13_359-403.indd   401 12/13/11   5:13 PM12/13/11   5:13 PM



402 Your UNIX/Linux: The Ultimate Guide

13.5  You have a number of C programs that contain comment lines at the beginning 

of each program. The lines begin with /* followed by the first line of comment, 

but the terminator line has */ as the only characters in the line. Remove these 

comments from all files.

13.6  Write a script that accepts a pattern and filename as arguments and then counts the 

number of occurrences of the pattern in the file. (A pattern may occur more than 

once in a line and comprise only alphanumeric characters and the underscore.)

13.7  Write a script that doesn’t permit some users to log in more than once. It looks 

up a configuration file that contains a list of those users, one user per line. Where 

should you place the script code?

13.8  Observe this command; does it make any sense? set `set`
13.9  You have to run a job at night and need to have both the output and error mes-

sages in the same file. How will you run the script?

13.10  Write a script that behaves in both interactive and noninteractive mode. When 

no arguments are supplied, it picks up each C program from the current direc-

tory and lists the first 10 lines. It then prompts for deletion of the file. If the user 

supplies arguments with the script, it works on those files only.

13.11  Write a script that looks up every .c file in the current directory for the 

strings printf or fprintf. If the string is found, the script adds the statement 

#include <stdio.h> at the beginning of the file but only if it doesn’t already 

have it included.

13.12  Write a script that monitors the creation of .pdf or .PDF files in the current 

directory. Every minute it should display a list of those filenames created after 

the previous display.

13.13  Write a script that takes a filename as argument and then compresses and decom-

presses the file with each of the programs compress, gzip, bzip2, and zip. At 

each stage, it notes the size of the file before and after compression. Finally, it 

displays a list showing the compression program, uncompressed size, compressed 

size, and compression ratio (up to one decimal place). The list should be ordered 

by the compression achieved, with figures for the most efficient compression 

featured at the top.

13.14  Devise a script that allows a user to view, add, delete, or modify a setting in a 

configuration file that contains settings in the form variable=value.

13.15  Write a script that compares two directories bar1 and bar2 (supplied as argu-

ments) and copies or overwrites to bar1 from bar2 every file that is (i) not present 

in bar1, (ii) newer than its namesake in bar1. (Hint: Use the find command.)

13.16  Modify the preceding script to copy the files to a new directory. All three direc-

tory names are specified as arguments, and the new directory must not exist.

13.17  Write a script that accepts a filename as argument and then searches /bin and 

/usr/bin to determine its link count. If the file exists and has multiple links, 

then the script should display the absolute pathnames of all links.

13.18  Write a script that accepts a 10-digit number as argument and writes it to the stan-

dard output in the form nnn-nnn-nnnn. Perform validation checks to ensure that

 (i)    a single argument is entered.

 (ii)   the number can’t begin with 0.

 (iii)  the number comprises 10 digits.

das76205_Ch13_359-403.indd   402das76205_Ch13_359-403.indd   402 12/13/11   5:13 PM12/13/11   5:13 PM



Chapter 13: Shell Programming 403

 Ensure that all other messages are written to the standard error. You’ll need to 

use this script in Exercise 13.24.

13.19  Write a script that checks each minute and reports on who logs in and who logs 

out.

13.20  Write a script that displays a special formatted listing showing the (i) permis-

sions, (ii) size, (iii) filename, (iv) last modification time, and (v) last access time 

of filenames supplied as arguments. Provide suitable headers using the printf 

command.

13.21  Find out the pathname of the Korn shell on your machine and then change the 

interpreter line in all shell scripts (.sh) in the current directory that show a dif-

ferent pathname for ksh.

13.22  Devise a script that takes a filename as argument (which must exist in the cur-

rent directory) and looks in the home directory tree to display the listing of all 

its links. The listing should also be mailed to self.

13.23  Call up vi from a script so that every three minutes you hear a beep and see a 

message in the last line. This message appears in reverse video and reminds you 

to save the buffer. (Hint: Look up the man page of tput to know how to position 

the cursor. Set up a loop in the background and kill it when vi terminates.)

13.24  A telephone directory, teledir.txt, maintains records in the form name: number 
where number is of the form nnn-nnn-nnnn. Devise a shell script that accepts 

one or two arguments that could be:

 (i)    the name or number. If it exists in the directory, then the line should be 

displayed.

 (ii)   both. The entry is displayed if it exists and is added if it doesn’t exist in the 

file.

 Note that the number will always be entered as a 10-digit string, so you’ll have 

to use the script developed in Exercise 13.18 to perform both conversion and 

validation.

das76205_Ch13_359-403.indd   403das76205_Ch13_359-403.indd   403 12/13/11   5:13 PM12/13/11   5:13 PM



404

14 
C H A P T E R  14 

perl—The Master
 Manipulator

Perl is one of the later acquisitions of UNIX, and one of its finest. Developed 

by Larry Wall, this Practical Extraction and Report Language is often hailed 

as the “Swiss Army Officer’s Knife” of the UNIX system. In perl, Wall invented a 

catchall tool that does several things well. perl is standard on Linux and is also offered 

on many other UNIX systems. However, it is free, and executables are available for all 

UNIX and Windows flavors (http://www.perl.com).

perl is both a scripting language and the mother of all filters. It combines the power 

of C, the UNIX shell, and its power filters—grep, tr, sed, and awk. It has all the control 

structures and regular expressions that you could find anywhere. It is exceedingly cryptic, 

even by UNIX standards, and can solve text manipulation problems with very compact 

code. In spite of offering so much, perl is faster than the shell and awk (but not C).

  Objectives
 • Gain an overview of a sample perl program.

 • Understand how perl treats variables and constants and changes their type when 

required.

 • Learn how to use the concatenation and repetition operators (. and x).

 • Read files both in the command line and inside a script from command-line arguments.

 • Understand the significance of the default variable, $_, and how its presence can be 

felt everywhere.

 • Use lists and scalar arrays, and the functions to manipulate them.

 • Use the foreach loop for working with a list.

 • Split and join a line with split and join.

 • Handle associative arrays with a nonnumeric subscript.

 • Examine perl’s enlarged regular expression set, which uses special escape sequences.

 • Filter data with the s and tr commands.

 • Use filehandles to access a file or stream.

 • Test the file attributes.

 • Develop subroutines for repeated use.

 • Gain an overview of CGI and how perl is suitable for the task. (Going Further)

das76205_Ch14_404-439.indd   404das76205_Ch14_404-439.indd   404 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  405

 14.1 perl Preliminaries

A perl script or program runs in a special interpretive mode: the entire script is compiled 

internally in memory before it is executed. Unlike other interpreted languages like the 

shell and awk, script errors are generated before execution. With this simple one-liner, 

you can test whether perl is in your PATH:

$ perl -e ‘print(“GNUs Not Unix\n”) ;’
GNUs Not Unix

perl doesn’t behave like a filter here in printing the GNU acronym, but more like awk’s 

BEGIN section. perl -e can do a lot of useful things from the command line. However, 

perl programs are often big and are better placed in .pl or .cgi files.

Our first perl program, sample.pl (Fig. 14.1), uses the she-bang line, this time 

pointing to the perl command. perl uses the # as the comment character exactly like 

awk and the shell. There are three variables used in the script (like $name) and three 

numerical operators (+, *, and /). perl mimics awk by supporting the print and printf 

functions, and C by terminating all statements with a semicolon. Also, numeric computa-

tion in perl is virtually identical to that used in awk (Tables 12.1 and 12.2).

perl variables are examined later, but for now keep in mind that perl uses 

the $ prefix both in the definition ($name = <STDIN>) and in the evaluation 

(The temperature, $name .....). perl uses   <STDIN> as a filehandle (a logical 

name for a file) to represent standard input. Note that the printf function doesn’t 

use parentheses here. perl is generally indifferent to their use, but we’ll use them 

as much as we can.

Use chmod to make the script executable and then run it like a shell script. Enter 

a lot of spaces before keying in the actual input:

$ chmod +x sample.pl ; sample.pl
Your name:            stallman
Temperature in Centigrade:      40.5
Temperature            stallman in Fahrenheit: 104.900000

#!/usr/bin/perl
# Script: sample.pl - Shows use of variables
print(“Your name: “) ;
$name = <STDIN> ;                              # Input from keyboard
chomp($name) ;                                 # Removes trailing \n
print(“Temperature in Centigrade: “) ;
$centigrade=<STDIN> ;                         # Whitespace unimportant
$fahrenheit= $centigrade*9/5 + 32 ;         # Here too
printf “Temperature %s in Fahrenheit: %f\n”, $name, $fahrenheit ;

F I G U R E  1 4 . 1  sample.pl

das76205_Ch14_404-439.indd   405das76205_Ch14_404-439.indd   405 12/13/11   10:48 AM12/13/11   10:48 AM



406 Your UNIX/Linux: The Ultimate Guide

If you don’t provide the she-bang line, you need to use perl sample.pl to run the 

script. Like awk, perl identifies data types intuitively. Observe that it saves the spaces 

before stallman (a string), but not those before 40.5 (a number).

Why did we use chomp? Because $name evaluates to stallman\n; it includes the 

trailing newline (generated by [Enter]). chomp removes the trailing \n, and if you com-

ment the statement, then you’ll see the printf output in two lines:

Temperature        stallman
in Fahrenheit: 104.900000

perl provides detailed and extensive documentation, which is accessed with the perldoc 

command (use perldoc -h for help). The newsgroup comp.lang.perl discusses problems 

related to perl and also posts its FAQ.

You can run your perl and shell scripts from within the vi editor. The technique of doing this 
is detailed in the Tip of Section 13.1.1.

 14.2 Variables and Constants

Variables are considered declared when they are first used. perl uses the $ prefix to 

identify variables both in assignment and evaluation ($x = 1 ; print $x ;). The $ 

prefix is also used by perl with a variable that represents an array element.

Variables and literals have no intrinsic type. perl understands ‘foo’, “foo”, and 

“123” as strings, and 123 and 0.0 as numeric. It makes the necessary conversions when 

handling expressions that use a mix of string and numeric data types. For instance, it 

converts the string “123” to a number when adding it to 1 to return 124. Similarly, it 

converts 1 to a string when concatenating it with a string “www” to return “www1”.

Uninitialized variables are assumed to be a null string when treated as a string 

and zero when treated as a number. Incrementing an uninitialized variable returns 1:

$ perl -e ‘$x++ ; print(“$x\n”);’
1

perl is indeed unusual: it can perform computation on any string containing only letters 

and numbers. Note that perl is intelligent enough to guess your true intentions:

$x = “A” ;  $x++ ; $x is B

$y = “P1” ; $y++ ; $y becomes P2!

$z = “Q09” ; $z++ ; $z becomes Q10!

Like the shell but unlike awk, perl supports both unquoted, single-, and double-quoted 

strings. Unquoted strings can’t contain a special character. Every character in a single-

quoted string is treated literally (including the newline); this lets us protect spaces and 

the \. Double quotes allow the inclusion of escape sequences (Tables 2.2 and 14.1) and 

variables. Characters like the @ and $ need to be escaped to be treated literally:

$name1 = jobs ; No quotes, OK

$name2 = “wall\t$name1\n” ; wall, a tab, jobs and newline

Tip

das76205_Ch14_404-439.indd   406das76205_Ch14_404-439.indd   406 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  407

$name3 = “larry\@heavens.com” ; Without \, @ interpreted as an array

$name4 = ‘\t\t’ ; \t\t ; treated literally

Apart from the standard escape sequences, perl also supports the \U and \u characters in 

double-quoted strings. They convert to uppercase the entire string and the first character, 

respectively. The escape sequence \E marks the end of the affected area. Though they are 

not necessary here, you’ll need to use them when you convert only portions of a string:

$name = “steve jobs” ;
$result = “\U$name\E” ; $result is STEVE JOBS

$result = “\u$name\E” ; $result is Steve jobs

The \L and \l sequences convert strings to lowercase in the same way. perl also sup-

ports some functions that can perform case conversion. They are presented later.

Like the shell, perl can also assign a variable using command substitution. Shell 

programmers must note that you can’t use this feature in double-quoted strings. Also, 

you can’t use the shell’s internal commands:

$todays_date = ̀ date` ; External commands only

$cwd = ̀ pwd` ; Works because pwd is also an external command

perl expressions have true and false values. 1 represents a true value and 0 a false value. 

Any expression that evaluates to 0, a null string, or an undefined value is false in perl.

 14.2.1 Using a Pragma
While the facility to use undefined and uninitialized variables makes perl very conve-

nient to use, such variables could get in the way of writing large programs. By default, 

perl variables are global, and they conflict with variables of the same name used in its 

subroutines (functions). perl can be directed to look for undeclared variables with a 

pragma that is placed after the she-bang line:

#!/usr/bin/perl
use strict; A pragma

T A B L E  1 4 . 1  Special Escape Sequences Used in Double-Quoted Strings (See also 
Table 2.2)

Escape Sequence Significance

\u Converts next character to uppercase
\U Converts all subsequent characters to uppercase or until \E 

is encountered
\l Converts next character to lowercase
\L Converts all subsequent characters to lowercase or until \E 

is encountered
\E Terminates action of \U and \L

das76205_Ch14_404-439.indd   407das76205_Ch14_404-439.indd   407 12/13/11   10:48 AM12/13/11   10:48 AM



408 Your UNIX/Linux: The Ultimate Guide

#my $name;
print(“Enter filename: “);
chomp($name = <STDIN>);

A pragma is a directive that perl needs to be aware of before it compiles and executes 

a program. The pragma use strict; enforces strictness during compilation by looking 

for undeclared variables. If you execute the preceding code with one line commented, 

perldisplays an error:

Global symbol “$name” requires explicit package name at ./foo line 5.
Execution of ./foo aborted due to compilation errors.

This pragma requires $name to be declared before it is used. The my function declares 

a local variable, often in a perl subroutine. Though we’ll not use this pragma in this 

chapter, you need to do so if you decide to declare variables as a matter of principle.

 14.3 Operators

Like all languages, the +, -, *, /, and % operators are used by perl for computation, 

except that perl uses ** for exponentiation (2**10 = 1024). Apart from the comparison 

and logical operators, perl has two special operators for concatenation and repetition. 

A brief discussion of these operators follows next.

 14.3.1 The Comparison and Logical Operators
Unlike awk, perl uses two different sets of operators for comparing numbers and strings 

(Table 14.2). The type-neutral comparison operators supported by awk (Table 12.3) are 

used by perl for numeric comparison only:

if ($x*512 > 65536)

T A B L E  1 4 . 2  The Comparison and Concatenation Operators

Numeric String Regular Expression Significance

< lt Less than
<= le Less than or equal
== eq =~ Equal or matches
>= ge Greater than or equal
> gt Greater than
!= ne !~ Not equal or doesn’t match
<==> cmp Returns three values; -1 if left operand is 

less than right operand, 0 if equal and 1 

otherwise.
. Concatenates left and right operands.
x Repeats a string

das76205_Ch14_404-439.indd   408das76205_Ch14_404-439.indd   408 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  409

Shell programmers need to note that for comparing strings, perl uses operators similar 

to those used by the shell to compare numbers. perl uses eq rather than -eq to compare 

two strings:

if ($name eq “”) checking $name for an empty string

When making a string comparison, perl compares the ASCII value of each character 

starting from the left. Thus, “2” is greater than “10” when compared as strings. perl 

needs to know whether you intend to do a string or a numeric comparison.

Don’t use == to compare two strings; use eq instead. The == operator compares two numbers 
only for equality.

For matching strings anywhere in a line, perl uses the sed and awk technique of enclos-

ing the pattern within /s. Regular expressions are enclosed similarly, but perl uses the 

=~ and !~ operators for matching them:

if ($line =~ /^root/) Matches root at beginning of $line

if ($line !~ /^root/) Doesn’t match root at beginning of $line

All comparisons return 1 if true and 0 otherwise. perl can also set the return value of 

a comparison to a variable so you can use it later:

$x = $y = 5 ;
$z = $x == $y ; $z contains result of comparison

printf(“%d %d\n”, $x == $y, $z); Prints 1 1

And as if that was not enough, comparisons can even return three values. Observe from 

Table 14.2 that the cmp and <=> operators return the value -1 when the expression on 

the left is less than the one on the right.

perl also uses the logical AND and OR operators, && and ||, in the same sense 

used by awk:

if ($x < 10 && $x > 5)

 14.3.2 The Concatenation and Repetition Operators (. and x)
Though the expression $x$y concatenates the variables $x and $y, perl has a separate 

operator (the dot) for concatenating strings:

$ perl -e ‘$x=sun ; $y=”.com” ; print ($x . $y . “\n”) ;’
sun.com

Note that $y itself contains a dot, so its value had to be placed within quotes. For the 

sake of readability, it’s preferable to have whitespace on either side of the dot operator.

perl uses the x operator for repeating a string. The following statement prints 40 

asterisks on the screen:

$ perl -e ‘print “*” x 40 ;’
****************************************

Caution

das76205_Ch14_404-439.indd   409das76205_Ch14_404-439.indd   409 12/13/11   10:48 AM12/13/11   10:48 AM



410 Your UNIX/Linux: The Ultimate Guide

The string to print isn’t restricted to a single character; it can even be an expression 

(which perl evaluates to a string value). This operator is most useful in printing rulers 

for reports.

 14.4 The Standard Conditionals and Loops

Most of the control structures used by the shell, awk, and C are supported by perl. 

However, perl differs markedly from these languages in the use of curly braces. The 

body of statements executed in every conditional or loop must be enclosed in curly braces, 

even if the body comprises a single statement. perl also features a foreach construct 

for use with arrays, which will be examined in Section 14.10. The other constructs are 

well known to you, so we’ll present their syntax through short examples.

 14.4.1 The if Conditional
For decision making, perl supports the if and unless conditionals. We don’t need to 

discuss unless since it is virtually identical to using if with the boolean NOT operator. 

The if construct in perl takes three forms as shown in Fig. 14.2.

Except for the mandatory provision of curly braces, the first form is identical to 

that used in awk. The second form uses the elsif keyword (elif in the shell). The third 

is a compact one-liner that is unique to perl. This form doesn’t need to use parentheses 

around the condition.

 14.4.2 The while, do-while, and for Loops
Like awk, perl supports the while and do-while loops. Like the third form of the if 

construct, perl also supports a one-liner that uses a while loop. It also features an until 

loop that behaves like its shell counterpart. The first two forms shown in Fig. 14.3 use 

an infinite loop to print an infinite number of asterisks on the screen. The third form 

prints only five.

The same job can be done with a for loop, which in perl has no special features. 

This loop also prints five asterisks:

Form 1 Form 2 Form 3

   if ($x > 1) {
      printf(“a”)
   }
   else {
      printf(“b”)
   }

   if ($x > 5) {
      printf(“a”);
   }
   elsif ($x > 3) {
      printf(“b”);
   }
   else {
      printf(“c”);
   }

  printf(“”) if $x > 3;

F I G U R E  1 4 . 2  The Three Forms of the if Conditional

das76205_Ch14_404-439.indd   410das76205_Ch14_404-439.indd   410 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  411

for ($i = 0 ; $i < 5 ; $i++) {
     print(“*”);
}

The repetition operator (x), discussed in Section 14.3.2, can do this job with a one-liner.

All loops support the next statement, which restarts loop iteration, and last, 

which breaks out of a loop. perl deviates from tradition here: it doesn’t use continue 

and break. An infinite loop can be set up with while (1) or for (;;).

The if and while constructs feature in the next program, leap_year.pl 

(Fig. 14.4), which determines whether the number you key in is a leap year or not.

Form 1 Form 2 Form 3

while (1) {
    printf(“*”);
}

do {
    printf(“*”);
} while (1) ;

print(“*”) while $x++ < 5 ;

F I G U R E  1 4 . 3  The while and do-while Loops

   #!/usr/bin/perl
   # leap_year.pl: Determines whether a year is a leap year or not
   #
   while (1) {
 $yesorno = “not” ;
 printf(“Enter a year: “);
 chomp($year = <STDIN>);
 if (“$year” > 0) {
  if ($year % 4 == 0 && $year % 400 == 0) {
   $yesorno = “certainly” ;
  } elsif ($year % 100 != 0 && $year % 4 == 0) {
   $yesorno = “certainly” ;
  }
  print (“$year is “ . $yesorno . “ a leap year\n”) ;
 }
 printf(“Wish to continue? “);
 chomp($answer = <STDIN>);
 last if ($answer eq “n” || $answer eq “N”);
   }

F I G U R E  1 4 . 4  leap_year.pl

das76205_Ch14_404-439.indd   411das76205_Ch14_404-439.indd   411 12/13/11   10:48 AM12/13/11   10:48 AM



412 Your UNIX/Linux: The Ultimate Guide

The entire program runs in an infinite loop, and the last statement at the bottom 

terminates the loop if you enter an n or N:

$ leap_year.pl
Enter a year: 2004
2004 is certainly a leap year
Wish to continue? y
Enter a year: 2001
2001 is not a leap year
Wish to continue? y
Enter a year: 1900
1900 is not a leap year
Wish to continue? n
$ _

 14.5 Reading Files from Command-Line Arguments

perl supports command-line arguments. Since it is both a filter and a scripting language, 

perl uses special notation, which we’ll now discuss, to identify filenames. Section 

14.9.1 discusses arguments in general. We’ll first read a file using one-liners and then 

learn to use a script.

 14.5.1 Reading Files with One-Liners
The diamond operator, <>, is used for reading lines from a file. For example, <STDIN> 

reads a line from standard input, and <> reads a line from the filename specified as argu-

ment. To read and print all lines of a file, use <> in either of these ways:

perl -e ‘print while (<>)’ /etc/group File opening implied

perl -e ‘print <>’ /etc/group As above but loop also implied

The context of the <> operator is different in these two examples. The first is interpreted 

in scalar context, which signifies reading one line. The second is interpreted in list 
context where it represents all lines. You can use while (<>) to read multiple files:

perl -e ‘print while (<>)’ foo1 foo2 foo3

perl also supports the -n option, which implies this loop. Make sure that -n precedes 

-e when using this feature:

perl -ne ‘print’ /etc/group -en won’t work here!

perl -ne ‘print’ foo1 foo2 foo3

The advantage of this form is that you can use simple one-line conditionals in the command 

line itself. Here is a bare-bones grep command at work with our sample database (10.1):

das76205_Ch14_404-439.indd   412das76205_Ch14_404-439.indd   412 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  413

$ perl -ne ‘print if /wood\b/’ emp.lst
5423:barry wood      :chairman :admin     :08/30/56:160000

This one-line conditional uses the regular expression /wood\b. perl uses an enlarged regular 

expression set (Table 14.3), where \b is used to match on a word boundary. This eliminated 

woodhouse and woodcock from the output. We’ll see more of perl’s regular expressions later.

 14.5.2 Reading Files in a Script
The previous perl statement could have been placed in a script. This time, a loop is 

implied, so we have to use perl with the -n option in the she-bang line:

#!/usr/bin/perl -n
print if /wood\b/ ;

We often need to do some processing outside the loop—like printing a heading or a total. 

The -n option doesn’t allow that, so we have to set up the while loop inside the script:

#!/usr/bin/perl
printf (“%30s”, “LIST OF EMPLOYEES\n”) ;
while (<>) {
   print if /wood\b|light.*/ ; Using an extended RE

}
print “\nREPORT COMPLETE\n” ;

What you see here is something that we do many a time: print a heading before the 

detail and then something after the detail. This is how you implement the BEGIN and 

END sections of awk in perl.

For pure filtering, use perl -n as the interpreter name in the she-bang line. No explicit while 
loop is then required. If you have headers and footers to print, then drop the -n option and 
set up a while loop inside a script.Tip

T A B L E  1 4 . 3  Additional Regular Expression Sequences Used by perl

Symbols Significance

\w Matches a word character (same as [a-zA-Z0-9_])
\W Doesn’t match a word character (same as [^a-zA-Z0-9_])
\d Matches a digit (same as [0-9])
\D Doesn’t match a digit (same as [^0-9])
\s Matches a whitespace character
\S Doesn’t match a whitespace character
\b Matches on word boundary
\B Doesn’t match on word boundary

das76205_Ch14_404-439.indd   413das76205_Ch14_404-439.indd   413 12/13/11   10:48 AM12/13/11   10:48 AM



414 Your UNIX/Linux: The Ultimate Guide

 14.6 The Current Line Number ($.) 
and the Range Operator (..)

We’ll now learn the use of two special operators for addressing lines by their numbers. 

perl stores the current line number in a special variable, $. ($ followed by a dot), so 

you can select lines from anywhere:

perl -ne ‘print if ($. < 4)’ foo Like head -n 3 foo

perl -ne ‘print if ($. > 7 && $. < 11)’ foo Like sed -n ‘8,10p’ foo

perl has a host of built-in variables, and $. is perl’s counterpart of awk’s NR variable. 

perl has shortcuts to these comparisons too. Use its range operator, .. (2 dots):

perl -ne ‘print if (1..3)’ foo
perl -ne ‘print if (8..10)’ foo

For selecting multiple segments from a file, you can use multiple print statements, or 

you can use compound conditions:

if ((1..2) || (13..15)) { print ; }

We’ll now examine another important perl variable named $_.

 14.7 $_: The Default Variable

The previous programs used print without specifying what to print. The while loop used 

the diamond operator <> without specifying the variable to read a line into. An invisible 

assignment is at work here. When using <>, perl automatically assigns the entire line to 

a special variable, $_. This variable is often called the default variable, and many perl 

functions (like print) operate on $_ by default. We often drop the $_ to compact our 

code (and make it cryptic).

Suppose you have to prefix a line number to every line. This is where you need $_ 

to explicitly specify the line. The comments in the script, grep1.pl (Fig. 14.5), show 

what perl does internally with $_.

The <> operator, chomp and pattern matching work on $_ by default, the reason why 

it isn’t explicitly specified anywhere except in the print statement. We used it with the 

print statement only because it had to be concatenated with $slno. Otherwise, print 

also operates on $_ by default. The program locates the email addresses of all senders 

from the velvet.com domain:

$ grep1.pl $HOME/mbox
1  From: “Caesar, Julius” <Julius_Caesar@velvet.com>
2  From: “Goddard, John” <John_Goddard@velvet.com>
3  From: “Barnack, Oscar” <Oscar_Barnack@velvet.com>

You can reassign the value of $_. Since many perl functions operate on $_ by default, 

you’ll often find it convenient to set $_ to an expression that you need to manipulate later. 

das76205_Ch14_404-439.indd   414das76205_Ch14_404-439.indd   414 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  415

This assignment allows you to use these functions without specifying either $_ or any 

variable name as argument.

Though its significance is difficult to define exactly, $_ often represents the last line read, the 
last pattern matched, or the last element picked up from a list.

 14.8 String-Handling Functions

perl has all of the string functions that you can think of. Some of them were seen in awk, 

and the others are supported by compiled languages. Two important functions, split 

and join, deserve discussion in separate sections. In most cases, we are interested in 

the return values of these functions, but sometimes we use them for their side effect, 
i.e., for what they do apart from returning a value.

chop and chomp perl provides these two functions to remove the last character of a 

string. chop does it unconditionally, but chomp removes only a newline. In the program 

shown in Fig. 14.5, we used chomp for its side effect. But we can also make use of its 

return value:

$lname = chomp($name) ; $lname stores last character chopped

In most cases, we don’t need to know the character that was chopped, but we often 

combine an assignment and the execution of a function in one statement:

chomp($name = <STDIN>) ; Reading and assigning together

If you need to remove \n and are not sure whether there will be one, then you’ll find 

chomp more convenient to use because it removes only \n. Both chop and chomp can 

work without an argument, in which case $_ is assumed.

Note

#!/usr/bin/perl
# grep1.pl: Extracts the From: headers from the mailbox
#
while (<>) { # Actually ($_ = <>)
 chomp() ; # chomp($_)
 if (/From:.*\@velvet.com/) { # if ($_ =~ /From:.*\@velvet ...)
  $slno++ ;
  print ($slno . “  “ . $_ . “\n”) ;
 }
}

F I G U R E  1 4 . 5  grep1.pl

das76205_Ch14_404-439.indd   415das76205_Ch14_404-439.indd   415 12/13/11   10:48 AM12/13/11   10:48 AM



416 Your UNIX/Linux: The Ultimate Guide

index(str, substr, n) and rindex(str, substr, n) index is also used by awk to 

return the position of the first occurrence of substr in a larger string str. With these two 

arguments, the search is made from the beginning of the string, but if n is specified, n 

characters are skipped. rindex behaves like index except that it locates the last occur-

rence of the string:

$fqdn = “www.perl.com” ;
print index($fqdn, “.”) ; Prints 3

print rindex($fqdn, “.”) ; Prints 8

reverse(str) This function, which can also operate on an array, reverses the characters 

in str and returns the reversed string:

$x=”abcd”;
print reverse($x); Prints dcba

substr(str1, offset, length, str2) substr takes between two and four arguments. Its 

special features include extracting characters from the right of the string and inserting or 

replacing a string. If $x is assigned the value “abcefgh”, substr($x, 4, 3) returns efg.

The following example assumes length to be zero. substr stuffs $x with efgh 

without replacing any characters; 0 denotes nonreplacement:

$x = “abcdijklm” ;
substr($x,4,0) = “efgh” ; Stuffs $x with efgh

print “$x” ; $x is now abcdefghijklm

substr($x, -3, 2) extracts two characters from the third position on the right:

$y = substr($x,-3,2) ; Extracts from right

print “$y”; $y is kl

uc and ucfirst, lc and lcfirst There are four functions for changing the case of 

text. uc converts to uppercase its entire argument, while ucfirst converts only the first 

character to uppercase:

$name = “larry wall” ;
$result = uc($name); $result is LARRY WALL

$result = ucfirst($name); $result is Larry wall

lc and lcfirst perform the opposite functions of their “uc” counterparts. Apart from 

converting case, perl can also filter the contents of variables in the same way the UNIX 

filters, tr and sed, manipulate text. We’ll discuss the tr and s functions in Section 14.15.

 14.9 Lists and Arrays

Lists and arrays lie at the very heart and soul of perl. A list is a set of data. An array 

makes the list available in a variable. The following is an example of a list:

das76205_Ch14_404-439.indd   416das76205_Ch14_404-439.indd   416 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  417

( “Jan”, 123, “How are you”, -34.56, Dec )

A list need not contain data of the same type. For a list to be usable, it needs to be as-

signed to a set of variables:

($mon, $num, $stg, $neg, $mon2) = ( “Jan”, 123, “How are you”, -34.56, Dec );

When the size of a list can be determined only at runtime, we need an array to hold the 

list. These arrays are of two types—scalar lists and associative arrays. We’ll be looking at 

scalar lists in this section. Let’s assign the following list to a three-element array, @month:

@month = (“Jan”, “Feb”, “Mar”); $month[0] is Jan

These are quoted strings, and perl supports the qw function that can make short work 

of this assignment:

@month = qw/Jan Feb Mar/; No commas and no quotes

print $month[1]; Prints Feb

Arrays in perl are not of a fixed size; they grow and shrink dynamically as elements are 

added and deleted. Even though an array is accessed using the @ prefix, each element 

of the array is accessed using $mon[n], where n is the index, which starts from zero. 

$month[0] evaluates to the string Jan, and $month[3] is undefined.

Array assignment is also quite flexible in perl. You can use the range operator or 

even assign values selectively in a single statement:

@x = (1..12); Assigns first twelve integers

@month[1,3..5,12] = (“Jan”, “Mar”, “Apr”, “May”, “Dec”);
@month[1,3..5,12] = qw/Jan Mar Apr May Dec/; Same

In the second example, note that $month[4] is Apr and $month[0] and $month[2] are 

null if they weren’t defined previously.

Like <>, the array @month can be interpreted in both scalar and list context. When 

used as the rvalue of an assignment, @month evaluates to the length of the array:

$length = @month; Length of the array

The $# prefix to an array name signifies the last index of the array. It’s always one less 

than the size of the array:

$last_index = $#month;

The $# mechanism can also be used to set the array to a specific size or delete all of its 

elements. Previously defined array elements that fall outside the new index are deleted:

$#month = 10; Array size now 11

$#month = -1; No elements 

das76205_Ch14_404-439.indd   417das76205_Ch14_404-439.indd   417 12/13/11   10:48 AM12/13/11   10:48 AM



418 Your UNIX/Linux: The Ultimate Guide

An array can also be populated by the <> operator. Each line then becomes an element 

of the array:

@file = <> ; Reads entire file from command line

print @file ; Prints entire file

The chop and chomp string-handling functions can be applied to an array also. In that case, 
they’ll remove the last character of every element of the array, which is probably what you’d 
want them to do.

Before we use the array-handling functions, let’s examine the script ar_in_ar.pl 

(Fig. 14.6), which illustrates some features of perl arrays.

The array is populated in three stages, and the final filling is done with the qw func-

tion. Observe that perl permits a second array (@days_between) to form part of another 

array, @days. The length of the array is directly available in $length and indirectly in 

$#days before it is reset to 5. Because the index of an array starts from 0, $length is 

one greater than $#days:

$ ar_in_ar.pl
The third day of the week is Wed
The days of the week are Mon Tue Wed Thu Fri Sat Sun
The number of elements in the array is 7
The last subscript of the array is 6
$days[6] is now

Note that after resizing the array (with $#days = 5), $days[6] is now a null string.

Note

#!/usr/bin/perl
# ar_in_ar.pl - Shows use of arrays
#
@days_between = (“Wed”, “Thu”) ;
@days = (Mon, Tue, @days_between, Fri) ;
@days[5,6] = qw/Sat Sun/ ;
$length = @days ; # @days in scalar context
print (“The third day of the week is $days[2]\n”) ;
print (“The days of the week are @days\n”) ;
print (“The number of elements in the array is $length\n”) ;
print (“The last subscript of the array is $#days\n”) ;
$#days = 5;  #Resize the array
print (“\$days[6] is now $days[6]\n”) ;

F I G U R E  1 4 . 6  ar_in_ar.pl

das76205_Ch14_404-439.indd   418das76205_Ch14_404-439.indd   418 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  419

 14.9.1 Array-Handling Functions
perl has a number of functions for manipulating the contents of an array. A few string-

handling functions (like, chop, chomp, and reverse) also apply to an array. perl supports 

operations both at the left and right of an array. In that sense, we can treat the array as 

both a stack and a queue.

shift(@arr) and unshift(@arr, list) The shift and unshift functions remove and 

add elements, respectively, to the left. With unshift, the elements to be added have to 

be provided as a list:

@list = (3..6) ;
unshift(@list, 1, 2); @list is 1 2 3 4 5 6

shift(@list); @list is 2 3 4 5 6

unshift returns the new length of the array, while shift returns the element that is 

moved out. It’s like using x=$1 in the shell before using its own shift statement.

push(@arr, list) and pop(@arr) push and pop act similarly except that they operate 

on the right of the array. Let’s now apply them to the residual value of @list from the 

previous example:

push(@list, 9..12); @list is 2 3 4 5 6 9 10 11 12

pop(@list); @list is 2 3 4 5 6 9 10 11

push returns the new length of the array while pop returns the last element that is moved out.

splice(@arr, offset, length, list) The splice function can do everything the previous 

four functions can do. Additionally, it uses from one to four arguments to add or remove 

elements at any location.

The second argument is the offset from where the insertion or removal should 

begin. The third argument represents the number of elements if they are to be removed 

or 0 if elements have to be added. The new replaced list is specified by the fourth argu-

ment (if present):

splice (@list, 5, 0, 7..8) ; Adds at sixth location—2 3 4 5 6 7 8 9 10 11

splice (@list, 0, 2) ; Removes from beginning—4 5 6 7 8 9 10 11

We’ll be using some of these functions later in another script after we have examined 

the foreach loop and join function.

Command-Line Arguments (ARGV) We used the <> operator for reading files 

specified as command-line arguments. In general, perl uses its built-in array, ARGV, to 

hold all command-line arguments. C programmers must note that the first argument, 

$ARGV[0], represents the first argument, and not the command name, which is held in 

shell-style in $0.

das76205_Ch14_404-439.indd   419das76205_Ch14_404-439.indd   419 12/13/11   10:48 AM12/13/11   10:48 AM



420 Your UNIX/Linux: The Ultimate Guide

We can use a while or a for loop for iterating through each element of the array, 

but perl has a better way of doing that. The foreach loop is discussed next.

 14.10 foreach: Looping Through a List

perl provides an extremely useful foreach construct to loop through a list. The construct 

borrowed from the C shell has a very simple syntax:

foreach $var (@arr) {
  statements
}

Functionally, foreach works like the shell’s for loop. Each element of the array @arr 

is picked up and assigned to the variable $var. The iteration is continued as many times 

as there are items in the list. The program square_root.pl (Fig. 14.7) uses foreach 

to calculate the square root of some numbers.

Every element in the array @ARGV is assigned to the variable $number. You can 

now supply as many arguments to the script as you like:

$ square_root.pl 123 456 25
The program you are running is ./square_root.pl
The square root of 123 is 11.0905365064094
The square root of 456 is 21.3541565040626
The square root of 25 is 5

We have previously noted $_ making its presence felt everywhere, and this is no excep-

tion. In the preceding example, you need not use $number at all. foreach stores each 

item in $_, and sqrt works on it as well:

foreach (@ARGV) { $_ is the default variable

     print (“The square root of $_ is “ . sqrt() . “\n”) ;

It’s not that foreach is used with arrays only. It can be used with lists generated by 

UNIX commands as well. You can use command substitution to generate the list:

foreach $file (`ls`) {

#!/usr/bin/perl
# square_root.pl - Finds the square root of each command line argument
#
print (“The program you are running is $0\n”) ;
foreach $number (@ARGV) {          # Each element of @ARGV goes to $number
     print (“The square root of $number is “ . sqrt($number) . “\n”) ;
}

F I G U R E  1 4 . 7  square_root.pl

das76205_Ch14_404-439.indd   420das76205_Ch14_404-439.indd   420 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  421

This construct picks up each file in the current directory and assigns it to the variable 

$file. We’ll use this feature later in the chapter.

 14.11 Two Important List Functions

CGI programmers using perl need to understand two important array-handling 

functions—split and join. The split function breaks up a line or an expression into 

fields, and join creates a line from fields.

 14.11.1 split: Splitting into a List or Array
split breaks up its arguments on a delimiter into a list of variables or an array. Here 

are the two syntaxes:

($var1, $var2, $var3.....    ) = split(/sep/,stg) ;
@arr = split(/sep/,stg) ;

split takes up to three arguments but is usually used with two. It splits the string stg on 

the regular expression sep. The argument stg is optional, and in its absence, $_ is used 

as default. The fields resulting from the split are assigned either to the variables $var1, 

$var2, and so on, or to the array @arr.

Splitting into Variables We’ll now use the first syntactical form in our next program, 

3_numbers.pl (Fig. 14.8), to assign three numbers, taken from the keyboard, to a set 

of variables.

We used the die function to simply print its argument and exit a script. die is 

often used to handle errors in opening a file. Run this program twice:

$ 3_numbers.pl
Enter three numbers: [Enter] Nothing entered

Nothing entered
$ 3_numbers.pl
Enter three numbers: 123 345 567
The last, second and first numbers are 567, 345 and 123.

#!/usr/bin/perl
# Script: 3_numbers.pl - Splits a string on whitespace
print(“Enter three numbers: “ ) ;
chomp($numstring = <STDIN>) ;
die(“Nothing entered\n”) if ($numstring eq “”) ;
($f_number, $s_number, $l_number) = split (/\s+/, $numstring) ;
print (“The last, second and first numbers are “) ;
print (“$l_number, $s_number and $f_number.\n” ) ;

F I G U R E  1 4 . 8  3_numbers.pl

das76205_Ch14_404-439.indd   421das76205_Ch14_404-439.indd   421 12/13/11   10:48 AM12/13/11   10:48 AM



422 Your UNIX/Linux: The Ultimate Guide

When the three numbers are entered, $numstring acquires the value 123 345 567\n, 

from where the newline is subsequently chopped off. split acts on this string using 

whitespace (\s+) as a delimiter and saves the words in three variables.

Splitting into an Array What do you do when there are a large number of fields in 

a line? In that case, it’s better to split it up into an array rather than variables. The fol-

lowing statement fills up the array @thislist:

@thislist = split(/:/, $string) ;

$string is often the last line read, so split assumes $_ as the second argument when 

it is not specified. Also, split can be used without an explicit assignment, in which 

case it populates the built-in array, @_:

split (/:/) ; Fills up the array @_

The array, @_, has the elements $_[0], $_[1], and so forth. You should get used to this 

form, too, since you’ll find it used in several programs.

When the return value of split is not explicitly assigned to variables or an array, the built-in 
array, @_, is automatically assigned. Also, when split is used with the null string (//) as delim-
iter, @_ stores each character of the string as a separate element.

 14.11.2 join: Joining a List
The join function acts in a manner opposite to split. It combines multiple strings 

into a single string using the delimiter as the first argument. The remaining arguments 

could be either an array name or a list of variables or strings to be joined. This is how 

you provide a space after each day:

$weekstring = join (“ “, @week_array) ;
$weekstring = join (“ “, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”) ;
print $weekstring ;

You can use either of the first two statements to obtain the following output with print:

Mon Tue Wed Thu Fri Sat Sun

split and join often go together. The next program, rep.pl (Fig. 14.9), splits each line 

of our sample database on the :, adds a century prefix to the date, and then joins all the 

fields back together. The script is well documented, so it does not require elaboration.

Let’s now print the first three transformed lines of our database by running the 

program:

$ rep.pl emp.lst | head -n 3
2233:charles harris :g.m. :sales :12/12/1952: 90000
9876:bill johnson :director :production:03/12/1950:130000
5678:robert dylan :d.g.m. :marketing :04/19/1943: 85000

Note

das76205_Ch14_404-439.indd   422das76205_Ch14_404-439.indd   422 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  423

Joining on a specified delimiter has common applications in everyday programming. 

Even though we used join on a specific delimiter in our examples, the next section uses 

join without any delimiter to perform a very useful task.

 14.12 dec2bin.pl: Converting a Decimal Number to Binary

We’ll now consolidate our knowledge of array-handling functions by developing a script, 

dec2bin.pl (Fig. 14.10). This script accepts a decimal number as an argument and converts 

#!/usr/bin/perl -n
# Script: rep2.pl - Converts name to uppercase and prefixes century to date
#
@line = split (/:/) ; # $_ is assumed
($month, $day, $year) = split(/\//, $line[4]); # Splits date field
$year = “19” . $year ; # Adds century prefix
$line[4] = join(“/”, $month, $day, $year); # Rebuilds date field
$line = join(“:”, @line); # Rebuilds line
print $line;

F I G U R E  1 4 . 9  rep.pl

F I G U R E  1 4 . 1 0  dec2bin.pl

#!/usr/bin/perl
# dec2bin.pl: Converts decimal numbers to binary
#
die(“No arguments\n”) if ( $#ARGV == -1 ) ;
print “Hello world\n” ;
foreach $number (@ARGV) {
 $original_number = $number ;
 until ($number == 0 ) {
  $bit = $number % 2  ; # Find the remainder bit
  unshift (@bit_arr, $bit) ; # Insert bit at beginning
  $number = int($number / 2 ) ;
 }
 $binary_number = join (“”, @bit_arr) ; # Join on nothing!
 print (“The binary number of $original_number is $binary_number\n”) ;
 $#bit_arr = -1 # Deletes all array elements
}

das76205_Ch14_404-439.indd   423das76205_Ch14_404-439.indd   423 12/13/11   10:48 AM12/13/11   10:48 AM



424 Your UNIX/Linux: The Ultimate Guide

it to binary. To do this, you have to repeatedly divide a number (rather the quotient) by 2, 

and then reverse all of the collected remainders. We need the unshift function here to 

perform this reversal by filling up an array with the remainder that arises from every division.

Like the shell, perl also uses the until loop with the same meaning. The join 

function is used simply to concatenate all digit strings (0 or 1) that are stored in the 

array, @bit_arr, without using a delimiter. foreach lets you supply as many numbers 

as you want in a single invocation of the script:

$ dec2bin.pl 2 7 65 191 255
The binary number of 2 is 10
The binary number of 7 is 111
The binary number of 65 is 1000001
The binary number of 191 is 10111111
The binary number of 255 is 11111111

You can use this program to determine whether two hosts are in the same subnet 
(not discussed in this edition) by converting their network addresses to binary.

 14.13 Associative Arrays

Like awk, perl also supports a hash or associative array. It alternates the array sub-

scripts (called keys) and values in a series of strings. When declaring the array, these 

strings are delimited by commas or the more friendly => notation:

%region = (“N”, “North”, “S”, “South”, “E”, “East”, “W”, “West”) ;
%region = (“N” => “North”, “S” => “South”, “E” => “East”, “W” => “West”) ;

The associative array is identified by the % prefix, and this assignment creates an array of 

four elements. The key can also be a string, and the value is accessed by $region{key}. 

For instance, $region{“N”} evaluates to  North. CGI programmers must feel totally at 

home with associative arrays.

We use an associative array, %region, in the program region.pl (Fig. 14.11) to 

expand region codes. The program shows how to use two associative array functions, 

keys and values.

The keys function stores the list of subscripts in a separate array (here, @key_list), 

while values holds the value of each element in yet another array (here, @value_list). 

Test the script by providing a couple of single-character strings as arguments:

$ region.pl S W
The letter S stands for South
The letter W stands for West
The subscripts are S E N W
The values are South East North West

There are important implications to note here. You can separately extract both the 

keys and their values from an associative array. Using a foreach loop, you can also 

present these values in the same way the set statement shows all environment variables:

das76205_Ch14_404-439.indd   424das76205_Ch14_404-439.indd   424 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  425

foreach $key (keys %region) {
    print “$key” . “=” . “$region{$key}\n” ;
}

This snippet of code produces the following output:

S=South
E=East
N=North
W=West

Normally, keys returns the key strings in a random sequence. To order the list alphabeti-

cally, you’ll often find the sort function used with keys. You can have both a normal 

and a reverse sort:

foreach $key (sort(keys %region)) {
    @key_list = reverse sort keys %region; No ()—OK

}

perl’s built-in array, %ENV, stores all of the shell’s environment variables. For instance, 
$ENV{‘PATH’} contains the value of the shell’s PATH. You can easily access these variables using 
the techniques discussed here.

 14.13.1 Counting Number of Occurrences
Associative arrays are extremely useful in counting the number of occurrences of an 

item. From the sample database, you can create a report showing the number of people 

in each department. We tried a similar exercise before with awk (12.3.1), but the perl 

program count.pl (Fig. 14.12) also does the job.

Note

#!/usr/bin/perl
# Script: region.pl - Uses an associative array
#
%region = (“N”, “North”, “S”, “South”, “E”, “East”, “W”, “West”) ;
foreach $letter (@ARGV) {
   print (“The letter $letter stands for $region{$letter}” . “\n” );
}
@key_list = keys(%region) ; # List of subscripts
print (“The subscripts are @key_list\n”) ;
@value_list = values %region  ; # List of values
print (“The values are @value_list\n”) ;

F I G U R E  1 4 . 1 1  region.pl

das76205_Ch14_404-439.indd   425das76205_Ch14_404-439.indd   425 12/13/11   10:48 AM12/13/11   10:48 AM



426 Your UNIX/Linux: The Ultimate Guide

The while construct first filters out the values of $dept for each line read and 

increments the counter of the respective element of the array %deptlist. After all input 

has been read, %deptlist contains the accumulated total for each key:

$ count.pl emp.lst
accounts : 2
admin : 1
marketing : 4
personnel : 2
production : 2
sales : 4

But then it must be admitted that cut, sort, and uniq can do a similar job with a single 

line of code (9.11.1) but using three processes.

 14.14 Using Regular Expressions

perl offers a grand superset of all possible regular expressions that are found in the 

UNIX system (except the special ones specified by POSIX). You have already used some 

of them for pattern matching. perl understands both basic and extended regular expres-

sions (BRE and ERE) and has some of its own too. You must know regular expressions 

and the sed and tr commands very well before you can appreciate the material that is 

presented in this section.

 14.14.1 Identifying Whitespace, Digits, and Words
Apart from the regular expression set used by grep, sed, and awk, perl offers some 

escaped characters to represent whitespace, digits, and word boundaries (Table 14.3). 

Here are three commonly used ones:

#!/usr/bin/perl
# Script: count.pl - Counts frequency of occurrence of an item
#
while (<>) {
 split (/:/) ; # Split values available in @_
 $dept = $_[3] ; # Department is fourth field
 $deptlist{$dept}++ ;
}
foreach $dept (sort (keys %deptlist)) {
 print (“$dept: $deptlist{$dept}\n”) ;
}

F I G U R E  1 4 . 1 2  count.pl

das76205_Ch14_404-439.indd   426das76205_Ch14_404-439.indd   426 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  427

\s — A whitespace character

\d — A digit

\w — A word character

All of these escaped characters also have uppercase counterparts that negate their lowercase 

ones. Thus, \D is a nondigit character. We have already used the anchoring sequence \b for 

matching a pattern on a word boundary (14.5.1), and the \s to match whitespace (14.11.1).

The following statement uses the anchoring characters ^ and $ to check whether 

$stg consists only of word characters :

if ($stg =~ /^\w+$/) { Same as ($stg =~ /^[a-zA-Z0-9_]+$/)

The next statement locates all lines containing IP addresses. Since dots separate the 

octets, we need to escape the dots, too, for perfect matching:

if (/\d+\.\d+\.\d+\.\d+/) {

You can often compact your regular expressions by using these characters. In the next 

program, we’ll be using some of these escape sequences.

 14.14.2 The IRE and TRE Features
perl accepts the IRE and TRE used by grep and sed (10.13), except that the curly 

braces and parentheses are not escaped. For instance, this is how you can use an IRE to 

locate lines longer than 512 characters:

perl -ne ‘print if /.{513,}/’ foo No \ before { and }

You can enclose part of a pattern within parentheses and use them anywhere in the program 

with $1, $2, and so on. This is sed’s TRE (10.13.3) implemented in perl. The repeated pat-

tern could be \1 if it is specified in a pattern search with 2 /s, or $1 if the ~= operator is used.

The next example, rep2.pl (Fig. 14.13), changes the form of reporting for the 

date format of the sample database. It uses a TRE to report in the form dd-mon-yyyy 

where mon is a three-character month name.

#!/usr/bin/perl -n
# rep2.pl - Reports a date in format mon-dd-yyyy using a TRE
#
@month[1..12] = qw/Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec/ ;
split (/:/) ; # Splits on @_ array
$_[4] =~ /(\d+).(\d+).(\d+)/ ; # Splits up into $1, $2, and $3
$_[4] = join (“-”, $2, $month[$1], “19$3”) ;
$_ = join(“:”, @_);
print ;

F I G U R E  1 4 . 1 3  rep2.pl

das76205_Ch14_404-439.indd   427das76205_Ch14_404-439.indd   427 12/13/11   10:48 AM12/13/11   10:48 AM



428 Your UNIX/Linux: The Ultimate Guide

We split the database yet again and store the split fields in the default array, @_. 

Each of the three components of the date field can be represented by the TRE (\d+). 

perl TREs are more readable than their UNIX counterparts; they don’t use \ before the 

( and ). The three groups are now associated with the variables $1, $2, and $3.

Using $1 as index, we extract the month name from the array @month. Finally, we 

join the elements of the @_ array on the : delimiter. Here are the first three lines of output:

$ rep2.pl emp.lst | head -n 3
2233:charles harris :g.m. :sales :12-Dec-1952: 90000
9876:bill johnson :director :production:12-Mar-1950:130000
5678:robert dylan :d.g.m. :marketing :19-Apr-1943: 85000

The date field is now in a format that is used by Oracle. The TRE in perl is unique in 

another way: perl stores these groupings ($1, etc.) in memory until the next grouping 

is done.

 14.15 Substitution with the s and tr Functions

The s and tr functions handle all substitution in perl. The s function is used in the 

same way as the s command in sed. tr translates characters in the same way the UNIX 

tr command does, but with a slightly different syntax. This is how we use them:

s/:/-/g ; Sets $_ when used this way

tr/a-z/A-Z/ ; In UNIX, you use tr ‘[a-z]’ ‘[A-Z]’

In either case, you are setting the system variable, $_. Often, you’ll split a line into fields 

and then use these functions for transforming some of the fields. In that case, you’ll have 

to use the =~ operator for performing a match and !~ for negating it:

$line =~ s/:/-/g ; $line is reassigned

$name =~ tr/a-z/A-Z/ ; $name is reassigned

s and tr also accept flags. s accepts the g flag (shown above) for global substitution, 

and yet another (e) for indicating that the replaced pattern is to be evaluated as an 

expression. tr uses all the UNIX tr options as flags—s squeezes multiple occurrences, 

c complements, and d deletes the character (9.12.1).

The next program, rep3.pl (Fig. 14.14), takes the last two digits of the year as 

user input, and then selects those lines where the year of birth (embedded in the fifth 

field) matches this input. It then performs some transformation on the selected lines 

before printing them.

After the sample database is split, the date field is further split to extract the two-

digit year. If the year matches user input, two changes are made at field level with the 

=~ operator: the name is converted to uppercase, and the prefix 9 is added to the emp-

id. The fields are joined before two more changes are made, this time at global level.

To use the s and tr functions on the entire line (globally), we need to make sure 

that $_ is properly set. The join function cleverly achieves this by assigning its return 

value to $_, which is used later by the s and print functions. The first s function 

das76205_Ch14_404-439.indd   428das76205_Ch14_404-439.indd   428 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  429

removes all spaces before the : delimiter. The next one changes every / in the line to 

a -. This affects only the date field, and rather than place a \ before the /, it’s better to 

change the delimiter used by s to a #. The statement is also more readable.

We’ll run the script with two inputs—one that exists and one that doesn’t exist:

$ rep3.pl emp.lst
Last two digits of date of birth: 45
96521:DERRYK O’BRIEN:director:marketing:09-26-45:125000
92345:JAMES WILCOX:g.m.:marketing:03-12-45:110000
$ rep2.pl emp.lst
Last two digits of date of birth: 60
Year 1960 not found

 14.15.1 Editing Files In-Place
Instead of writing to the standard output or to a separate file, perl can edit and rewrite 

the input file itself. With sed, you would have redirected the output to a temporary file 

F I G U R E  1 4 . 1 4  rep3.pl

#!/usr/bin/perl
# rep3.pl: Uses the s and tr functions for substitution
#
print(“Last two digits of date of birth: “);
$yearin = <STDIN> ;
chop($yearin); # Remove \n else comparison will fail later
$found = 0;
while (<>) {
 @line = split(/:/) ;  # Split each line
 split(/\//, $line[4]);  # and again on the date field
 $year =  $_[2] ;  # 2-digit year extracted ...
 if ($year == $yearin)  {  # .. and compared with user input
  $found = 1;
  $line[1] =~ tr/a-z/A-Z/ ; # Name field changed to uppercase
  $line[0] =~ s/^/9/ ;  # Adds a “9” prefix to the first field
  $_ = join(“:”, @line)  ; # Assigning to $_ allows use of next
    # two s functions without using =~
  s/\s *:/:/g ;  # Removes whitespace before delimiter
  s#/#-#g ;  # Delimiter in date is now the -
  print ;  # Print $_
 }
}
print(“Year 19” . $yearin . “ not found\n”) if $found eq 0 ;

das76205_Ch14_404-439.indd   429das76205_Ch14_404-439.indd   429 12/13/11   10:48 AM12/13/11   10:48 AM



430 Your UNIX/Linux: The Ultimate Guide

and then renamed it back to the original file. For a group of files, you would have used 

a for loop as well. Not so for perl; the -i option can edit multiple files in-place:

perl -p -i -e “s/<B>/<STRONG>/g” *.html *.htm

This changes <B> in all HTML files to <STRONG>. The files themselves are rewritten 

with the new output. If in-place editing seems a risky thing to do, you can back the files 

up before undertaking the operation:

perl -p -i.bak -e “tr/a-z/A-Z/” foo[1-4]

This first backs up foo1 to foo1.bak, foo2 to foo2.bak, and so forth, before converting 

all lowercase letters in each file to uppercase.

 14.16 File Handling

So far, we have been specifying input filenames from the command line. perl also 

provides the low-level file-handling functions that let you hard-code the source and 

destination of the data stream in the script itself. A file is opened for reading like this:

open (INFILE, “/home/henry/mbox”) ; Don’t forget the quotes!

INFILE here is a filehandle (an identifier) of the file mbox (file presumed to be in cur-

rent directory if a pathname is not used). Once a file has been opened, functions that 

read and write the file will use the filehandle to access the file. A filehandle is similar 

to a file descriptor.

A file is opened for writing with the shell-like operators > and >> having their 

usual meanings:

open (OUTFILE, “>rep_out.lst”) ;
open (OUTFILE, “>>rep_out.lst”) ;

perl’s filehandles can also be associated with pipelines. To shell programmers, the 

meanings of these statements should be quite obvious:

open (INFILE, “sort emp.lst |” ) ; Input from sort output

open (OUTFILE, “| lp” ) ; Output to print spooler

The next script, rw.pl (Fig. 14.15), uses open to obtain two filehandles for reading one 

file and writing another. It also uses the print statement with a filehandle as argument 

to write output to a file without using redirection.

Every time the <FILEIN> statement is executed, the next line is read from the 

file represented by the FILEIN filehandle. Thus, while (<FILEIN>) reads a line with 

every iteration. By default, the line is stored in $_.  You can read and print a single line 

in this way:

$_ = <FILEIN> ; Assigns next line to $_

print ; print uses $_ by default

das76205_Ch14_404-439.indd   430das76205_Ch14_404-439.indd   430 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  431

Even if you don’t close the files before terminating the script, perl closes them on its 

own. When we run the script without arguments, the output doesn’t come to the terminal 

this time, but goes to the file desig_out.lst.

If a number of print statements have to write to the same filehandle (say, FILEOUT), then you 
can assign this filehandle as the default using select (FILEOUT) ;. Subsequent print state-
ments don’t need to use the FILEOUT argument in that case.

 14.17 File Tests

perl has an elaborate system of file tests. It overshadows the capabilities of the Bourne 

shell—and even the find command in some ways. The following statements test some 

of the most common attributes of a file:

$x = “rdbnew.lst” ;
print “File $x is readable\n” if -r $x ;
print “File $x is executable\n” if -x $x ;
print “File $x has non-zero size\n” if -s $x ;
print “File $x exists\n” if -e $x ;
print “File $x is a text file\n” if -T $x ;
print “File $x is a binary file\n” if -B $y ;

perl’s file tests go further; it can tell you a file’s modification and access times very 

accurately. The script when_last.pl (Fig. 14.16) detects files that were modified less 

than 2.4 hours ago.

The expression -M $file returns the time elapsed in hours since $file was last 

modified. It’s a general perl feature (an idea borrowed from C) that you can make a test 

(< 0.1) and assignment ($m_age = ...) in the same statement. Let’s observe the output:

$ when_last.pl
File bf2o.sh was last modified 0.063 days back

Tip

#!/usr/bin/perl

# rw.pl: Shows use of low-level I/O available in perl

#

open (FILEIN, “desig.lst”) || die (“Cannot open file”) ;

open (FILEOUT, “>desig_out.lst”) ;

while (<FILEIN>) { # As long as there are lines in the file

    print FILEOUT if (1..3) ; # Can also use if ($. < 4 )

}

close (FILEIN) ;

close (FILEOUT) ;

F I G U R E  1 4 . 1 5  rw.pl

das76205_Ch14_404-439.indd   431das76205_Ch14_404-439.indd   431 12/13/11   10:48 AM12/13/11   10:48 AM



432 Your UNIX/Linux: The Ultimate Guide

File profile.sam was last modified 0.082 days back
File when_last.pl was last modified 0.000 days back

It seems that the last file has just been modified; three decimal places are not enough. 

You have to increase the length of the printf format if you need greater precision.

Apart from testing file attributes, perl can manipulate files and directories very 

easily. It uses chmod, chown, chgrp, chdir (like cd), mkdir, rmdir, rename (like mv), 

link, unlink (like rm), and umask, many of which have UNIX counterparts of the 

same name. It can also open directories with directory filehandles. The UNIX system 

call library also uses functions having these names, as you’ll discover in Chapter 17.

 14.18 Subroutines

perl supports functions but calls them subroutines. A subroutine is called by the & 

symbol followed by the subroutine name. If the subroutine is defined without any formal 

parameters, perl uses the array @_ as the default. Variables inside the subroutine should 

be declared with my to make them invisible in the calling program.

Many applications require the user to supply a username and password. Since this 

involves executing the same amount of code twice, it becomes an ideal candidate for a 

subroutine. The program input.pl (Fig. 14.17) uses the subroutine take_input, which 

accepts the prompt string as an argument, validates the input for word characters, and 

returns the value that was input.

The subroutine arguments are accepted into @_ and then reassigned to two local 

variables, $prompt and $flag. What is checked in the subroutine is the number of argu-

ments passed (@_ == 2). When you pass two arguments to it, the UNIX stty command 

blanks out the display during password entry. The loop terminates when there is at least 

one word character in the input:

$ input.pl
Oracle user-id: !@#$%^&* Nonword characters

#!/usr/bin/perl
# Script: when_last.pl - Finds files that are less than 2.4 hours old
#
foreach $file (`ls`)  {
 chop ($file) ;
 if (($m_age = -M $file) < 0.1) { # tenth of a day i.e., 2.4 hours
  printf “File %s was last modified %0.3f days back \n”, $file, $m_age ;
  }
}

F I G U R E  1 4 . 1 6  when_last.pl

das76205_Ch14_404-439.indd   432das76205_Ch14_404-439.indd   432 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  433

Oracle user-id: scott
Oracle password: ***** Password not echoed

The username and password are scott and tiger

The last statement in the program ($name ;) is typically perl’s way of returning a 

value. You should store frequently used subroutines in separate files. Instruct the calling 

program to read the file containing a subroutine by placing the require statement at 

the beginning. If you save the take_input subroutine in the file oracle_lib.pl, you 

should do these two things:

 • Insert the statement require “oracle_lib.pl”; in the calling program imme-

diately after the she-bang line.

 • Place the statement 1; at the end of the file containing one or more subroutines. 

The perl documentation requires every “required” file to end with a true value. 

Any nonzero value is a true value in perl, so 1; returns true.

perl has specific functions for interprocess communication which have been overlooked 

here. Its object-oriented tools and networking functions have also been ignored. This 

unique program is a real gold mine of techniques. Even though it faces stiff competition 

today from php and python,  perl is still widely used. Think of a strong UNIX feature; 

it is there in perl. perl is still the pride of UNIX.

#!/usr/bin/perl

# input.pl: Shows use of subroutines

#

system (“tput clear”) ; # Executes the UNIX command

$username = &take_input (“Oracle user-id: “) ;

$password = &take_input (“Oracle password: “, “noecho”) ;

print “\nThe username and password are $username and $password\n” ;

sub take_input {

 my ($prompt, $flag) = @_ ;  # @_ stores arguments of subroutine

 while (1)  {   # (1) is always true

  print (“$prompt”) ;

  system(“stty -echo”) if (@_ == 2 ) ;   # Echo mode off

  chop ($name = <STDIN>) ;

  system(“stty echo”) if (@_ == 2 ) ;   # Echo mode on

  last if $name =~ /\w/ ;   # Quit the loop if $name has at

 }    # least one word character

 $name ;   # return $name will also do

}

F I G U R E  1 4 . 1 7  input.pl

das76205_Ch14_404-439.indd   433das76205_Ch14_404-439.indd   433 12/13/11   10:48 AM12/13/11   10:48 AM



434 Your UNIX/Linux: The Ultimate Guide
G

O
IN

G
 F

U
R

T
H

E
R

 ➤ G O I N G  F U R T H E R

 14.19 CGI Programming with perl—An Overview

When you fill in a form on your Web browser and press the Submit button, the browser 

transmits the form data to the Web server at the other end. A Web server by itself doesn’t 

have the capability of processing this data, so it passes it on to an external application. 

This application then extracts the meat from the sent data and may then access a da-

tabase to query, add, modify, or delete the data, and send back the results, if any. The 

Web server here acts as a link to the application—the Common Gateway Interface 
(CGI)—to pass information to and from the (gatewaying) application.

A CGI program needs to do some filtering of form data—like separating the vari-

ables from their values and converting encoded characters to ASCII. The program often 

has to generate HTML on the fly with all its tags, and send the created document to the 

browser. A CGI program can be written in any language—C, Java, the shell, or perl. 

When it comes to text parsing, perl’s filtering capabilities are second to none, which 

is why perl (apart from php) is often the language of choice for CGI programming.

 14.19.1 The Query String
The browser sends data to the server through its request header (11.13.2). To understand 

how form data is structured, consider a form that has only three fields with names empid, 

ename, and desig (the name attribute of the <input> tag). Let’s put the values 1234, 

henry higgins and actor into these three fields. On submission, the browser strings 

together all data as name=value pairs into a query string in this manner:

empid=1234&ename=henry+higgins&desig=actor

This single string is sent to the server specified in the URL. The & here acts as the delim-

iter of each name=value pair. Note that the browser has encoded the space character to 

a +. To use this data, perl has to split this string twice—once to extract all name=value 

pairs and then to separate the names from their values.

 14.19.2 GET and POST: The Request Method
The query string is generated by the client (the Web browser) and sent to the server 

using either of these methods:

 • GET This method appends the query string to the URL using the ? as the delimiter. 

With the query string that was just framed, the URL will now look like this:

http://localhost/cgi-bin/emp_add.pl?empid=1234&ename=henry+higgins&desig=actor

The server parses the GET statement in the request header and stores the data 

following the ? in its environment variable QUERY_STRING. This variable can be 

used by any CGI program.

 • POST With this method, the browser precedes this string with a number signi-

fying the number of characters the string holds. The server stores this number in 

das76205_Ch14_404-439.indd   434das76205_Ch14_404-439.indd   434 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  435

G
O

IN
G

 FU
R

T
H

E
R

the CONTENT_LENGTH variable. It supplies the string as standard input to the CGI 

program. perl reads this data with its read function, and reads just as much as 

specified by CONTENT_LENGTH. The method itself is available as REQUEST_METHOD 

in the server’s environment.

A CGI application is available on the Web site of this book. CGI applications are ex-

pensive because each invocation of a CGI program requires the creation of a separate 

process. perl also offers a separate module, CGI.pm, for processing HTML form data. 

However,  Java servlets that use threads rather than separate processes are increasingly 

replacing CGI on the Net. Moreover, CGI is a security threat, which in why its use by 

individual users is often disabled on Web servers.

S U M M A R Y

perl is a superset of grep, tr, sed, awk, and the shell. It compiles a program internally 

before executing it but doesn’t create an executable. 

Input is read from the keyboard by assigning the filehandle, <STDIN>, to a variable. 

The last character of a line is removed by chop or chomp.

perl treats variables and constants as numeric or string depending on context. It 

also makes automatic conversions from one type to another when performing computa-

tion and concatenation. The pragma use strict; requires that variables be declared 

before they are used.

Unlike awk, strings and numbers are compared with separate sets of operators. 

The . is used for string concatenation. x is used for repetition.

Files are read with the <> operator. while (<>) reads all files whose names are 

specified in the command line. The -n option sets up an implicit loop for the same 

purpose.

$. stores the current line number. The range operator (..) is used to specify the 

selection of a contiguous set of lines. 

$_ is the default variable used by many perl functions. It stores the last line read 

or the last pattern matched. print, chop, split, pattern matching, and substitution 

operate on $_ by default.

The first element of the scalar array, @arr, is accessed as $arr[0], and its last 

subscript as $#arr. @ARGV[] stores all command-line arguments, but the command name 

is available as $0. A list can be assigned to an array or a set of variables.

Elements can be added and removed from the left (shift and unshift) as well 

as the right (push and pop). splice can do everything at any array location.

The foreach construct loops through an array and assigns each element in turn 

to a variable. The list can also be provided by command substitution.

split breaks up a list into variables or an array. @_ is the default array, and 

whitespace the default delimiter. Elements of a split line can be glued together with join.

The hash or associative array stores keys and values. The key can be a string. 

The qw function simplies array assignment. The value of an element of the array %arr 

accessed by key stg is $arr{$stg}. All keys and values are accessed by the keys and 

values functions.

das76205_Ch14_404-439.indd   435das76205_Ch14_404-439.indd   435 12/13/11   10:48 AM12/13/11   10:48 AM



436 Your UNIX/Linux: The Ultimate Guide

perl accepts all regular expressions but also supports sequences to match a digit 

(\d), a word character (\w), the beginning of a word (\b), or a whitespace character (\s). 

The uppercase counterparts negate the lowercase ones.

The IRE and TRE work in the same way as before except that the \ is not required 

before the () and {} characters. A grouped pattern can also be reproduced elsewhere 

with $1, $2, and so on, until the next grouping is done.

The s and tr functions are used in the same way the sed and tr commands are 

used for substitution and character translation. The operators =~ and !~ are used to 

match regular expressions.

Every file opened with the open function is assigned a filehandle. Subsequent 

reading and writing are done using these filehandles. while (<FILEIN>) reads lines 

from the filehandle FILEIN assigned by open. print optionally uses a filehandle also.

Subroutines are invoked with an &, and its arguments are stored in the array, @_. 

Subroutines can be held in an external file but must have the statement 1; placed at 

the end. The calling program “includes” these subroutines with the require statement.

S E L F - T E S T

14.1 Write one-liners to execute the following perl commands and explain your obser-

vations: (i) print ‘\t’, (ii) print “\t”, (iii) print “romeo@heavens.com”.

14.2 Write a one-liner to print the string UNIX 20 times without using a loop.

14.3 Write a one-liner that prints all lines of a file, preceded by its line number and 

with the tab as delimiter.

14.4 Write a program that accepts three integers as arguments and prints the maximum 

value entered.

14.5 Write a program that prompts a user to input a string and a number, and prints 

the string that many times, with each string on a separate line.

14.6 What’s wrong with this program? What is it supposed to print, anyway?

#! /usr/bin/perl
x = 2;
print $x ̂  32 ;

14.7 Write a program to prefix all lines of a file with the letters A., B., C., and so on. 

What do you see after Z.?

14.8 Write a one-liner to print the uppercase letters of the English alphabet as a con-

tiguous string using a loop.

14.9 Write a program that accepts a positive integer from the keyboard and then 

displays all integers from 1 up to that number, each on a separate line.

14.10 By default, file reading, chopping, and pattern matching operate on (i) $., 

(ii) $_, (iii) @_ ,(iv) none of these.

14.11 Write a program that prompts for an integer not exceeding 255, and then prints 

A if the number is below 127, B if it is below 224, and C otherwise.

14.12 Write a program that prompts a user repeatedly to enter a number. When the user 

enters 0, the program should print the total.

das76205_Ch14_404-439.indd   436das76205_Ch14_404-439.indd   436 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  437

14.13 Write a program that takes a filename and string as arguments and prints from 

the file only the first line containing the string.

14.14 Write a program that uses a loop to print from an array all the 12 months in the 

form 1. Jan ....., where each entry is on a separate line.

14.15 Why doesn’t this one-liner execute? Is absence of quoting the problem?

perl -e ‘%arr = (N, North) ; print %arr{N}’

14.16 Write a program that takes a filename as argument, checks whether the file exists, 

and prints binary if the file is binary.

14.17 Using a regular expression, write a one-liner to display the contents of a file after 

capitalizing every word.

14.18 Write a program to display from /etc/passwd the line that has 1 as the UID.

E X E R C I S E S

14.1 Detect the errors in the following program (line numbers on left):

1    # foo.pl -- Checking file system block size
2    #/usr/bin/perl
3    print “Enter the block size of your file system: “
4    bs = <STDIN> ;
5    chop ($bs) ;
6    if ( $bs > 8192 )
7        print “Lot of wasted space /n” ;
8    } else {
9        print “Reasonable size” ;
10   }

14.2 Write a one-liner to print double-spaced lines from a file.

14.3 Write a program that accepts a string from the keyboard and then prints each 

character of the string on a separate line.

14.4 Write a program to convert a binary number specified as argument to decimal. 

(Hint: Use the reverse function.)

14.5 Write a program that looks up /etc/passwd and /etc/group and prints (i) the 

highest UID, (ii) the login name, real name, and GID (both number and name) 

of that user.

14.6 Write a program that populates an array named weekday from the string 

SunMonTueWedThuFriSat, and then prints each day in uppercase.

14.7 Write a program that reads a file specified as argument to locate all variable 

assignments of the form variable=value, where each assignment is placed on a 

separate line. It should then print from memory a sorted list of these variables 

along with their values. The variable assignment could be the only characters in 

a line or be preceded or succeeded by whitespace.

14.8 How do you print a sorted list of all environment variables in the form 

variable=value?

das76205_Ch14_404-439.indd   437das76205_Ch14_404-439.indd   437 12/13/11   10:48 AM12/13/11   10:48 AM



438 Your UNIX/Linux: The Ultimate Guide

14.9 Write a program that lists the usage of words (in the form word: count) in its 

argument files. You should use perl’s definition of a word.

14.10 Write a program that displays to the standard error the maximum line length 

(say, x) of the filename specified as argument. Wherever necessary, the program 

has to append spaces at the end of a line so that all lines have x as the length. 

The modified output must be written to the standard output. Assuming that the 

file is small, do you need to read the file twice to do this?

14.11 How will you use find and perl to delete all ordinary files modified more than 

a year back? What is the advantage of using this method compared to using find 

with -exec rm?

14.12 (i) Write a one-liner to change the she-bang line to #!/usr/local/bin/perl in 

all .pl files in the current directory. (ii) Enlarge the scope to add the she-bang 

line if it doesn’t exist. Also, don’t attempt to make a substitution if a proper she-

bang line is already in place.

14.13 Write a one-liner to convert all characters in a file to uppercase, and write the 

changes back to the same file without using redirection.

14.14 Refer to the example of converting URLs in HTML documents in Sec. 10.14.3, 

and implement it in perl. This time take care of the <IMG SRC> tag, which also 

refers to URLs.

14.15 Write a program that behaves like the cp command when used without options, 

and with two ordinary filenames as arguments.

14.16 C programs use comment lines of the form /* comments */, where */ can be 

placed on a different line to allow for multiline comments. Develop a program 

that removes all comment lines in a program named foo.c. Why is it difficult 

to do this job with sed?

14.17 A file contains a set of numbers and strings as shown by these sample entries:

1
5
3
botswana
namibia
swaziland

 Devise a generalized program that prints 1. botswana on the first line, 5. namibia 

on the second line, and so forth. It does not matter how many sets of entries there 

are in the file, as long as the set of numbers is followed by an equal number of 

country names.

14.18 Write a program that changes the login shell of users in /etc/passwd. The 

shell has to be changed to /bin/bash for all users with UID greater than 100 

and whose current shell is /usr/bin/pdksh or /bin/ksh. The output has to be 

written to a separate file in the current directory.

14.19 The grep function in perl has the following syntax:

@match_arr = grep(/pattern/, @search_arr);

das76205_Ch14_404-439.indd   438das76205_Ch14_404-439.indd   438 12/13/11   10:48 AM12/13/11   10:48 AM



Chapter 14 : perl—The Master Manipulator  439

 Here, grep searches the array @search_arr for pattern (which could be a regular 

expression) and returns the array @match_arr containing the matched elements. 

Use this function in a program to accept a string from the terminal and search 

an array that has been previously populated by reading /etc/passwd.

14.20 Write a program that accepts a filename and the delimiter string as arguments, 

and then displays each line with its fields reversed.

14.21 Write a program that accepts a filename (say, foo) as argument and then writes 

the first 10 lines to foo.1, the next 10 to foo.2, and so forth. Does it make any 

difference if any of these files exists?

14.22 Write a program to recursively examine the current directory tree and display, 

for every ordinary file, the filename and days elapsed since it was last modified. 

The list should be ordered by this age with the newest file placed at the top.

14.23 Refer to the stamp dealer problem in Exercise 12.11 and implement it in perl.

das76205_Ch14_404-439.indd   439das76205_Ch14_404-439.indd   439 12/13/11   10:48 AM12/13/11   10:48 AM



440

15 
C H A P T E R  15

Introducing C

Cowes its origin to UNIX. The language makes its presence felt in the large 

number of programming tools and system calls supported by every UNIX 

system. Because of these resources, C programming in the UNIX environment is both 

convenient and satisfying. The language is, however, general enough to be used for many 

application tasks that had hitherto belonged to the realm of BASIC, Fortran and Pascal. 

This chapter doesn’t endeavor to present an in-depth treatment of C. The discussions 

that follow should be just adequate to help you understand the next three chapters.

  Objectives
 • Understand the organization of a C program into preprocessor directives and 

statements. 

 • Learn how to use the I/O statements printf and scanf.

 • Know the various data types available in C and when symbolic constants can replace 

variables.

 • Understand the usefulness of arrays and structures for grouping multiple data items.

 • Understand the basics of bitwise operations using the & and | operators.

 • Discover the mechanism of type conversion and the significance of the cast.
 • Learn the rules of precedence and associativity when evaluating expressions.

 • Understand the working of the switch and do-while statements.

 • Learn the use of functions and how they are separately declared and defined.

 • Understand how the pass-by-value principle affects the behavior of functions.

 • Learn the special significance of arrays when used as function arguments and strings.

 • Learn the use of pointers and the principle of indirection.

 • Use pointer arithmetic to navigate and update arrays.

 • Understand the swapping problem and how it is solved using pointers.

 • Learn to interpret a string as a pointer.

 15.1 The C Language

C is a simple but powerful language. The language derives its power from the vast 

arsenal of operators that permit low-level operations like (a) direct access to memory and 

(b) manipulation of every bit of data in memory. C supports a rich library of functions 

that perform tasks of a diverse nature. Many of these functions are UNIX-specific and 

das76205_Ch15_440-484.indd   440das76205_Ch15_440-484.indd   440 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 441

are called system calls. These calls, which are built into the kernel, are invoked from 

UNIX-C programs to access the hardware.

In an endeavor to make C globally acceptable, the ANSI C standard removed the 

UNIX-related features from C. Higher-level functions that had no relation with the hard-

ware or the operating system (like printf and scanf) were bundled together into the C 
standard library. This library is now part of every C distribution. In this chapter, we’ll 

dwell on ANSI C and some of the functions of the standard library while Chapters 17 

and 18 will examine the major system calls found only on UNIX systems.

Unlike the scripting languages like the shell and perl, C is a compiled language. 

This means the source code (i.e., the program) is converted into a standalone executable 

containing binary code. Commands like ls and grep are actually C executables.

To program in C, you need to have the C compiler installed on your machine. In 

early days this compiler was part of the C distribution itself, but today you may have to 

install it separately. Linux users can make use of the GNU C compiler available in the 

distribution media. The compiler is invoked by one of these commands:

cc foo.c Original UNIX compiler

gcc foo.c GNU C compiler—Linux

If the program contains syntax errors (those that violate the C language), the compiler 

will display them. The program then has to be corrected and recompiled, and this pro-

cess has to be repeated until the program is error-free. The compiler finally creates the 

executable, by default, a.out, and silently returns the prompt (true exit status). You can 

now run the program as ./a.out.

The term compiler is often used in a collective sense to represent three com-

ponents: the preprocessor, compiler, and linker. The preprocessor first changes the 

source code to a form that makes sense to the next component, the actual compiler. 

This component converts the preprocessed output to object code containing instructions 

and data in binary form. This object code doesn’t include code for the functions, so 

the job of including this code is done by the linker. It’s the linker that finally creates 

a standalone executable.

If an error is detected at any stage, the executable will not be created. In this chap-

ter, the term compiler will generally be used to mean all of these components. Compiler 

options and details of the three-phase operations will be taken up in Chapter 16.

C can be considered to be both a high- and low-level language. While it is sufficiently low-level to 
enable access to specific memory locations, it is also a high-level language with all the standard 
constructs and operators that you would expect to find in any high-level language.

 15.2 first_prog.c: Understanding Our First C Program

Let’s now examine our first program, first_prog.c (Fig. 15.1), which features some 

of the basic constructs—preprocessor directives, variable declarations, and function 

statements. This noninteractive program displays the ASCII values of the characters ‘A’ 

and ‘0’ on the terminal. Structurally, the program can be divided into two sections—the 

Note

das76205_Ch15_440-484.indd   441das76205_Ch15_440-484.indd   441 12/13/11   5:01 PM12/13/11   5:01 PM



442 Your UNIX/Linux: The Ultimate Guide

preprocessor and body sections. After we compile the program and run the executable, 

you’ll see the output of the four printf statements:

$ gcc first_prog.c Using GNU C compiler

$ a.out
All characters have ASCII values
Character A has the ASCII value 65
Character 0 has the ASCII value 48
Area of a circle of radius 48 = 7239.167969

If the compiler detects errors, it will highlight them along with their line numbers, but 

it won’t create a.out. (The previous a.out, if any, may or may not be deleted.) Here’s 

a typical error message that points to a missing semicolon in line number 18:

first_prog.c: In function main:
first_prog.c:18: error: expected ; before number

F I G U R E  1 5 . 1  first_prog.c

/* first_prog.c: Examines some ASCII values of the character set */
/* and notes that the ASCII value of the character 0 is not 0!
   Also features some simple computation */

/* Preprocessor Section */
#include <stdio.h>             /* printf needs this file */
#define PI 3.142               /* PI is a (symbolic) constant */

/* Program Body */
int main(void)                  /* This is where the action begins */
{
   /* Variable declarations */
   int number;                  /* Integer type */
   float area;                  /* Floating point type */
   
   /* Other Statements */
   printf(“All characters have ASCII values\n”);
   number = 65;                 /* Variable initialization */
   printf(“Character %c has the ASCII value %d\n”, number, number);
   number = number - 17;        /* number is now 48 */
   printf(“Character %c has the ASCII value %d\n”, number, number);
   area = PI * number * number;
   printf(“Area of a circle of radius %d = %f\n”, number, area);
   
   /* This statement terminates the program */
   return 0;
}    

das76205_Ch15_440-484.indd   442das76205_Ch15_440-484.indd   442 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 443

Like in perl, every C statement is terminated with a semicolon. A compiler will generate 

errors if it doesn’t find it even though it may not properly identify the location where 

the semicolon should have been placed. Also, comments are enclosed by the character 

sequence /* on the left and */ on the right. C also allows multiline comments that use 

a single set of /* and */.

 15.2.1 The Preprocessor Section
This section contains two lines beginning with a #. They are called preprocessor direc-
tives that always appear before the occurrence of the word main. Observe that these 

lines don’t end with a semicolon because they are meant for the preprocessor and not 

the compiler. Many people love to say that they are not C statements and, therefore, are 

not part of the C language, but this author doesn’t embrace this view.

The first directive (#include <stdio.h>) tells the preprocessor to replace the 

line with the contents of the file stdio.h. This is a header file, which contains some 

information required by the printf function. The preprocessor knows where the file is 

located; the symbols < and > indicate that the file can be found at its standard location. 

This location is, however, system-dependent.

The next directive (#define PI 3.142) instructs the preprocessor to globally re-

place all occurrences of PI with 3.142. The abbreviation or alias part (PI) of this directive 

is also known as a macro. PI is a symbolic constant that features once in the body—in 

the expression that calculates the area of a circle. The compiler thus doesn’t see PI. This 

is where a symbolic constant differs from a variable, but we are coming to that shortly.

Observe how C avoids redundancy with a simple concept. Rather than have the 

contents of stdio.h in the program itself, it makes sense to maintain it externally at a 

standard location. Any program that needs the file can have it included with a simple 

directive like #include. Does it occur to you that if PI is required by multiple programs, 

we could have this directive in another header file and have that file “included” as well?

Preprocessor directives don’t end with a semicolon because technically they are not C statements. 
In fact, the compiler doesn’t see any comment lines, #define statements, or #include statements.

C supports the creation of complex macros. Macros in C can take arguments and can be used 
like functions (with parentheses). When looking at such a macro, it is often difficult to distinguish 
it from a function. Some programs in Chapter 18 use macros with arguments.

 15.2.2 The Body
While the preprocessor section contains directives, the program body contains C state-

ments that end with a semicolon. The body constitutes the meat of a C program and 

actually does all of the work—assigning variables, making decisions, running loop 

sections, and invoking function calls. Here, it begins with two variable declarations:

int number; Integer type

float area; Floating-point type

Unlike the scripting languages that we have encountered, C is a typed language, which 

means all data have types assigned to them. The first statement declares a variable named 

number having the type int (integer). The second statement declares a variable named 

Note

Note

das76205_Ch15_440-484.indd   443das76205_Ch15_440-484.indd   443 12/13/11   5:01 PM12/13/11   5:01 PM



444 Your UNIX/Linux: The Ultimate Guide

area of type float (floating point). These C keywords, int and float, are two of the 

frequently used data types in C. Because the variables are not initialized, we have no 

idea what their current values are.

There are three assignment statements using the = operator. While the statement 

number = 65 in the shell stores 65 as a string in memory, the assignment number = 65; 

in C stores the binary value of 65. You can easily simplify the second assignment with the 

statement number -= 17;. The third assignment uses the symbolic constant PI, but the com-

piler doesn’t see PI. It sees 3.142 since the preprocessor has already made this substitution.

There are four printf statements. printf is a command in UNIX (2.7), but in C, 

printf is a function identified by the pair of parentheses. You have seen this function 

in awk and perl, where the usage is not much different except that C supports a larger 

number of format specifiers.

The return statement is generally the last statement of a program. It terminates 

the current function and returns control to its caller. Here, it also transmits the value 

0 to the caller. The statement can occur anywhere in a program, but when it occurs in 

the body of main, it causes the program to terminate. Instead of return, you can also 

use the exit statement. Unlike return, exit simply terminates the program no matter 

where it is invoked from. When both are invoked from main, return 0; is the same as 

exit(0);. In this book, we’ll use a mix of both functions inside main.

All variable declarations must be made at the beginning—after the preprocessor directives and 
before the other statements.

 15.2.3 main: A Unique Function
Observe that the word main (in int main(void)) also has the pair of parentheses at-

tached to it. Yes, main is also a function, and a special one at that. Unlike functions like 

printf, whose definition is hidden from us, main is defined in every program. This 

definition begins with the opening curly brace ({) and ends with the closing brace (}). 

The body of the program (excluding the preprocessor directives) is actually the body of 

main, and a program starts executing when it encounters main.

A C program (see the following Note) must have only one main function. When 

main runs, all statements in its body are invoked in the order in which they appear in the 

program. When main encounters the return 0 statement (or exit(0)), it stops execu-

tion at that point. It returns both the value 0 and control to its caller, which is generally 

the operating system.

The semicolon is often the cause of errors generated during compilation. Terminate all C state-
ments with a ; but make sure that you don’t do so for the preprocessor statements, #define 
and #include.

C trusts the programmer; it assumes you know what you are doing. For instance, C assumes 
that you know the difference between 9 and 9.0 because use of one and not the other can 
produce an erroneous result. Also, if you have defined an array of five elements, C allows you 
to access the nonexistent sixth element and beyond. C assumes that you have a specific reason 
for accessing the sixth element, which may not be true.

Note

Tip

Note

das76205_Ch15_440-484.indd   444das76205_Ch15_440-484.indd   444 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 445

 15.3 printf and scanf: Two Important Functions

Before we take up the next program, we need to be fairly comfortable in handling two 

functions—printf and scanf. They belong to the I/O (Input/Output) family of func-

tions and complement each other. printf writes to standard output, while scanf reads 

standard input. Both use a control string to determine how variables are to be assigned 

or printed, and both accept a variable number of arguments.

 15.3.1 printf: Printing to the Terminal
The printf function is the most convenient mechanism of displaying (printing) format-

ted output on the screen. Its usage is virtually identical to that of awk and perl, so we’ll 

briefly discuss it here. You are aware that the syntax has two forms:

#include <stdio.h>
printf(string);

#include <stdio.h>
printf(control string, arg1, arg2, ...);

Form 1 Form 2

The first argument is either a simple string or a control string containing one or more 

format specifiers (like %d, %f, etc.). The remaining arguments (when present), arg1, arg2, 

etc., represent the variables to be printed. We use the first form for printing a simple 

string and the second one for printing variables and expressions. Table 15.1 lists the 

common format specifiers.

printf is the primary member of the “printf” family that also includes fprintf and 

sprintf as the other members. fprintf behaves exactly like printf except that it can 

write to any file descriptor which is specified as a separate argument. The three standard 

files are known to fprintf as stdin, stdout, and stderr, so printf(“Hello\n”) is 

equivalent to fprintf(stdout, “Hello\n”). fprintf  has been used in the program-

ming chapters that follow. We’ll not discuss sprintf in this text.

T A B L E  1 5 . 1  Essential Format Specifiers Used by printf and scanf

Format Specifier  Represents           Used by Data Type

%c            Character          char

%d            Integer            short, int, long, long long

%f            Floating point     float, double, long double

%s             String               Pointer or array of type char

%p            Pointer              All

%o              Octal integer       int, short (%ho), long, (%lo)

%x            Hexadecimal integer int, short (%hx), long (%lx)

das76205_Ch15_440-484.indd   445das76205_Ch15_440-484.indd   445 12/13/11   5:01 PM12/13/11   5:01 PM



446 Your UNIX/Linux: The Ultimate Guide

When using Form 2, make sure that the number of variables matches the number of format 
specifiers. If they don’t, the compiler may issue a warning but it will not generate an error. C 
probably thinks that you have done that deliberately.

 15.3.2 scanf: Input from the Keyboard
The scanf function complements the role of printf by taking input from the keyboard 

and assigning it to variables. Like printf, scanf also uses a control string that deter-

mines the types of variables to be assigned. The syntax of scanf is:

#include <stdio.h>
scanf(control string, arg1, arg2, ...);

Like printf, scanf uses format specifiers like %d, %f, etc., with roughly the same 

significance (Table 15.1). But here arg1, arg2 are not simple variables but addresses of 

variables. The following snippet of code reveals a a very important feature of C:

int your_number = 0;
printf(“Enter an integer: “);
scanf(“%d”, &your_number); Note the &

printf(“Number keyed in = %d\n”, your_number);

Note that scanf uses a variable name with the & prefix. The first printf prompts for an 

integer and then scanf waits for input. If you key in 45, it is input to scanf as a string 

comprising the characters 4 and 5. scanf converts this string to an integer before saving it 

in the variable your_number.

Why does scanf use the & prefix when printf doesn’t? Unlike printf, which 

prints the value of a variable or expression, scanf saves input in a variable (after conver-

sion). For this purpose, scanf needs to know the memory location of the variable. The 

& prefix helps to provide this location. We have more to say on the use of the & when 

we take up pointers.

Like printf, scanf also belongs to a family—the “scanf” family that has fscanf 

and sscanf as the other members. Unlike scanf, which reads standard input, sscanf 

formats a string that is supplied as an additional argument. fscanf is not used in this book.

It is a common programming error to omit the & in the argument list of scanf. The compiler 
will generate warnings but will proceed with the creation of the executable. The program, 
however, won’t work.

 15.4 Variables and Constants

A variable name must begin with a letter or underscore (_), but the remaining part of 

the name can comprise only letters, digits, and the underscore. Because C is a strongly 

typed language, the type of every variable must be declared before it can be used. The 

previous program showed int and float as the types of two variables:

int number; Can’t assume 0 as initial value 

float area; Can’t assume 0.0 as initial value 

Caution

Caution

das76205_Ch15_440-484.indd   446das76205_Ch15_440-484.indd   446 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 447

These declarations must be made at the beginning of the program (just before or after 

main), and before executable statements (like printf). If the variable is uninitialized, 

the compiler allocates memory all right but it doesn’t assign a specific value. At this 

stage, number has a value that was resident at that memory location when the program 

was executed; we can’t assume it to be zero.

Constants also have types, but unlike variables, their type information is con-

veyed implicitly to the compiler. When the compiler looks at constants like 3, 3.0 or 

“Good Morning”, it understands 3 as an int, 3.0 as a double, and “Good Morning” as 

an array of type char. These default types can be changed using suffixes like f and l. 

Also, for the variable number or the constant 3, the compiler allocates at least 2 bytes 

of memory. We’ll soon discuss the reason behind C’s inability to specify exact sizes for 

variables and constants.

C is a small language, but it is generous in its offering of data types from which you 

should be able to select the right one. These types can be broadly categorized as follows:

 • Fundamental (like int, char, etc.)

 • Derived (like arrays and pointers)

 • User-defined (structures, the typedef, and enumerated types)

The derived types are variations of the fundamental types. In fact, it’s a derived type that 

handles strings. C also allows you to define your own data types for handling complex 

data. In this chapter, we’ll discuss all of these data types except that, from the user-

defined category, only structures will be examined.

Before we proceed, you need to know that variables have visibility and scope. 

The variables used in this and remaining chapters are mostly declared inside a function. 

When a variable is declared inside main, it is visible only in main. C also allows you to 

define global variables that are visible in the entire program, or even in other programs. 

It’s helpful to know this because you’ll encounter a variable in main that has not been 

defined there. Such a variable is made available to main with the #include statement.

 15.5 The Fundamental Data Types

In our previous program, we have used only the fundamental data types—explicitly for 

variables and implicitly for constants. (A constant like 32 or ‘A’ also has a fundamental 

data type.) This type can be further divided into the following three subtypes:

 • Integer (the keywords short, int, long, and long long)

 • Floating point (the keywords float, double, and long double)

 • Character (the keyword char)

K&R C (the first definition of the language as specified by Kernighan and Ritchie) de-

liberately refrained from specifying fixed sizes for the fundamental data types (except 

char). They specified minimum sizes, as well as a relationship between them, to enable 

C to run on all types of hardware. ANSI endorsed this view to protect the large amount 

of code that had already been developed. The following discussions are primarily aimed 

at variables, but they also apply in most cases to constants. We’ll note the differences 

wherever possible.

das76205_Ch15_440-484.indd   447das76205_Ch15_440-484.indd   447 12/13/11   5:01 PM12/13/11   5:01 PM



448 Your UNIX/Linux: The Ultimate Guide

 15.5.1 The Integer Types
Using the short and long qualifiers, C offers a total of four types of integers, whose 

abbreviated and expanded keywords follow. Their minimum sizes as specified by ANSI 

are shown in parentheses:

 • short or short int (2 bytes)

 • int (2 bytes)

 • long or long int (4 bytes)

 • long long or long long int (8 bytes)

ANSI also specifies the relationship between these integer types:

char <= short <= int <= long <= long long

This rule implies that a short can’t be smaller than char, an int can’t be smaller than 

short, and so on. Thus, it’s possible for int and long to have the same size on one 

machine, while short and int may have the same size on another. We included the 

char data type here because char is essentially an integer type even though it is almost 

exclusively used to represent characters.

By default, the four int types are signed, which means that they can handle both 

positive and negative integers. This default behavior can be overridden by using the 

unsigned qualifier before the keyword. For instance, the statement

unsigned int x;

allows x to store only positive integers. We use unsigned types when we are sure that 

the variable will not store negative integers.

For integer constants, C specifies int (signed) as the default type. For instance, the 

number 655 is treated as an int by the compiler even though a variable of type short 

could hold the constant. In general, if a constant won’t fit the default type associated 

with it, the compiler tries to use the next higher type available. C also offers special 

symbols that can be suffixed to these constants:

 • U — unsigned int
 • L — signed long
 • UL — unsigned long
 • LL — long long
 • ULL — unsigned long long

Thus, to treat the integer 655 as a long, specify it as 655L (or 655l). Next time you 

see constants like 540U or 450L, remember to treat them as unsigned int and signed 
long, respectively. These symbols help solve type conversion problems that often occur 

when evaluating expressions containing a mix of types.

It is common folly to use the int type for a variable when a short would have sufficed. The 
type you choose should neither waste memory nor create overflow situations that occur when 
the number is larger than the size the variable can hold.

Tip

das76205_Ch15_440-484.indd   448das76205_Ch15_440-484.indd   448 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 449

 15.5.2 The Floating-Point Types
In C, floating-point numbers can be represented in decimal or exponential notation. The 

latter uses two components—mantissa and exponent—separated by the letter E or e. 

The mantissa, which is an integer or real number, is multiplied by 10 with the exponent 

as its power. For instance, 44.1 is equivalent to 4.41 × 101, and is expressed as 4.41E1 

using exponential notation. Here, 4.41 is the mantissa and 1 is the exponent.

Unlike integers, floating-point numbers are classified by their precision rather than 

their range. The precision signifies the number of significant digits used in representa-

tion. For instance, the value of PI is 3.142 when expressed with four-digit precision, 

and 3.142857 when seven-digit precision is used. We can choose from these three types 

of floating-point numbers:

 • float (single precision)

 • double (double precision)

 • long double (quad precision)

Unlike with integers, ANSI specifies a single minimum range for all of them. This range 

for a positive number is 10-38 to 1038, but it must also satisfy the following condition:

range of float <= range of double <= range of long double

Constants like 3.142 or 1789.456 are treated by C as double, i.e. with double 

precision. This data type takes up eight bytes of space on most modern systems. The 

default can be changed with the following suffixes:

 • The F or f suffix demotes a real constant to float.

 • The L or l suffix promotes a real constant to long double, which may take up to 

16 bytes of space.

There are two reasons why you may want to demote a double to float. First, it 

leads to savings in memory space. Also, floating-point arithmetic operations are slower 

than integer operations, so reduce the precision to the extent you can.

 15.5.3 The Character Type
The last fundamental type that we consider is the char type. It is basically an integer 

type, like short and int, but it was created to facilitate the storage and display of the 

entire character set of the machine. The language provides a number of ways of repre-

senting a character:

 • By an integer between 0 and 255 expressed as a decimal, octal, or hexadecimal 

number.

 • By a character enclosed within single quotes (e.g. ‘A’).

 • By a special escape sequence like ‘\c’.

Thus, any character or escape sequence enclosed in single (not double) quotes 

represents a character constant. The following assignments should make things clear:

char c = 65;
char c = ‘A’;                        A has the ASCII value 65

das76205_Ch15_440-484.indd   449das76205_Ch15_440-484.indd   449 12/13/11   5:01 PM12/13/11   5:01 PM



450 Your UNIX/Linux: The Ultimate Guide

char c = 0101;                        101 = 1X8^2 + 0 + 1X8^0 = 65 

char c = 0x41;                       41 = 4X16^1 + 1X16^0 = 65

char bell = ‘\7’;                    \07 not permitted

char bell = ‘\x7’;                   \0x7 not permitted

The characters ‘A’, ‘\t, and ‘\7’ are character constants having the ASCII values 

65, 11 and 7, respectively. Strangely enough, C treats character constants as type int 

rather than char.

There is no minimum size for the char type; by definition, it is one byte wide. 

Since the ASCII set on your PC has 256 characters (Appendix G), and eight bits are 

adequate to hold their values (0 to 255), a byte on the PC comprises eight bits. The 

signed form of char can hold values between -128 and 127, while the range for the 

unsigned form is 0 to 255.

Beginners often make the mistake of using double quotes (“A” instead of ‘A’). 

Double-quoted characters (like “A” or “Sony Blu-ray wins”) represent a string, which 

is not a fundamental data type in C. C handles strings with an array of type char, a 

derived data type that can hold multiple values of every fundamental type.

In C, ‘A’ is different from “A”. The former is a character and the latter is a string. This string 
has two characters (and not one), which may puzzle you now, but not after you have read 
Section 15.22.2.

 15.6 sizeof.c: Determining the Size of the Fundamental 
Data Types

The program, sizeof.c (Fig. 15.2), uses an operator named sizeof to determine the 

actual sizes of the fundamental data types on your machine. The last two printf state-

ments output the size of two constants, and the following output on Linux clearly shows 

the difference between the constants 3 and 3L:

$ gcc sizeof.c && ./a.out
Size of char: 1 byte
Size of short: 2 bytes
Size of int: 4 bytes
Size of long: 8 bytes
Size of float: 4 bytes
Size of double: 8 bytes
Size of 3: 4 bytes
Size of 3L: 8 bytes

The first line always shows 1 byte because that is how the char type is defined. Observe 

that the int type on this machine takes up 4 bytes as against the minimum of 2 bytes 

specified by ANSI.

Unlike other operators, which evaluate their operands during runtime, sizeof is 

a compile-time operator. It can also evaluate the sizes of the other data types like point-

ers, arrays, and structures. The parentheses are required for fundamental data types but 

optional for others.

Note

das76205_Ch15_440-484.indd   450das76205_Ch15_440-484.indd   450 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 451

What type do you choose if you need a four-byte integer? Choose int if your program will 
run only on this machine. But if the program has to be portable, choose long because the 
minimum size of int is two bytes.

 15.7 Symbolic Constants: Constants with Names

Storing a constant in a variable has one drawback. Every time the variable is encountered, 

the program has to access its memory location. Memory access takes time, so why do 

it if the value at that location doesn’t change? The solution lies in the #define feature 

of the preprocessor that is used to define symbolic constants. In Fig. 15.1, we used the 

#define directive to define the symbolic constant PI:

#define PI 3.142 No ; 

This directive is used at the beginning of a program along with the #include directives. 

The preprocessor, which operates before the compiler, replaces PI with 3.142 every-

where in the program. The advantage of the #define feature is obvious: If the value of 

a variable doesn’t change elsewhere in the program or when the program is running, 

why use a variable at all?

Symbolic constants are constants having names, the reason why they are often 

called named constants or manifest constants. We’ll be using the #define feature 

throughout this book because of the simplicity and convenience it offers.

Tip

F I G U R E  1 5 . 2  sizeof.c

/* sizeof.c: Displays the sizes of the fundamental data types
               using the sizeof operator */
#include <stdio.h>
int main(void)
{
    printf(“Size of char: %ld byte\n”, sizeof(char));
    printf(“Size of short: %ld bytes\n”, sizeof(short));
    printf(“Size of int: %ld bytes\n”, sizeof(int));
    printf(“Size of long: %ld bytes\n”, sizeof(long));
    printf(“Size of float: %ld bytes\n”, sizeof(float));
    printf(“Size of double: %ld bytes\n”, sizeof(double));
    printf(“Size of 3: %ld bytes\n”, sizeof 3 );       /* Parentheses optional */
    printf(“Size of 3L: %ld bytes\n”, sizeof 3L );     /* Same */
   
    return 0;
}

das76205_Ch15_440-484.indd   451das76205_Ch15_440-484.indd   451 12/13/11   5:01 PM12/13/11   5:01 PM



452 Your UNIX/Linux: The Ultimate Guide

Sometimes, you’ll find it convenient to define a variable as a constant. For instance, 

using the const qualifier, you can declare x as const int x = 5;. If you subsequently 

change the value of x, the compiler outputs an error. The const qualifier can also be 

used in a function declaration with a somewhat relaxed meaning. 

 15.8 Arrays

The derived data type includes arrays and pointers. Arrays are discussed in this section, 

while pointers are examined in Section 15.18. An array is a collection of data items 

belonging to a single type. The following declares a single-dimensional array having 

the name month capable of holding 12 elements each of type int:

int month[12];              Elements uninitialized, have junk values

Assuming a four-byte-sized int, this declaration allocates a contiguous chunk of 48 

bytes of memory. Each element of the array can be accessed as month[0], month[1], 

and so on until month[11]. You can perform the initialization at the time of declaration 

by assigning a set of comma-delimited values enclosed by curly braces:

int month[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

However, if initialization is not done at the time of declaration, then the elements have 

to be assigned separately:

month[0] = 31; month[1] = 28; month[2] = 31;  ...........

C performs no bounds checking on arrays. The compiler won’t complain if you access 

month[100]. It will compute the memory location of this “element” and return the 

value at this location. This value is, of course, junk, so make sure that the array index 

you use is legal.

An array in C is more than just a group of data items. The name of the array is 

often used without the [] in function arguments and pointer arithmetic. For now, you 

should keep in mind these two issues:

 • A string is simply an array of type char.

 • The array name (e.g., month) signifies the memory location of the first element of 

the array.

C also supports multidimensional arrays, but they won’t be covered in this chapter. We’ll 

revisit arrays later in the chapter when discussing strings and pointers.

 15.9 arrays.c: Printing Array Elements

The program arrays.c (Fig. 15.3) partially addresses the two issues mentioned in 

section 15.8. The significant feature of this program is the simple technique employed 

to print a string compared to the tedious while loop used to print an array of integers. 

The program produces the following output:

das76205_Ch15_440-484.indd   452das76205_Ch15_440-484.indd   452 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 453

int_array[0] = 111
The complete elements of int_array are: 111    222    333    
char_array[0] = Y
char_array actually stores the string YES

For int_array, an array of integers, we separately assign values to its elements. Any 

element, say, the second (int_array[1]), can be considered a variable, so we can eas-

ily display its value with printf. Note that even though we can directly print a single 

F I G U R E  1 5 . 3  arrays.c

/* arrays.c: Introduces elementary concepts of arrays.
             Shows that a string is actually an array of characters. */
#include <stdio.h>
#define LOOP_MAX 3
int main(void)
{
    /* Declare a variable and two arrays of type int and char */
    short counter = 0;
    int int_array[3];                            /* Elements uninitialized*/
    char char_array[4] = {‘Y’, ‘E’, ‘S’};       /* Last element uninitialized */
    
    /* Integer array: Initialize the array elements */
    int_array[0] = 111; int_array[1] = 222; int_array[2] = 333;
    
    /* Print first element and then use a loop to print the entire array */
    printf(“int_array[0] = %d\n”, int_array[0]);
    printf(“The complete elements of int_array are: “);
    
    while (counter < LOOP_MAX) {    /* Compiler sees 3 not LOOP_MAX */
       printf(“%d\t”, int_array[counter]);
       counter++;                      /* Increment value of counter */
    }
    printf(“\n”);                     /* Add a newline now */
    
    /* Character array: Initialize the last element with ASCII NULL
                        Array is now a string! */
    char_array[3] = ‘\0’;            /* Null character - ASCII value 0 */
    
    /* Print first element and then print string using %s and array name */
    printf(“char_array[0] = %c\n”, char_array[0]);
    printf(“char_array actually stores the string %s\n”, char_array);
    
    return 0;
}

das76205_Ch15_440-484.indd   453das76205_Ch15_440-484.indd   453 12/13/11   5:01 PM12/13/11   5:01 PM



454 Your UNIX/Linux: The Ultimate Guide

element, we need a loop to print the contents of the entire array. The number of times 

the while loop iterates is determined by the value of the symbolic constant, LOOP_MAX, 

which the compiler sees as the integer 3.

The array char_array is handled differently. C treats an array of type char as a 

string if the last element contains the NULL character. This character has the value 0 

in the ASCII code list. (It is not the digit 0.) To draw your attention, we used a separate 

statement to assign this value to char_array[3], even though we could have placed 

‘\0’ as the fourth element of the list during declaration. Observe that printf uses the 

%s format specifier to print a string, and its matching argument is simply the name of 

the array!

You must understand the distinction between a string and an array of characters. If an array 
of type char is terminated by NULL (‘\0’), C understands it as a string and printf uses the 
name of the array and %s to print it. String functions often insert the NULL automatically, but 
sometimes you may have to do it manually.

 15.10 Structures

Arrays enable you to organize a group of items having the same data type. Sometimes, 

you’ll need to handle a group of dissimilar items as a single unit. C supports struct 

(a structure) as a user-defined type. The members of a structure can have any data type 

(include a struct). Here’s the declaration of a structure named st_class that has 

three members:

struct st_class {
   char name[30];                  Note the semicolons

   short quantity;
   float price;
};                                  A semicolon here too 

The keyword struct is followed by the name and declarations of the three members, 

duly enclosed by a pair of curly braces. There’s something new in this declaration: No 

memory is allocated yet for the structure. The declaration merely creates a template for 

future use (like a class in C++ and Java). To make use of this type, we have to now define 
a structure named, say, st_obj, that has struct st_class as its data type:

struct st_class  st_obj = {            Memory allocated for all members

   “Any name”,                   Quoted string is an array of type char 

   375,                            Note the commas

   220.35
};

This definition also initializes the structure with the values shown. Unlike with the 

primitive data types and arrays, declaration and definition are two separate operations 

of a struct data type. We can also combine them in this manner:

Note

das76205_Ch15_440-484.indd   454das76205_Ch15_440-484.indd   454 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 455

struct st_class {                       Template created

   char name[30];
   short quantity;
   float price;
} st_obj;                                    Memory allocated 

Using the dot, the members of this structure can now be accessed as 

struct_name.member_name. This is how printf prints the values of these three members:

printf(“Name: %s, Quantity: %hd, Price: %f\n”,
        st_obj.name, st_obj.quantity, st_obj.price);

Note that we can’t use st_class here as it is merely a template; it doesn’t signify a real 

data object. Here’s the printf output:

Name: AB, Quantity: 15, Price: 1.100000

The convenience of using a structure instead of three separate variables is not obvious 

from the preceding example. We’ll discover the advantage when a structure is used as 

an argument to a function (15.17.4). Like arrays, structures are closely associated with 

pointers, and the topic will be revisited in Section 15.22.4.

The ls command obtains the file attributes from a lookup of a structure (named stat). This 
structure is populated when a file is created and updated when a change occurs in the inode. 
In Section 17.14.1, you’ll use this structure to print the file attributes.

 15.11 Operators and Expressions

Expressions are formed by combining variables and constants, optionally using opera-

tors as connecting links. For instance, both 7 and a + b / 7 are valid expressions in 

C. Arithmetic expressions return the result of the computation, but other expressions 

return either a true or false value. (A value greater than 0 represents a true value in C.) 

C supports most of the operators used by awk and perl.

Using these operators, C supports a diverse nature of expressions, including logi-

cal and relational expressions. They are often used as control expressions in decision 

making and repetitive constructs:

C construct                    Expression

if (age > 18)                  
if (age > 15 && age < 25)      
while (answer == ‘y’)          
while (count-- >= 0)           
if (count)                     
while (printf(“Name”))         

age > 18
age > 15 && age < 25
answer == ‘y’
count-- >= 0
count
printf(“Name”)     No ; with printf!

The last two expressions contain no operators but are valid because they evaluate to 

a true or false value. The statement if (count) evaluates to true if count is greater 

Note

das76205_Ch15_440-484.indd   455das76205_Ch15_440-484.indd   455 12/13/11   5:01 PM12/13/11   5:01 PM



456 Your UNIX/Linux: The Ultimate Guide

than zero. Thus, while (1) is always true, the reason why it is used to implement an 

infinite loop. It’s the last expression that could surprise you a bit because the control 

expression appears to be a function. Like most functions, printf also returns a value. 

Thus, the printf statement minus the ; can be treated as an expression.

 15.11.1 The Bitwise Operators
We’ll not discuss the standard operators (arithmetic, relational, and logical) because 

you know them already. For low-level programming, and especially for UNIX systems 

programming, you need to know some of the bitwise operations supported by C. We’ll 

consider here two bitwise operators, | (OR) and & (AND), that operate on each individual 

bit rather than on the number as a whole.

Consider the expressions 25 & 67 and 25 | 67. To understand how the | and 

& operate on the two operands, let’s have a look at the binary representation of these 

numbers:

25 — 00011001
67 — 01000011

Both operators compare their operands a bit at a time. When using &, the result is 1 if 

both bits are 1, and 0 otherwise. For the |, the result is 1 if either of the bits is 1:

25 & 67  —  00000001
25 | 67  —  01011011

Thus, the expression 25 & 67 yields the bit pattern 00000001, but 25 | 67 evaluates 

to 01011011 (Decimal 91). Also note that the expression number & 1 is 0 for an even 

number, so you now know another technique of determining whether a number is odd 

or even.

The | and & are similar to the logical operators || and && except that the latter 

work with the operand as a whole. There are other bitwise operators like the ̂  (exclusive 

OR), ~ (complement), << and >> (shift), but we’ll not discuss them in this text.

 15.11.2 Automatic Conversion
Arithmetic operations using operands of the same type don’t create problems with the 

exception that integer division results in truncation. In real life, the expressions you use 

will have a mix of types, say, int intermingled with float or long. Some conversions 

happen automatically; the others have to be manually enforced. The term conversion is 

really a misnomer because the type of a variable is fixed on its declaration and can’t be 

changed. All type changes occur only in the copies of the variable.

C performs automatic conversion when an expression contains a mix of types. 

These conversion rules are based on the concept of implicit promotion, i.e., converting 

a lower type to a higher type. The sequence goes like this for an assignment expression:

 • For every operator, if its operands have two different types, the operand of the lower 

type has its type converted to the type of the other operand.

 • After the complete expression is evaluated, its type is converted to the type on the 

left side of the =. This can lead to either promotion or demotion (loss of information).

das76205_Ch15_440-484.indd   456das76205_Ch15_440-484.indd   456 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 457

Let’s illustrate these rules with reference to this simple assignment expression:

float pi = 22 / 7.0;

Here, the three variables and constants have three different types. The constant 7.0 has 

the type double (15.5.2) and 22 is of type int (15.5.1). Because 7.0 has a higher type 

than 22, C converts 22 to double as well, so the resultant expression has the type double 

(sizeof(22 / 7.0) = sizeof double). But the operand on the left of the = has a 

lower type than the expression. Since C can’t change the type of a variable that is as-

signed, it demotes the type of the expression on the right to float. This can sometimes 

lead to loss of information, but it won’t happen here.

The types char and short automatically get promoted in expressions to int. If s is a variable of 
type short, then s * s is of type int. The expression s + 1 is also of type int, but then 1 is an 
int, so the expression would evaluate to int anyway even if the preceding rule didn’t apply.

 15.11.3 Explicit Conversion
The domain of automatic type conversion is restricted; an integer type can be con-

verted to another integer type but not to a floating-point type. Consequently, automatic 

conversion can’t prevent truncation that occurs from integer division. C provides two 

facilities for explicit conversion or coercion of a data type to any compatible type. The 

first technique applies only to constants, while the second applies to both variables 

and constants.

Conversion of Constants with Suffixes The first mechanism is the one we have 

already discussed and applies only to constants (15.5.1). You know how suffixes like 

L and LL can be used to force a constant type to long and long long, respectively. 

You have also seen how to demote a constant of type double to float using the F 

suffix. These features obviously can’t apply to variables, and further, the options are 

restricted too. Using the suffixing technique, you can’t coerce a constant to short 

or char.

Casts: Converting any Variable or Constant The ultimate conversion tool is the 

cast, a unary operator that can have any type as its operand. This feature applies uniformly 

to variables, constants, and expressions, and has the following syntax in an expression:

     (data type)    variable, constant or expression 

A cast contains the name of the data type (int, float, etc.) enclosed in parentheses. It 

is followed by the identifier to be converted. For instance, (float) x evaluates x as a 

float even though x may actually be of type int. Also, (float) (x + y) evaluates 

the expression x + y as a float.

To understand how versatile the cast mechanism is, let’s calculate the average of 

two integers and store the result as a floating-point number in a variable. If these integers 

are 4 and 7, we could use the automatic conversion route:

float average = (4.0 + 7) / 2 ;               Works because of 4.0

Note

das76205_Ch15_440-484.indd   457das76205_Ch15_440-484.indd   457 12/13/11   5:01 PM12/13/11   5:01 PM



458 Your UNIX/Linux: The Ultimate Guide

This mechanism of using a floating-point number to force the entire expression to be 

evaluated using floating-point arithmetic won’t work for variables. This needs a cast, 

and notice that it works for constants too:

int i1 = 4, i2 = 7;
float average = ((float) i1 + i2) / 2;
float average = ((float) 4 + 7) / 2;

The cast, represented by (float), operates on i1 or 4 as its operand. You can use the 

cast on multiple data items also. This is how you can calculate the sum of three numbers 

after discarding their fractional components:

float f1 = 1.5, f2 = 2.5, f3 = 3.0;
int sum = (int) f1 + (int) f2 + (int) f3;                  sum is 6

In all of these examples, we have assumed that the cast operation occurs before other 

operations. Cast is a high-priority operation, so the expression (int) f1 + f2 evalu-

ates f1 as an int before adding it to f2. We need to know how high this priority really 

is. Operator priority is taken up shortly.

 15.12 type_conversion.c: Demonstrates Type Conversion

Our next program—a three-part one—demonstrates most of the key features related 

to type conversion (Fig. 15.4). The first part almost conclusively proves that char and 

short are automatically promoted to int when occuring in an expression. The second 

part shows how to use casts both individually on operands and on the entire expression. 

The final part provides useful tips for preventing truncation from integer division. The 

program produces the following output:

Using short, number of seconds in 20 hours = 72000
Size of smin = 2
Size of smin * ssec = 4
Using char, number of seconds in 20 hours = 72000
Size of cmin = 1
Size of cmin * csec = 4
Sum after casting individual components = 9
Sum after casting final expression = 11
1. 9/5 evaluates to 1.800000
2. 9/5 evaluates to 1.800000
3. 9/5 evaluates to 1.800000

Part 1 In this part we convert 20 hours to seconds using only short and char variables. 

The sizeof operator very clearly reveals the outcome of conversion of these types. 

Note that the expression smin * ssec has a width of four bytes (size of int), which 

means that smin and ssec are individually promoted to type int when they occur in 

an expression. A similar reasoning applies to the char variables also. Note that the 

automatic conversion mechanism has prevented an overflow situation here. The integer 

das76205_Ch15_440-484.indd   458das76205_Ch15_440-484.indd   458 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 459

F I G U R E  1 5 . 4  type_conversion.c

/* type_conversion.c:  Demonstrates (i) automatic conversion of char and short,
(ii) use of casts, (iii) three techniques of preventing
truncation in integer division */

#include <stdio.h>
int main(void)
{
    char chours = 20, cmin = 60, csec = 60;
    short shours = 20, smin = 60, ssec = 60;
    int c = 9, f = 5, sum;
    float f1, f2, f3;
   
    /* 1. char and short are automatically promoted to int */
    printf(“Using short, number of seconds in 20 hours = %d\n”,
            shours * smin * ssec);     /* All variables promoted to int */
    printf(“Size of smin = %ld\n”, sizeof smin);
    printf(“Size of smin * ssec = %ld\n”, sizeof(smin * ssec));
    
    printf(“Using char, number of seconds in 20 hours = %d\n”,
            chours * cmin * csec);     /* All variables promoted to int */
    printf(“Size of cmin = %ld\n”, sizeof cmin);
    printf(“Size of cmin * csec = %ld\n”, sizeof(cmin * csec));
    
    /* 2. Difference between casting all members and
          casting the final expression */
    f1 = f2 = f3 = 3.7;
    sum = (int) f1 + (int) f2 + (int) f3;
    printf(“Sum after casting individual components = %d\n”, sum);
    sum = (int) (f1 + f2 + f3);
    printf(“Sum after casting final expression = %d\n”, sum);
    
    /* 3. Three ways of preventing truncation in integer division.
          2nd option works only if there is at least one constant */
    /* 1. Write one integer as real number */
    printf(“1. 9/5 evaluates to %f\n”, 9.0 / f);
    /* 2. Multiply by 1.0 before division */
    printf(“2. 9/5 evaluates to %f\n”, 1.0 * c / f);
    /* 3. Use a cast */
    printf(“3. 9/5 evaluates to %f\n”, (float) c / f);
    
    return 0;
}

das76205_Ch15_440-484.indd   459das76205_Ch15_440-484.indd   459 12/13/11   5:01 PM12/13/11   5:01 PM



460 Your UNIX/Linux: The Ultimate Guide

72000, which is obtained by multiplying three variables of type short or char, is larger 

than the maximum value possible for these types.

Part 2 Casts are at work here to convert an expression comprising three variables of 

type float to int. Since this involves discarding the fractional part of the float, the 

sum is less than it would have been otherwise. Observe that the loss can be reduced by 

first evaluating the expression using floating-point arithmetic and then converting the 

result to int. Using this method, we found the sum to be 11 as against 9 obtained earlier.

Part 3 The third part contains three useful tips meant for preventing truncation in integer 

division. First, if an expression contains at least one integer constant, change the type to 

floating point by adding a decimal point and zero. If the expression contains only integer 

variables, then multiply the expression by 1.0 at the beginning. Alternatively, you can 

use a cast, which applies equally to both variables and constants.

The highlight on the words at the beginning is significant. Even though the expressions 
a / b * c and c * a / b appear to be numerically equal, sometimes they are not. If you find 
this difficult to believe, move the 1.0 in the printf statement to the end so that the second 
argument becomes c / f * 1.0. See for yourself whether printf prints 1.8 or something else.

 15.13 Order of Evaluation

Type promotion and casts help prevent errors in arithmetic operations, but errors are 

also caused by following a wrong sequence of evaluation. C provides some rules that 

specify for each operator its (i) precedence (priority), and (ii) associativity when two 

operators having the same precedence share an operand.

 15.13.1 Operator Precedence
Every operator belongs to a precedence level. A higher-level operator has a greater 

priority than a lower-level one. The operators in a particular level have the same prior-

ity. For such operators, the sequence is determined by the associativity of the operator 

(discussed next). The precedence and associativity for some of the commonly used 

operators are listed in Table 15.2.

From Table 15.2, it is evident that multiplication and division belong to a higher 

level than +, -, and =. Also, the cast operator has a higher precedence than the basic 

arithmetic operators. Using this knowledge, let’s now understand how C handles the 

following expression that converts Celsius to Fahrenheit. The constant -40.0 represents 

the temperature in Celsius:

fahrenheit = 32 + -40.0 * 9 / 5

1. Of all the operators in the expression, the unary operator, -, has the highest level, 

so C first multiplies 40.0 by -1.

2. The subexpression -40.0 * 9 / 5 is then evaluated since the * and / have a 

higher priority than the binary +. Here, we have two operators belonging to the 

same level. For reasons of associativity that will be explained later, C performs 

Note

das76205_Ch15_440-484.indd   460das76205_Ch15_440-484.indd   460 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 461

the multiplication before the division, but before doing so it promotes the type of 

9 to double (the type of -40.0).

3. The subexpression at this stage has the value -360.0, which has to be divided by 5. 

C now promotes the type of 5 (by default, int) to double also. Division of -360.0 

by 5.0 yields -72.0.

4. C now performs the addition operation, but only after promoting the type of 32 to 

type double. The final result is 32.0 + -72.0 = -40.0.

5. The = operator has the lowest precedence in our list, so the final result of the previous 

operation is assigned to the variable fahrenheit. If fahrenheit is of type double, 

the right-hand side of the assignment needs no conversion, but if fahrenheit is 

of type float, then the result of the previous operation will be converted to type 

float before assignment. This could lead to truncation, but not with the value that 

we are working with.

The expression -40 - 32 needs two operations for evaluation and not one. The first - is the 
unary minus, which multiplies 40 by -1. Next, 32 is subtracted from the result. Though C 
treats -40 -32 and -40 - 32 as equivalent, you should use the second form because of the 
clarity it provides.

 15.13.2 Operator Associativity
The operator precedence rules need to be supplemented when two operators belong to 

the same level and also share an operand. Every operator has a property of associativ-
ity that determines the direction of evaluation. This attribute can take on two values: 

right-to-left (R-L) or left-to-right (L-R). Consider the following statements, which use 

similar expressions:

printf(“%f\n”, -40.0 * 9 / 5 + 32); Prints -40.000000

printf(“%f\n”, 9 / 5 * -40.0 + 32); Prints -8.000000

In the first expression, the * and / have the same precedence level and also share an 

operand (9). Both have left-to-right associativity (Table 15.2), which means 9 will be 

Note

T A B L E  1 5 . 2  Operator Precedence and Associativity

Precedence 
Level  Operators Associativity

1    () (function call), ++ (postfix), -- (postfix)   L-R

2      + (unary), - (unary), (cast), ++ (prefix), 

-- (prefix), * (dereference), & (address)

R-L

3      *, /, % (arithmetic operators) L-R

4      +, - (arithmetic operators) L-R

5          ==, != L-R

6       =, +=, -=, *=, /=, %=              R-L

das76205_Ch15_440-484.indd   461das76205_Ch15_440-484.indd   461 12/13/11   5:01 PM12/13/11   5:01 PM



462 Your UNIX/Linux: The Ultimate Guide

operated on from the left. Thus, multiplication will be done first followed by division. 

printf correctly prints the value -40.000000.

The second printf statement has the fraction 9/5 at the beginning. Here, 

the constant 5 is shared by the same / and * operators. Because of L-R associativity, 

division occurs first, which also leads to truncation. So the final and incorrect result is 

1 * -40.0 + 32 = -8.0. We can still make this statement behave correctly by using either 

9.0 instead of 9 or 5.0 instead of 5. Either change will prevent truncation.

Operator associativity becomes a determining factor only when two operators sharing an 
operand have the same precedence. This means that in the expression x * y / z, multiplication 
will be done first because * and / have the same precedence and the same associativity (L-R). 
However, in the expression x + y * z, the multiplication will still be done first because the * 
has higher precedence than the +. Associativity has no role to play here.

 15.14 Control Flow Revisited

Most of the control flow constructs offered by C have been examined in previous chapters. 

We’ll therefore focus on the differences in usage and also examine two new constructs 

(switch and do-while) that you have not encountered before in this text.

 15.14.1 Decision Making with switch
C has a special construct to handle equality of two expressions: the switch statement. 

switch uses three more keywords—case, break, and default—to match an expression 

with a specific set of values. The structure is compact, is easy to read, and replaces an 

if-else structure that uses only equality operators (== and !=).

In the syntax shown in Fig. 15.5, the expression exp enclosed within parentheses 

follows the keyword switch. A block begins followed by a set of case and break 

keywords. The expression exp is first matched with value1, and if the match succeeds, 

statements1 (which can be one or more statements) are executed. If the match doesn’t 

Note

F I G U R E  1 5 . 5  Syntax of switch Compared to if-else-if

switch if-else-if

switch (exp) {                   if (exp == value1)
    case value1 : statements1;    statements1;
                    break;           else if (exp == value2)
    case value2 : statements2;         statements2;
                    break;                         .....
           ....                           else
         default : statementsn;              statementsn;
}

das76205_Ch15_440-484.indd   462das76205_Ch15_440-484.indd   462 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 463

succeed, exp is matched with value2, and so on until control moves to the keyword 

default (if present). This keyword catches “everything else” and resembles the final 

else of an if-else-if construct.

Observe that every case option is associated with a break statement. When this 

statement is encountered, further matching is halted, and program control moves past 

the end of switch—to the statement following the closing }. However, if one case 

option doesn’t have break, control “falls through” until it finds the next break, or 

past the end of switch if it doesn’t find one. Thus, it is possible for exp to be matched 

with two or more case options. It may seem odd, but there are applications that need 

precisely this behavior.

The values to be matched must be either integer constants like 1, 2 or ‘y’, or 

constant integer expressions. The use of variables, string constants or floating-point 

constants is not permitted. The following code snippet validates a keyboard response 

for char values of ‘y’ and ‘n’:

scanf(“%c”, &response);     response previously declared as type char

switch (response) {
    case ‘y’ : printf(“You entered y\n”);
                 break;
    case ‘n’ : printf(“You entered n\n”);
                 break;
    default  : printf(“Invalid option\n”);      No break required ...

}                                               ... will break anyway

The last option labeled default is optional. If present at all, you don’t need to have 

a break there since control will in any case break out from here. It is also possible to 

specify the same action for multiple case options without repeating the code.

 15.14.2 Repetition with do-while
In addition to while and for, C offers a do-while loop. This construct behaves in a 

virtually identical manner to the while loop except that the control expression is tested at 

the end of the loop (Fig. 15.6). The loop begins with the do keyword and ends with a ;.

Unlike while, which is an entry-condition loop, do-while is an exit-condition loop. 

This means that, even if the control expression is false to begin with, a do-while 

F I G U R E  1 5 . 6  The do-while Statement

do                                          do {
    statement;                                statement1;
while (expression is true FO);             statement2;
                                                      ....
                                             } while (expression is true);

das76205_Ch15_440-484.indd   463das76205_Ch15_440-484.indd   463 12/13/11   5:01 PM12/13/11   5:01 PM



464 Your UNIX/Linux: The Ultimate Guide

loop will iterate once while a while loop won’t be entered at all. Thus, any while loop 

can be replaced with do-while only if the application requires the loop to be executed 

at least once.

 15.14.3 break and continue
There are times when we want to either prematurely terminate a loop, or suspend the 

current iteration to start a new one. C handles both situations with two keywords—break 

and continue—that can be used with all loops. Shell programmers should note that 

neither keyword accepts a numeric argument. The use of these keywords is shown in 

Fig. 15.7, which features an infinite do-while loop. The program prints the sum of two 

positive integers input from the keyboard, but only after validation.

If you input two zeroes as input, there’s no need for further processing; break 

takes control out of the loop. However, if one of the numbers is invalid (less than 0), 

continue makes sure that you reenter input. All statements following continue are 

thus ignored. Test the program at your end and modify it to work with a while loop.

There are two new features in this program. We printed the sum with fprintf 

rather than printf, using stdout as an extra argument. Also observe that the program 

is terminated with exit(0) rather than return 0. The exit function requires the inclu-

sion of <stdlib.h>. UNIX programmers tend to prefer exit(0), and we’ll also follow 

this practice in the remaining three chapters.

F I G U R E  1 5 . 7  Usage of break and continue

#include <stdio.h>
#include <stdlib.h>
int main(void) {
     int number1, number2;
     do {
        printf(“Enter two positive integers (0 0 to exit): “);
        scanf(“%d %d”, &number1, &number2);
        if (number1 == 0 && number2 == 0)
            break;
        else if (number1 <= 0 || number2 <= 0) {
            printf(“Invalid input\n”);
            continue;
        } 
        else
            fprintf(stdout, “Sum = %d\n”, number1 + number2);
     } while (1);                       /* Note the ; */
      
     exit(0);                           /* Same as return 0 */
}

das76205_Ch15_440-484.indd   464das76205_Ch15_440-484.indd   464 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 465

 15.15 Functions

A function performs a specific task by executing the code associated with it. Most of the 

work in C is performed by functions. The code for the standard functions is available in 

separate libraries. Dividing a task into functions has two advantages:

 • Imparts modularity to the code. Functions make our programs comprehensible and 

thus help in debugging them.

 • Enables their reuse. The same function can be used multiple times in the same or 

in a different program.

Before a function is called, it must be declared and defined separately (like in structures 

but unlike in variables where the two occur simultaneously). A function declaration, also 

called function prototype, specifies the usage or syntax. Here are two declarations for the 

functions named message_of_day and ctof that highlight two attributes of a function:

void message_of_day(void);          No arguments and no return value

float ctof(float cgrade);           One argument and return value

A function can optionally accept one or more values as arguments from its caller. It can 

also optionally report the outcome of its action by returning a single value to its caller. 

The first word in the declaration or prototype determines whether the function returns a 

value or not. One function returns a value of type float while the other doesn’t return 

a value at all (void). Also, the first function accepts no arguments (the second void), 

while the second one accepts an argument of type float. The two functions are typi-

cally invoked in these ways:

message_of_day();                  Function call—both voids dropped

fahrenheit = ctof(40.0);           Variable fahrenheit saves return value

After declaration, a function must be defined or implemented. The definition contains 

a header that resembles the declaration, but it also has a body containing one or more 

statements enclosed by curly braces. For the ctof function, the definition could take 

this form:

float ctof(float cgrade)                 Uses one argument

{
    float fheit;                         Variable belongs to this function

    fheit = cgrade * 9 / 5 + 32;
    return fheit;
}

A declaration is an authentic statement that tells the compiler how the function is to be 

invoked. It is placed before main so the compiler knows about it before it compares the 

invocation and definition with it. The check is made for the following:

 • Whether the function uses any arguments, and if so, the number of such arguments 

along with their data types.

 • Whether the function returns a value, and if so, its data type.

das76205_Ch15_440-484.indd   465das76205_Ch15_440-484.indd   465 12/13/11   5:01 PM12/13/11   5:01 PM



466 Your UNIX/Linux: The Ultimate Guide

The return statement terminates the function and returns a value (fheit) as well as 

control to the caller. For ctof, returning a value is its primary task; any other action (say, 

printing a message) is considered to be its side effect. Depending on the application, 

we may need to use either the return value or side effect, or both. printf also returns 

a value (the number of characters printed), but we use it primarily for its side effect 

(writing to the standard output).

The caller of a function in most cases is another function, so the functions you 

create can also call other functions. A function can even call itself, a property that has 

important applications in the programming world (like calculating the factorial of a 

number). All functions discussed in this chapter have the following characteristics:

 • They have main as the caller. This special function is called by the operating system 

(the program loader).

 • The definition occurs in the same file that calls it. So a function defined in one 

program can’t be reused in another program without replicating the definition.

In Chapter 16, we’ll learn to isolate functions from the programs that call them so they 

can be used by all. In this text, we’ll use the techniques mandated by ANSI for creating 

functions and ignore the techniques originally proposed by K&R C.

Section 3 of the UNIX documentation contains the complete details of all functions of the stan-
dard library. To learn how printf is used, simply invoke man 3 printf or man -s3 printf (Solaris).

 15.16 first_func.c: Two Arguments and Return Value

The program, first_func.c (Fig. 15.8), features a function named power that com-

putes the value of an integer raised to a certain power. It uses two integers as arguments 

of type short and returns the computed result as type long to the caller. The program 

output is shown here:

5 to the power 3 = 125
2 to the power 16 = 65536
Enter a base and power: 2 10
2 to the power 10 = 1024

The power function has been used in two ways—by saving its return value (twice), 

and as an argument to printf (once). When power is invoked, the values of the func-

tion arguments, base and exponent, are passed from main to the parameters used by 

the function, f_base and f_exponent, respectively. The function also uses two local 

variables, inta and f_result, and returns f_result after computation.

After power has completed execution, all of its variables cease to exist (including 

f_result). In the first two invocations of power, this return value was captured by as-

signing it to a variable defined in main. The last invocation used power as an expression, 

which was evaluated and then used as an argument to the function.

You can’t program in C without using functions, so always look for sections of code that can 
be used by other programs. Isolate their code into functions and later learn to maintain them 
in separate files.

Note

Tip

das76205_Ch15_440-484.indd   466das76205_Ch15_440-484.indd   466 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 467

 15.17 Function Arguments, Parameters, and Local Variables

A function has its own set of variables for carrying out tasks. In the definition of power 

(Fig. 15.8), they are seen both in the parameters (f_base and f_exponent) and func-

tion body (inta and f_result). These variables are created in a separate region of 

memory that is almost exclusively reserved for functions (Fig. 15.9). When a function 

terminates, this space is deallocated by the operating system and made available for the 

next function call. These two factors affect the visibility and lifetime of variables as the 

following paragraphs will establish.

F I G U R E  1 5 . 8  first_func.c

/* first_func.c:   Defines a function power(short, short) to compute the value
of an expression of an integer raised to a power */

#include <stdio.h>
#include <stdlib.h>

long power(short f_base, short f_exponent);         /* Function prototype */

int main(void)
{
    short base = 2, exponent = 16;
    long result;
    
    result = power(5, 3);                /* Return value saved in variable */
    printf(“5 to the power 3 = %ld\n”, result);
    
    result = power(base, exponent);
    printf(“%d to the power %d = %ld\n”, base, exponent, result);
    
    printf(“Enter a base and power: “);
    scanf(“%hd%hd”, &base, &exponent);
    printf(“%d to the power %d = %ld\n”, /* power used as an expression */
             base, exponent, power(base, exponent));
    exit(0);
}

long power(short f_base, short f_exponent)       /* Function definition */
{
     short inta = 0;                                 /* Local variable */
     long f_result = 1;                              /* Local variable */
     while (++inta <= f_exponent)
        f_result *= f_base;            /* Multiplying base by itself */
     return f_result;
}

das76205_Ch15_440-484.indd   467das76205_Ch15_440-484.indd   467 12/13/11   5:01 PM12/13/11   5:01 PM



468 Your UNIX/Linux: The Ultimate Guide

 15.17.1 Passing by Value
Consider the following invocation of power (made from main) and its definition, both 

taken from the previous program, first_func.c:

result = power(base, exponent);                       Invoked from main

long power(short f_base, short f_exponent) { ...}      Function definition

When the caller invokes a function, it assigns values to the arguments or actual argu-
ments of the function. The called function accepts these values into its parameters or 

formal arguments. Thus, when power is called, the values of base and exponent are 

copied to f_base and f_exponent, respectively. Since a parameter resides in its own 

memory space, base and f_base occupy separate memory locations (Fig. 15.9). This 

means that you can’t change base by changing f_base, i.e., you can’t change an argu-

ment by changing its copy, the parameter.

In C, all function arguments are passed by value or copied to their correspond-

ing parameters. It is thus not necessary to maintain separate names for arguments and 

parameters in the function definition. This means we could have used the names base, 

exponent, and result in the function definition too. We can thus summarize our ob-

servations in this manner:

When a function is called, its arguments are copied to the parameters of the 
function. But if the function changes a parameter, the change is not seen in 
the caller.

The situation is similar to the one created when a process is forked. However, if 

an argument contains the address of a variable, a copy of the address can still be used 

to access the variable defined outside the function. This important property is exploited 

by pointers as you’ll soon see.

F I G U R E  1 5 . 9  How Function Arguments and Parameters Are Organized in Memory

result = power (base, exponent); long power (short f_base, short f_exponent)
{
    short inta = 0;
      ......
      ......
    return f_result;
}

Function call with actual arguments Function definition with parameters

Memory Layout

das76205_Ch15_440-484.indd   468das76205_Ch15_440-484.indd   468 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 469

Even if the changed value of a parameter is not seen by the caller, a function can make it avail-
able through the return statement. However, a function can return only one value, so you 
can’t change multiple parameters in this manner.

 15.17.2 swap_failure.c: Visibility of Parameters and Local Variables
Apart from parameters or formal arguments, a function has its own set of local variables 

that are seen in the definition. For instance, the power function uses two local variables, 

inta and f_result, to compute the result it returns to its caller. These variables are 

neither visible in the caller nor in any other function. They are created every time the 

function is called and last as long as the function is active.

The next program, swap_failure.c (Fig. 15.10), demonstrates the limited vis-

ibility of function parameters and local variables. It makes an unsuccessful attempt to 

swap the values of two variables that are passed as arguments to a function. The following 

Note

F I G U R E  1 5 . 1 0  swap_failure.c

/* swap_failure.c: Establishes the impossibility of swapping two values
                      using local variables of a function */
#include <stdio.h>
#include <stdlib.h>

void swap(short x, short y);             /* Function prototype */

int main(void)
{
    short x = 1, y = 100, temp = 0;
    printf(“In main before swap: x= %hd, y = %hd\n”, x, y);
    swap(x, y);
    printf(“In main after swap: x= %hd, y = %hd\n”, x, y);
    printf(“In main temp seen as %hd\n”, temp);
    
    exit(0);
}

void swap(short x, short y)      /* Function definition; x, y local to swap */
{
    short temp = x;                  /* Local variable */
    x = y;
    y = temp;                        /* Values swapped */
    printf(“In swap after swap: x= %hd, y = %hd\n”, x, y);
    printf(“In swap temp set to %hd\n”, temp);
    return;                          /* Can’t use exit here */
}

das76205_Ch15_440-484.indd   469das76205_Ch15_440-484.indd   469 12/13/11   5:01 PM12/13/11   5:01 PM



470 Your UNIX/Linux: The Ultimate Guide

output establishes that the area of memory allocated to function arguments is separate 

from that used by the parameters and local variables of a function:

In main before swap: x= 1, y = 100
In swap after swap: x= 100, y = 1
In swap temp set to 1
In main after swap: x= 1, y = 100
In main temp seen as 0

Why scanf Variables Need the &
Consider the program, first_func.c (Fig. 15.8), where scanf uses &base and 

&exponent as placeholders for two input items. Without the & prefix, the values of 

base and exponent would be copied inside the function. User input would then 

be stored in these copies and hence they wouldn’t be visible outside the function. 

Use of the & changes the situation in a significant way.

The & operator returns the address of the variable that it prefixes. So what 

is passed to scanf are the addresses of the variables base and exponent. scanf 

saves user input at the two addresses that it has been passed, and by doing so, it 

changes the variables that were declared in main. We can say that the &base and 

&exponents are pointer variables that store addresses.

To prove our point, we have used identical variable names (x, y and temp) in both the 

caller and called function. The swap function interchanged the values of x and y all 

right, but it changed the parameters and not the original arguments. In main, x and y 

remain unchanged at their initial values (1 and 100) even after swapping. The function 

also failed to change the value of temp in main by changing its own local variable of 

the same name. We’ll solve this problem in Section 15.21.1.

 15.17.3 Using Arrays as Function Arguments
Functions also work with arrays as arguments. You can pass both an individual array 

element and an entire array as argument to a function. However, the principles of pa-

rameter passing affect array elements and entire arrays in opposite ways. Consider this 

function call that uses two array elements as arguments:

total_area = area(length[2], breadth[2]);

This is a simple call by value; the values of length[2] and breadth[2] are copied to the 

parameters, which would be represented as two simple variables. You can’t thus modify 

the array by changing length[2] or breadth[2] inside the area function.

This is not the case when you use an array name as argument. This is because the 

name of the array signifies the address of the first element of the array. Even though a 

function copies this address, it can still use this copy to access the entire array that is 

defined in main. The function, however, doesn’t know the size of the array, so the size 

has to be passed as a separate argument. For instance, a function using the array month 

as an argument must be declared and invoked in this way:

das76205_Ch15_440-484.indd   470das76205_Ch15_440-484.indd   470 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 471

short validate(short month[], short size);         Declaration uses name + []

validate(month, size);             No [] in the invocation 

Things change when the array contains a string. You know that a string is simply an 

array of type char terminated by ‘\0’, the NULL character. Any string-handling func-

tion looks for this NULL character to determine the end of the string. This explains why 

we don’t need to provide the size of the array as a function argument when the array 

contains a string.

Arrays can take up a lot of space, so it is just as well that a function can’t copy 

an array. It doesn’t make sense for a function to create a copy and then lose it immedi-

ately after the function terminates. Besides, functions that sort and search an array can 

do the job faster if they are spared the burden of creating a copy. However, the risk of 

inadvertently changing the array from the function remains. C provides a solution to 

this in the const qualifier. When used in a declaration like this,

short validate(const short month[], short size); 

even though the original array may not be a constant, the validate function which is 

passed its address treats it as a constant. Thus, if you try to change an element of  month 
inside this function, the compiler will report an error.    

 15.17.4 Using Structures as Function Arguments
A structure can also be passed as an argument to a function. While the name of an array 

signifies the address of its first element, the same is not true for a structure. When the 

name of a structure appears as a function argument, it’s a copy of the entire structure 

that is passed. Consider the following declaration and initialization of the variable named 

rectangle_obj of type struct rectangle:

struct rectangle {
   float length;
   float width;
} rectangle_obj;

rectangle_obj.length = 12.0;
rectangle_obj.width = 5.0;

The advantage of using a structure should now be obvious. Instead of using two variables, 

we can pass rectangle_obj as a single argument to a function:

print_area1(rectangle_obj);                       Entire structure passed

The entire structure is then copied inside the function. The definition of print_area1 

shows that rectangle_obj is copied to rect, the function parameter:

int print_area1(struct rectangle rect) 
{
     printf(“Structure passed; Area: %f\n”, rect.length * rect.width);
     return 0;
}

das76205_Ch15_440-484.indd   471das76205_Ch15_440-484.indd   471 12/13/11   5:01 PM12/13/11   5:01 PM



472 Your UNIX/Linux: The Ultimate Guide

Inside the function, we can access the members as rect.length and rect.width, but 

note that changing them won’t change the original structure defined outside. C, how-

ever, also allows the address of the first byte of a structure (a pointer) to be passed. This 

permits a function to change the original structure defined outside. This attribute of a 

structure will be revisited when we take up pointers (15.22.4).

While the name of an array represents the address of its first element, the same is not true for 
a structure.

 15.18 Pointers

An important topic that remains to be discussed is the pointer. A pointer signifies the 

numeric address of a single memory location where a data object is stored. When this 

address is stored in a variable, the latter is referred to as a pointer variable. For instance, 

if we save the address of the variable x in another variable p, then p is a pointer variable. 

This is how we declare and assign a pointer variable:

int x = 5;
int * p;                       Declares pointer variable p

p = &x;                        Assigns address of x to p

Once the pointer variable p is assigned an address, p is now said to point to x. This 

linkage has an important consequence: The value of x can now be accessed and changed 

by using the address stored in p. A special form of arithmetic also allows us to use a 

pointer to navigate memory and access individual array elements and thus, characters 

of a string.

C offers two unary operators—the & and *—for handling pointers. Both have a 

higher priority than the arithmetic operators, and unlike them, have right-to-left associa-

tivity (Table 15.2). A variable (x) prefixed with an & (&x) evaluates to its own address, 

which can only be stored in a pointer variable of the right type. The statement int * p; 

shows one way of using the *—to declare a pointer variable p.

You can dereference the pointer with *p to retrieve the value at the address stored 

by the pointer, i.e. the value of x:

printf(“x = %d\n”, *p);               Prints x = 5

Dereferencing is pictorially depicted in Fig. 15.11. This represents the second way of 

using the *—this time to evaluate the value stored in the address. This indirect access 

to the variable x also lets you update x:

*p = 6;                        Updating x using p; x is now 6

The * denotes indirection, i.e., obtaining a value by indirect means. A pointer, therefore, 

has a data type that matches the type of the value stored in the address. Since x is of type 

int, p is said to have the type pointer to int (int *). The value of a pointer is printed 

by printf using the %p format specifier.

Note

das76205_Ch15_440-484.indd   472das76205_Ch15_440-484.indd   472 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 473

A pointer has two values—a direct and an indirect one. The direct value is the address it stores, 
and the indirect one is the value stored at the address. If this value is of type int, the pointer 
is said to be of type pointer to int.

A pointer belongs to the category of derived data types. C supports pointers for all data 

types including arrays, structures, and functions. Even though all of these data types 

(except char) take up multiple memory locations, a pointer represents the beginning 

address. When a pointer is dereferenced, its data type determines the number of bytes 

to read from memory and the way the bytes are  interpreted.

Though a pointer is often used as a variable, it need not be so. It is, after all, 

an address, so any variable or expression that evaluates to an address can be inter-

preted as a pointer. Consider the following examples; pointers have been used in 

all of them:

int base, power;
char firstname[30] = “Dennis”;           /* Array space wasted */
char lastname[] = “Ritchie”;             /* No wastage */
printf(“Name is %s %s\n”, firstname, lastname);
scanf(“%d%d”, &base, &power);
printf(“Dolly\n”);

In the first printf statement, both firstname and lastname are arrays. The name 

of an array evaluates to an address, so both firstname and lastname are pointers. 

In the second example, even if base and power are int variables, &base and &power 

signify addresses and can thus be treated as pointers to int. You’ll also learn that a 

string enclosed within double quotes, say, “Dolly”, evaluates to an address, so a string 

is also a pointer.

Apart from a variable, a pointer can originate from three other sources. First, any variable name 
prefixed with & evaluates to a pointer. Furthermore, the name of an array or a string enclosed 
within double quotes also signifies a pointer.

Note

Note

F I G U R E  1 5 . 1 1  A Pointer to an int Variable

int * p;

Memory Layout

Value: 80
Address: 50

int x = 100;
Value: 100
Address: 80

0 10 20 30 40 50 60 70 80 90.......

p = &x;

das76205_Ch15_440-484.indd   473das76205_Ch15_440-484.indd   473 12/13/11   5:01 PM12/13/11   5:01 PM



474 Your UNIX/Linux: The Ultimate Guide

 15.19 pointers.c: Basic Features of a Pointer

The program pointers.c (Fig. 15.12), highlights the basic features of a pointer. It ac-

cesses an int variable x through two pointers p and q of type pointer to int. The address 

of x is assigned directly to p and indirectly to q. As the following output shows, we can 

change x both directly and by using its pointers, p and q:

p = 0x7fff122b72ec
x initialized to 10: *p = 10
x assigned 20: *p = 20
*p assigned 30: x = 30
*q is also 30
Changing *q: *q = 40
Change seen by *p = 40

Observe that printf uses the %p format specifier to print the address of a pointer in 

hexadecimal. The next three printf statements show how x can be accessed and changed 

F I G U R E  1 5 . 1 2  pointers.c

/* pointers.c: Declares, initializes and dereferences a pointer.
                 Uses pointer to alter value at the address it stores. */
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
    int x = 10;
    int * p = &x;                      /* Pointer declared and initialized */
    int * q;                           /* Uninitialized pointer */
    printf(“p = %p\n”, p);
    printf(“x initialized to 10: *p = %d\n”, *p);
    x = 20;                                   /* Same as *p = 30; */
    printf(“x assigned 20: *p = %d\n”, *p);
    *p = 30;                                  /* Same as x = 30; */
    printf(“*p assigned 30: x = %d\n”, x);
    q = p;                                    /* Same as q = &x; */
    printf(“*q is also %d\n”, *q);
    *q = 40;                                  /* Using copy of address */
    printf(“Changing *q: *q = %d\n”, *q);
    printf(“Change seen by *p = %d\n”, *p);
    
    exit(0);
}

das76205_Ch15_440-484.indd   474das76205_Ch15_440-484.indd   474 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 475

using *p. We first change x directly (x = 20;), access the changed value through *p, 

and then use *p to change this value again (*p = 30;).

The second pointer q is now assigned the value of p, so both p and q store the 

address of x. The last three printf statements show that *p, *q, and x are equivalent 

in all respects. The final printf shows that changing *q also affects *p. This is the 

power of pointers!

The assignment p = &x sets up a reciprocal relationship between two variables. x can be 
changed by modifying *p, and vice versa. This relationship is nonexistent between two ordinary 
variables, x and y. If x = y, changing y doesn’t change x; y has to be reassigned to x every 
time y is changed.

 15.20 Pointer Attributes

Because of the sheer power of indirection, pointers are remarkably effective in solving 

complex problems. For this reason, they are used almost everywhere except in the most 

trivial applications. Admittedly, it takes some time for a beginner to get used to these 

simple but tricky concepts. However, an understanding of the attributes that are discussed 

in the following paragraphs will stand you in good stead.

 15.20.1 Pointer Arithmetic
Indirection is one of the two strong features of a pointer; the other is the limited arithmetic 

it supports. When an integer is added to or subtracted from a pointer, the increase or 

decrease occurs in terms of storage units. So when you add two to a pointer to short, 

two storage units and not the number 2 get added to the value of the pointer (i.e., the 

memory location). Since a short is normally 2 bytes wide, this addition increases the 

value of the pointer by 4. For a pointer to int, the same addition increases the pointer 

value by 8. In the general case, adding the integer n to the pointer p yields the address

p + n * sizeof p

This property of a pointer also lets us access the array element arr[n] as *(arr + n). 

Using pointer arithmetic, we can thus navigate memory and update the contents at any 

legal memory location. Sometimes we may need to increment a pointer, and at other 

times, the value pointed to. If we are not careful we may end up doing the opposite. 

Consider the following expressions involving * and the ++ operator:

int *p ; int x = 6;
p = &x;
(*p)++;                      x is now 7

*p++ ;                       p incremented and no longer points to x

The ++ and -- (both postfix) have a higher priority than the * indirection operator. 

The expression (*p)++ increments the value of x. Without the parentheses, however, p 

would be associated with ++ and not the *. This means that it’s the pointer, and not its 

dereferenced value, that is incremented. Since p no longer points to x, the value of *p 

is unpredictable.

Note

das76205_Ch15_440-484.indd   475das76205_Ch15_440-484.indd   475 12/13/11   5:01 PM12/13/11   5:01 PM



476 Your UNIX/Linux: The Ultimate Guide

The only other arithmetic operation that you can carry out with pointers is subtrac-

tion of two pointers. This is valid provided both pointers refer to elements of the same 

array. The result signifies the number of storage units or array elements between the two 

pointer values. In the general case, &arr[m] - &arr[n] evaluates to m - n irrespective 

of the data type of the array.

 15.20.2 Other Attributes
A pointer variable can also be assigned to another pointer variable provided 
they are of the same type. This restriction imposed by ANSI overrules the flexibility 

permitted by K&R C to mix pointers of different types:

int x = 10;
int * p = &x;
int * q;
q = p;                          OK, both are of same type

The data type of a pointer is different from the type of the variable it points 
to. If the latter is of type char, the type of a correctly defined pointer is char *, i.e. 

pointer to char.

The size of a pointer is fixed and doesn’t depend on the size of the object it 
points to. A pointer, being an address, represents an integer value that is wide enough 

to address every byte of memory on a machine. This means that every type of pointer 

occupies the same number of bytes.

An uninitialized pointer must not be dereferenced. An uninitialized pointer 

contains a garbage value which may point to a memory location that is not accessible by 

your program. Your program may either behave unpredictably or terminate abnormally.

The NULL and void Pointers. A pointer may be assigned the value NULL 

(int *p = NULL). The value of NULL is normally zero, but C guarantees that it will 

not point to any existing object. You can also compare any pointer to NULL without 

using a cast. Many functions return a pointer, and they often return a NULL pointer to 

signify an error condition.

ANSI C also supports a generic pointer named void. The significance of this word 

is different from the one used in function declarations to signify the absence of return 

value or arguments. Any pointer can be compared to a pointer of type void *  without 

using a cast. Some of the system calls used in Chapter 17 (like read and write) use a 

pointer of type void * as argument. So, the formal argument void * buf represents 

char * buf, int * buf, long * buf, etc., a feature that you’ll find very useful. 

It is a common mistake to dereference a pointer that doesn’t point to a variable or an acces-
sible memory location. For instance, the following sequence may not update the contents at 
the address stored in p, but instead may cause the program to crash:

int * p, x;
*p = 1;                             Should have done p = &x; first

Caution

das76205_Ch15_440-484.indd   476das76205_Ch15_440-484.indd   476 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 477

An uninitialized pointer contains a garbage value that can reference an illegal memory loca-
tion. Assign the pointer an address of a variable before you dereference the pointer to access 
or update this variable.

 15.21 Pointers and Functions

It’s when you use functions that you strongly feel that C can’t do without pointers. 

Pointers as function arguments have two important attributes that we can’t do without:

 • Pointers represent the only mechanism by which a function can change a variable 

defined outside it. For instance, if p, which points to x, is used as a function argu-

ment, the copy of p created inside the function also points to x. So, this copy can 

also be dereferenced to access or change x. You couldn’t have done this had p not 

been a pointer.

 • Unlike a function, which can return a single value, a pointer can return multiple 

values. Thus, if a function uses three arguments having pointer as their data type, it 

can return three values through this route and one more using the return statement.

 15.21.1 Solving the Swapping Problem
The concept of passing arguments by value hit a roadblock in the program swap_failure.c 

(Fig. 15.10), which swapped, not the original arguments, but their copies. We now present 

code fragments that solve the swapping problem. Observe that this time swap uses pointers 

to short as arguments:

/* Function Declaration */
void swap(short *, short *);             /* No names -- OK */

/* In main */
    short x = 1, y = 100;
    short * px = &x, * py = &y;
    swap(px, py);                        /* Swaps successfully */
    swap(&x, &y);                        /* Same—original values restored */

/* Function Definition */
void swap(short * fx, short * fy)        /* x and y are pointers */
{
    short temp = *fx;
    *fx = *fy;                          /* Copies y to x in main */
    *fy = temp;
    return;
}

The pass-by-value mechanism applies here in the usual manner; px is copied to fx. The 

power of indirection shows up in the statement *fx = *fy;. The statement must be 

interpreted in this manner: Fetch the value at the address stored in fy, and assign this 
value to the address stored in fx. This effectively assigns the value of y to x outside the 

function. Amazing power indeed!

das76205_Ch15_440-484.indd   477das76205_Ch15_440-484.indd   477 12/13/11   5:01 PM12/13/11   5:01 PM



478 Your UNIX/Linux: The Ultimate Guide

 15.21.2 Using Pointers to Return Multiple Values
We know that a function can return a single value using the return statement. If you 

think this is a restriction that a function suffers from, consider this call to scanf:

scanf(“%2hd / %2hd / %2d”, &day, &month, &year);

scanf needs pointers so that the values assigned to the variables pointed to are also 

visible in the caller. These variables could be declared in main, assigned by scanf, 

and then made available to the caller. In a sense, scanf here returns four values—

one through the normal return route, and the others through the pointers used in its 

arguments.

 15.22 Pointers and Other Data Types

Apart from being used with the primitive data types, pointers are used extensively with 

arrays, strings, and structures. While arrays and strings are pointers by definition, you’ll 

often need to define a pointer to a structure. The following sections briefly examine 

these features.

 15.22.1 Pointers and Arrays
You can never go wrong with navigating arrays and updating their elements if you keep 

in mind this strange but simple concept:

The name of the array is a pointer that signifies the base address, i.e. address 
of the first element of the array.

This means that arr = &arr[0], the address of the first element, so arr and 

&arr[0] can be used interchangeably. The pointer arr has one limitation, though: its 

value is a constant. This is not the case with a simple pointer variable (e.g., char * p). 

In other words, you can use p = arr;, but you can’t use arr = p;. Thus, pointer 

arithmetic using an array name in an expression also gets restricted. Consider this array 

named month:

short month[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

Because month signifies an address that is a constant, you can’t use month++ or month--. 

But you can use month + 1 to represent the address of the next element (&month[1]). 

Thus, month + n signifies the address of the (n + 1)th element and *(month + n) is 

the dereferenced value. Because C automatically scales the addition of a pointer, you 

can use these expressions in a type-independent way.

Internally, C uses pointer notation, so on encountering month[1], C immediately 

converts it to *(month + 1). The dereferenced expression can represent either a vari-

able or a value depending on which side of the = it occurs:

x = *(month + 1);                 x assigned value of month[1]

*(month + 1) = x;                 month[1] assigned value of x

*(month + 1) = *(month + 3);      month[1] assigned value of month[3]

das76205_Ch15_440-484.indd   478das76205_Ch15_440-484.indd   478 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 479

An array can store data of any type—including pointers. A group of strings is most ef-

ficiently held in memory as an array of pointers. We’ll learn more about this array in 

Section 15.22.3.

For an array, arr, having any data type, the address of arr[n] is arr + n and the value stored 
at that address is *(arr + n).

 15.22.2 Pointers and Strings
C doesn’t have a primitive data type for strings, and with good reason. Any array of 

type char can be treated as a string provided it is terminated by the NULL character. 

String constants are conveniently represented by a set of characters enclosed within 

double quotes. Consider the following snippet of code that assigns a string to a variable 

in three ways:

char stg1[] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};
char stg2[] = “Hello”;                  ‘\0’ automatically inserted

char * stg3 = “Hello”;                  Same

printf(“%s\n%s\n%s\n”, stg1, stg2, stg3);     Prints Hello thrice

The first two lines define a string as an array of type char, but the second one is simpler 

to use. Note that for stg2 and stg3, the compiler adds the NULL character, so you must 

not do it yourself. Both stg1 and stg2 are pointers representing the address of the first 

element of the array (&stg1[0] or &stg2[0]). Both are constants, which means you 

can use stg1 + 1, but not stg1++.

The variable stg3 is different; it is a pointer to char. However, C allows stg3 to 

be treated somewhat like an array of type char. So, stg3 also evaluates to &stg3[0], 

and stg3[0] contains ‘H’. However, unlike stg1 and stg2, stg3 is not a constant 

because you can make it point to another memory location. You can even make it point 

to one of the arrays:

stg3 = stg1;                                       But stg1 = stg3 is not permitted

You can use all features of pointer arithmetic with stg3, including stg3++, something 

you can’t do with stg1 or stg2. String manipulation thus becomes easier when the string 

is defined as a pointer to char rather than an array of type char. Sometimes, that won’t 

be possible; you may be forced to use an array first and then define a pointer to point 

to this array (as we have done here). Pointer arithmetic can be then performed without 

restrictions on this pointer.

Because of the above, you can’t compare two strings for equality with stg1 == stg2. 

You would then be comparing the two pointers and not the values pointed to. The standard 

library offers a large number of string-handling functions, including ones that compare two 

strings for equality (strcmp), copy a string (strcpy), and compute the length of a string 

(strlen). These functions are not discussed in this chapter because they have not been 

used in subsequent chapters. Look up Section 3 of the man documentation to know how 

these functions are used.

Note

das76205_Ch15_440-484.indd   479das76205_Ch15_440-484.indd   479 12/13/11   5:01 PM12/13/11   5:01 PM



480 Your UNIX/Linux: The Ultimate Guide

 15.22.3 Array of Strings
Since a string signifies a pointer, a group of strings can be collected together in an array 

of pointers of type char *. The following code segment declares an array of pointers 

and prints each string by dereferencing the pointer stored in each array element:

#define ELEMENTS 5
short n = 0;
char * parray[ELEMENTS] = {“grep”, “-i”, “printf”, “foo1.c”, “foo2.c”};
while (n < ELEMENTS)
   printf(“%s “, parray[n++]);

This time parray is a pointer to a pointer to char, so parray[0] is a pointer to char 

and represents the string “grep”. We can thus use the %s format to print all the five 

strings using a simple while loop:

grep -i printf foo1.c foo2.c

Your next question could be this: As UNIX commands are often run with multiple 

arguments, how are these arguments passed to the program? Since it’s main which 

starts program execution, the strings and their count are passed on to main but only 

when main is defined in your program in one of these ways:

int main (int argc, char * argv[]);        No void within ()

int main (int argc, char ** argv);         Drop the [] and add a *

When you invoke a C program with arguments and where main has been defined as 

above, the program loader runs main with these arguments. Inside main, you can access 

not only each string using argv[n], but also know the number of arguments from argc. 

The names argc and argv are typical; you can choose your own names if you want to.

 15.22.4 Pointers and Structures
C supports pointers for every data type, including structures. Consider, for instance, the 

structure named rectangle_obj of type struct rectangle that we had considered 

earlier (15.17.4):

struct rectangle {
   float length;
   float width;
} rectangle_obj;

We can now define a pointer named p_rect and point it to the defined structure:

struct rectangle * p_rect = &rectangle_obj;

There are two ways of accessing the members of rectangle_obj using the pointer 

p_rect. First, we can use *, the dereferencing operator, in this manner:

printf(“Area: %f\n”, (*p_rect).length * (*p_rect).width);

das76205_Ch15_440-484.indd   480das76205_Ch15_440-484.indd   480 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 481

C provides an alternate notation that is seen when using symlinks. The -> operator can 

be used with the name of the pointer itself:

printf(“Area: %f\n”, p_rect->length * p_rect->width);

This implies that if we pass a pointer to a structure as argument, then we can use a copy 

of the pointer to access the members even if the original structure is not visible inside 

the function. We can then change the structure from inside the function.

Structures offer greater flexibility compared to arrays for a simple reason: The name of a struc-
ture does not signify the address of the first member of the structure. We can thus pass both 
a structure and its pointer as arguments to a function.

The knowledge of C that you have acquired in this chapter should be adequate to 

understand the next three chapters. Chapter 16 deviates from the current “single source 

file” model to handle multifile programs. Chapters 17 and 18 deal with the UNIX-C 

interface by examining the key system calls that a UNIX-C programmer can’t do without.

S U M M A R Y
A C program is first preprocessed and then compiled to produce a standalone executable.  

Unlike statements, preprocessor directives don’t end with a semicolon. 

ANSI C is a subset of UNIX-C as it doesn’t include the UNIX system calls.

Apart from char, which is used to store the machine’s character set, there are four 

integer types (short, int, long, and long long) and three floating-point types (float, 

double, and long double).

ANSI specifies the minimum sizes for these types along with a relationship for 

the integer types and a precision for floating-point types. The sizeof operator returns 

the size of all data types.

Arrays contain data of one type but structures contain data of any type. Unlike 

an array, a structure is first declared to create a template and then defined to allocate 

memory for an actual object. C performs no bounds checking on arrays.

Automatic type conversion occurs in expressions containing a mix of types. If that 

is not adequate, suffixes (like l and f) and casts may be used to manually convert the 

types of constants and variables.

The bitwise operators & and | operate on each bit of a number.

Each operator has a precedence that determines the order of evaluation in an ex-

pression. The associativity property is used when two operators that share an operand 

have the same precedence.

The printf and scanf functions are used for terminal I/O, and both use a control 

string for formatting output or input. Unlike printf, scanf converts keyboard input 

before saving it in one or more variables. The arguments used with scanf are pointers 

to the variables that save these values.

The switch statement is a decision-making construct that can sometimes replace 

an if-else form with compact code. Unlike while, the do-while loop guarantees loop 

entry. The break and continue statements can be used with all loops.

Note

das76205_Ch15_440-484.indd   481das76205_Ch15_440-484.indd   481 12/13/11   5:01 PM12/13/11   5:01 PM



482 Your UNIX/Linux: The Ultimate Guide

A function is first declared to let the compiler know how it is invoked, and then 

defined by specifying the code to be used. Arguments are passed by value to a func-

tion, the reason why a function can’t swap two variables without using these variables 

as pointers.

A pointer contains the address of a variable of any data type. Indirection allows 

any variable to be accessed and updated using a pointer. The name of an array signi-

fies a pointer to the first element of the array. A string represents a pointer to the first 

character of the string. 

Any pointer can be assigned or compared to a NULL pointer. A pointer of type 

void * can signify any pointer type.

Pointer arithmetic is performed in terms of storage units in a type-independent 

way. An integer can be added to or subtracted from a pointer, but two pointers can be 

subtracted only when they refer to the same array. An array can be easily browsed and 

updated using pointer arithmetic.

S E L F - T E S T

15.1 Locate at least five mistakes in this program:

#include <stdio.h>;
#define LOOP_MAX = 5
int main(void)
{
    n = 0;
    while n < ELEMENTS {
       printf(“The value of n is %d\n”, n)
       n++;
       return 0;
    )
}

15.2 Why doesn’t the compiler see any #define and #include statements?

15.3 At what stage is the code for printf and scanf included in the executable?

15.4 Is there a mistake in the following section of code?

   printf(“Input a number: “);
   scanf(“%d”, number);

15.5 Write a program that prints the sum of two integers accepted from user input.

15.6 Write a program that prompts the user for an integer exceeding 10. Validate 

the user input with an if statement and print a suitable message for invalid 

input.

15.7 Why didn’t ANSI prescribe exact sizes for the primitive data types? Is it possible 

for one machine to have the same size for int and long?

15.8 Are the expressions 5 / 3 and 5 / 3.0 equivalent? Explain with reasons.

das76205_Ch15_440-484.indd   482das76205_Ch15_440-484.indd   482 12/13/11   5:01 PM12/13/11   5:01 PM



Chapter 15: Introducing C 483

15.9 What is the difference between the following declarations?

   float rate[10] = {12.5, 13.7, 5};
   float rate[] = {12.5, 13.7, 5};

15.10 Write a program that uses (i) a for loop to accept five integers from the keyboard, 

(ii) a while loop to print them in the form array[index] = value.

15.11 The exit statement can replace every return statement. True or false?

15.12 Explain what the following code is meant to do:

   short i, size = 7, brr[7];
   short arr[7] = {1, 3, 6, 9, 11, 22, 5};
   for (i = 0; i < size; i++)
       brr[size - 1 - i] = arr[i];
   for (i = 0; i < size; i++)
       printf(“%d “, brr[i]);

15.13 Does associativity have a role to play in the evaluation of these expressions: 

(i) x + y / 100, (ii) c * 9 / 5 + 32.

15.14 Write a program that uses a function named init_array to initialize an array 

of size 6 to two times the value of its index, and print the elements in the form 

array[index] = value. Do you need to pass the size of the array as a function 

argument?

15.15 The name of an array or structure represents the beginning address of the array 

or structure. True or false?

15.16 Explain why this code won’t work:

   int * p, * q, arr[20];
   p = arr;
   p++;
   arr = q;
   arr++;

15.17 What is wrong with this code?

   int * p, x;
   *p = 1;

E X E R C I S E S

15.1 Identify the default data types for these constants: (i) 45, (ii) 5.3, (iii) ‘A’.

15.2 How is the char data type defined? What is the minimum size mandated by 

ANSI for (i) int, (ii) long, and (iii) double?

15.3 Without writing a program, evaluate (with suitable explanation) the value of the 

following expressions: (i) 3 / 5 * 6, (ii) 6 * 3 / 5, (iii) (1.0 + 3) / 5 * 6.

das76205_Ch15_440-484.indd   483das76205_Ch15_440-484.indd   483 12/13/11   5:01 PM12/13/11   5:01 PM



484 Your UNIX/Linux: The Ultimate Guide

15.4 When should you use a symbolic constant instead of a variable?

15.5 Write a program that prints as many asterisks as the integer keyed in.

15.6 Explain why this is a valid C statement and what the output would be: 

      printf(“%d\n”, printf(“printf\n”));.

15.7 Use a loop to print the letters ‘A’ to ‘Z’ in the form letter = number. Incorporate 

a line break after every 10 sets have been printed.

15.8 Write a program that repeatedly prompts for a nonzero integer to populate an 

array of size 20, using 0 to signal completion. The user then inputs an integer 

to be searched for in the array. The array index is printed if the integer is found, 

and a suitable message is printed otherwise.

15.9 If you declare an array as int arr[20];, can you access the element arr[30]? 

Explain with reasons.

15.10 Write a program that uses an if-else construct to check for a leap year.

15.11 Write a calculator program that accepts an expression in the form 

num1 operator num2. The program should use a switch construct to check 

operator and print the result. (HINT: Use the “%f %c %f” format specifier in 

scanf for splitting the input string.)

15.12 Use a do-while loop to divide a number repeatedly by 2 and print the remainder 

at every iteration.

15.13 Write a program that accepts three positive integers from the keyboard with 

suitable validation. It should indicate (i) whether the integers can form the sides 

of a right-angled triangle (Pythagorean theorem: a2 + b2 = c2), (ii) the variable 

representing the hypotenuse.

15.14 Write a program that uses a function named length to compute the length of a 

string that is input from the keyboard.

15.15 Look up the man pages of getchar and putchar before using them in a program 

that converts an MSDOS file to UNIX.

15.16 Write a program to print the sizes of pointers to char, short, int, and float. 

What do you conclude from the output?

15.17 Use a function named sphere_calc in a program to return the surface area and 

volume of a sphere but not through the return statement. The radius of the 

sphere is accepted through user input. 

das76205_Ch15_440-484.indd   484das76205_Ch15_440-484.indd   484 12/13/11   5:01 PM12/13/11   5:01 PM



485

16 
C H A P T E R  16

Program Development Tools

The C language has a special place in the UNIX system. UNIX is written in C 

and every UNIX system supports useful programming tools that aid a program-

mer in the management of C programs. Large programming projects need administration 

of both program sources and binaries. We discuss the tools that help you keep track of 

changes made in program sources and identify program defects using a powerful debug-

ging tool. We’ll learn how to rebuild only the affected program sections and preserve all 

versions using a version control scheme that allows easy archiving and retrieval. For a 

C programmer, this chapter is compulsory reading.

  Objectives
 • Understand the three phases of the compilation process and how they apply to a 

multimodule C application.

 • Learn how make handles dependencies by recompiling only the changed sources.

 • Build a static library of object files with ar and use make to automatically update 

entries in a library.

 • Understand the differences between static and shared libraries.

 • Learn how storing differences between successive versions forms the basis of 

version control.
 • Check files in and out with the Source Code Control System (SCCS) using the admin, 

get and delta commands.

 • Use the Revision Control System (RCS) and the ci, co, and rcs commands for the 

same purpose.

 • Find out why the Concurrent Version System (CVS) is superior to both SCCS 

and CVS.

 • Debug a C program with a symbolic debugger like gdb using breakpoints and 

watchpoints.

 16.1 Handling Multisource C Applications

The standard technique of using cc foo.c to create the a.out executable needs to 

be modified when working with multisource programs. Before we take up such an 

das76205_Ch16_485-534.indd   485das76205_Ch16_485-534.indd   485 12/13/11   10:49 AM12/13/11   10:49 AM



486 Your UNIX/Linux: The Ultimate Guide

application, we need to examine the three phases a C program has to pass through before 

a standalone executable is created:

 • Compiling Even though we use the term compiling to signify all three phases, 

compilation actually converts the C source code (in the .c files) to assembly lan-

guage (.s files). A preprocessor works first in this phase to replace all preprocessor 

directives (like #include) into a form that the compiler can understand.

 • Assembling The assembled code is transformed into object code by the assembler. 
A file containing object code has the .o extension. The machine understands this 

code, but it can’t be executed directly as it is incomplete; it doesn’t include the code 

of functions used in the program.

 • Linking The object code of the program is finally linked by the linker or loader 

with other object files and libraries that contain code used by functions. This phase 

produces a single executable file, which by default is named a.out.

The default action of the cc compiler (or GNU’s gcc) is to combine the three 

phases. For instance, if the code is distributed across a number of files, the following 

commands could generate a.out:

cc a.c b.c c.c Creates a.out; no .o files

gcc a.c b.c c.c Using the GNU C compiler

cc (or gcc) calls the assembler (a program named as) to create the .o files before it 

invokes the linker (a program named ld) to create a single executable. We can also invoke 

ld directly, but its syntax is a little awkward; we should leave this job to cc. After ld 

has created the executable (by default, a.out), cc removes the .o files.

Using the -c option, you can create only the object files without creating a.out:

cc -c a.c b.c c.c Creates only a.o, b.o and c.o

A mix of source and object files is also permitted. You can also use the -o option to 

specify your own executable name:

cc -o foo a.c b.o c.o Creates executable named foo

For single-source programs (where functions are stored in the same file as the 

main program itself), we normally don’t need to look at these three phases separately. 

In fact, we don’t even need the intermediate .o file. However, in a real-life scenario, we 

often need to do a partial compilation and maintain these .o files. To understand why, 

let’s examine a multisource application.

 16.1.1 A Multisource Application
Large applications are generally spread across multiple files. These files contain the 

source and object code of the functions used by the main program (the program contain-

ing the main function). They also include the header files containing the prototypes of 

the functions. We’ll now develop a multisource application that computes the interest 

on a recurring deposit. The main program, rec_deposit.c (Fig. 16.1), accepts three 

das76205_Ch16_485-534.indd   486das76205_Ch16_485-534.indd   486 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 487

arguments  representing the principal, interest, and term, and writes the maturity amount 

to the standard output. It invokes three functions:

 • arg_check This function checks whether the correct number of arguments have 

been entered. It is defined in arg_check.c, which includes arg_check.h (Fig. 16.2).

 • quit This function prints a message and terminates the program. It is defined in 

quit.c and includes quit.h (Fig. 16.3).

 • compute It computes the interest from the three arguments provided. This func-

tion is not placed in a separate file.

arg_check and quit are useful, reusable functions; they will be reused in Chapters 17 

and 18. compute is maintained in the main file only to help you understand the drawbacks 

#include <math.h>

#include “quit.h”

#include “arg_check.h”

  

float compute(float, float, float); /* Declaring function prototype */

  

int main(int argc, char **argv) 

{

    float principal, interest, term, sum ;

    char *mesg = “Three arguments required\n” ;

    char *mesg2 = “All arguments must be positive\n” ;

    arg_check(4, argc, mesg, 1); /* Checks for three arguments */

    sscanf(argv[1], “%f”, &principal); /* Converting strings to float */

    sscanf(argv[2], “%f”, &interest);

    sscanf(argv[3], “%f”, &term);

    if (principal <= 0 || interest <= 0 || term <= 0)

        quit(mesg2, 2); /* Quits with 2 as $? on error */

    sum = compute(principal, interest, term);   /* Function declared here */

    printf(“Maturity amount: %f\n”, sum );

    exit(0);

}

  

float compute(float principal, float interest, float term) {

    int i;

    float maturity = 0;

    interest = 1 + interest / 100 ;

    for (i = 1 ; i <= term ; i++)

        maturity += principal * pow(interest, i) ;

    return maturity;

}

F I G U R E  1 6 . 1  rec_deposit.c

das76205_Ch16_485-534.indd   487das76205_Ch16_485-534.indd   487 12/13/11   10:49 AM12/13/11   10:49 AM



488 Your UNIX/Linux: The Ultimate Guide

of this arrangement and to understand why this too should be moved to its own source 

file. The two header files contain—apart from the usual #include statements—the 

prototypes of their respective functions. These functions are used in main, so they need 

to be included in rec_deposit.c also.

There’s a useful rule of thumb that determines whether or not a section of code is worthy of 
conversion to a function. If the code is used at least twice in the same program or by at least 
one other program, then it needs to be maintained as a function. However, we also use func-
tions to divide the job into discrete tasks even though the code may not be reused.Tip

$ cat arg_check.c
#include “arg_check.h”
void arg_check (int args, int argc, char *message, int exit_status) {
   if (argc != args) {
       fprintf(stderr, message);
       exit(exit_status);
   }
}
  
$ cat arg_check.h
#include <stdio.h>
#include <stdlib.h>
void arg_check (int, int, char *, int);

F I G U R E  1 6 . 2  arg_check.c and arg_check.h

F I G U R E  1 6 . 3  quit.c and quit.h

$ cat quit.c
#include “quit.h”
void quit (char *message, int exit_status) {
   fprintf(stderr, message);
   exit(exit_status);
}
  
$ cat quit.h
#include <stdio.h>
#include <stdlib.h>
void quit (char *, int);

das76205_Ch16_485-534.indd   488das76205_Ch16_485-534.indd   488 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 489

The main program, rec_deposit.c, invokes arg_check to check whether three 

arguments have been input. It invokes sscanf three times to convert the argument strings 

to floating-point numbers. (This function behaves like scanf except that it converts and 

formats a string rather than the standard input.) If any of the arguments is not positive, 

quit uses fprintf to print a user-specified message to the standard error and terminates 

the program with a specified exit status. If validation succeeds, main invokes compute 

to make the actual computation.

Both quit and arg_check use fprintf to write to the standard error rather than standard out-
put. It’s like using 1>&2 in shell scripts. Recall that diverting diagnostic messages to the error 
stream allows us to redirect the program output (13.13).

 16.1.2 Compiling and Linking the Application
The functions arg_check and quit are general enough to be used by other programs 

also, so it makes sense to preserve their object files. The following invocation of cc -c 

creates three .o files:

$ rm *.o First remove all object files

$ cc -c rec_deposit.c arg_check.c quit.c
$ ls *.o
arg_check.o      quit.o      rec_deposit.o No .o file for compute

These object files now have to be linked to create the executable. We’ll use the -o option to 

specify our own executable filename, but the linker complains of an “undefined reference”:

$ cc -o rec_deposit rec_deposit.o arg _check.o quit.o
rec_deposit.o: In function `compute’:
rec_deposit.o(.text+0x154): undefined reference to `pow’
collect2: ld returned 1 exit status

By default, the linker obtains the object code of commonly used functions like printf, 

sscanf, and so on from the library, libc.a (in /lib or /usr/lib). The pow function 

belongs to a separate library, libm.a, containing mathematical functions. The linker 

will look up this library only if specifically directed to do so with the -l option. This 

option assumes the library name has the lib prefix and .a suffix, and requires only the 

remaining portion of the filename to be specified. Thus to link libm.a that contains the 

code for pow, you need to use -lm:

$ cc -o rec_deposit rec_deposit.o arg_check.o quit.o -lm
$ _

Run the program a number of times in ways that test the user-defined functions:

$ rec_deposit
Three arguments required arg_check working

$ rec_deposit 100 5 0
All arguments must be positive quit working

Note

das76205_Ch16_485-534.indd   489das76205_Ch16_485-534.indd   489 12/13/11   10:49 AM12/13/11   10:49 AM



490 Your UNIX/Linux: The Ultimate Guide

$ rec_deposit 100 5 2
Maturity amount: 215.249985 compute working

The output shows 215.25 as the maturity value of 100 units invested every year for two 

years at 5% interest. Since the program is working fine, do we need to hold on to the 

.o files? Read on.

 16.1.3 Why We Need the .o Files
Even though object files can’t be executed directly, they have three important functions, 

which is why they are often retained even after the creation of the executable:

 • If you decide to change the behavior of the quit function, you need to re-create 

quit.o and then relink all the three .o files. You can’t do that if you don’t have 

these files, in which case you’ll have to re-create them with cc -c—a job that 

could have been avoided.

 • Because quit.o is created from quit.c, you can compare their last modification 

times to determine whether the source has changed after the object file was created. 

The make program handles this function.

 • You can combine a set of .o files to form a library or archive so that you can specify 

one file rather than several .o files to generate the final executable. Library creation 

is the job of the ar command.

Note that we don’t have a separate object file for compute; its code is embedded in 

rec_deposit.o. Other programs can use quit and arg_check, but they can’t use 

compute. The lesson: Reusable functions should be placed in separate files.

 16.2 make: Keeping Programs Up to Date

Now let’s see how the files in the sample application are related to one another. quit.o 

depends on quit.c and quit.h, and if either quit.c or quit.h is modified, then quit.c 

needs to be recompiled to recreate quit.o. But then rec_deposit.o also depends 

on quit.o, which means that it needs to be rebuilt as well. A similar line of reasoning 

applies to the arg_check module also.

Keeping track of these dependencies in a large application involving several dozen 

files is simply impossible without a tool to assist us. The make command handles this job 

well. It shortens program compilation time by recompiling only those sources (.c and .h 

files) that have changed. It looks up a makefile (a control file) that specifies two things:

 • How a program or object file has dependencies on other files. For instance, 

rec_deposit is dependent on rec_deposit.o, arg_check.o, and quit.o.

 • The command to execute when a file, on which another file depends, changes. This 

could be to run the cc command to regenerate the object files.

make by default uses a file named makefile or Makefile in the user’s current directory. 

The file contains a set of rules where each rule is of the following form:

target: dependency_list
    command_list Tab at beginning of line!

das76205_Ch16_485-534.indd   490das76205_Ch16_485-534.indd   490 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 491

Here, target is generally an executable or an object file which depends on the files in 

dependency_list. If any of the files in this list change, then target has to be rebuilt using 

commands provided in command_list. The rule syntax is simple except that you need to 

keep in mind that command_list is preceded by a tab (spaces here won’t do).

The make rule for quit.o is this:

quit.o: quit.c quit.h The dependency

    cc -c quit.c The command to execute—tab before cc

make monitors the modification time of all three files, and when it sees at least one file 

in dependency_list that is newer than target, it runs cc -c quit.c to re-create quit.o. 

Enter these two lines of code in a file named makefile in your current directory. Next 

use touch to change the modification time of quit.c and then run make:

$ touch quit.c Not necessary if quit.o doesn’t exist

$ make
cc -c quit.c make runs cc

Now examine the other modules of the sample application (Figs. 16.1 to 16.3), and you’ll 

find a similar dependency in the arg_check function. Also, the main program depends 

on three .o files and two .h files. These dependencies are represented in the form of a 

dependency tree as depicted in Fig. 16.4.

Note that quit.c includes quit.h, and arg_check.c includes arg_check.h, but 

the main program includes them both. The dependency tree is implemented in the form 

of four rules placed in makefile, the default file used by make:

F I G U R E  1 6 . 4  The make Dependency Tree

rec_deposit

quit.o         rec_deposit.o             arg_check.o

quit.c quit.h rec_deposit.c arg_check.h arg_check.c

das76205_Ch16_485-534.indd   491das76205_Ch16_485-534.indd   491 12/13/11   10:49 AM12/13/11   10:49 AM



492 Your UNIX/Linux: The Ultimate Guide

$ cat makefile
# Makefile containing redundancies
rec_deposit: rec_deposit.o arg_check.o quit.o # Rule 1
    cc -o rec_deposit rec_deposit.o arg_check.o quit.o -lm
  
rec_deposit.o: rec_deposit.c quit.h arg_check.h # Rule 2
    cc -c rec_deposit.c
  
quit.o: quit.c quit.h # Rule 3
    cc -c quit.c
  
arg_check.o: arg_check.c arg_check.h # Rule 4
    cc -c arg_check.c

make uses the # as the comment character and supports the use of the \ in splitting a line 

into two. Each rule is separated from the other by a blank line (not necessary on all systems).

The ultimate target (rec_deposit) is placed in the first rule, which lists three object 

files as its dependencies. While scanning the makefile from top to bottom, you’ll oberve 

that make recursively treats each dependency as a target of its own. The three targets of 

the second tier also have their own dependencies and are shown as three separate rules. 

While moving up in the process of scanning the rules, make issues the necessary com-

mands whenever it finds the modification time of any of the dependencies to be later 

than its associated target. If an object file doesn’t exist, then make creates one.

Let’s first remove all object files in this directory (if any), so make gets a chance 

to run all four commands:

$ rm *.o
$ make
cc -c rec_deposit.c
cc -c arg_check.c
cc -c quit.c
cc -o rec_deposit rec_deposit.o arg_check.o quit.o -lm

The object files can now be considered up to date. When you issue make again, you’ll 

find that there’s nothing left for it to do:

$ make
`rec_deposit’ is up to date.

make is not restricted to handling only C programs. It can compile any program written 

in any language provided the compilation generates target files that can be compared to 

their sources. We can use make to run Fortran and C++ programs, but Java has the “make” 

feature built in. The javac compiler makes sure that all dependent source files are auto-

matically compiled before it generates the .class file that is used by the java interpreter.

If make outputs a message like  missing separator. Stop., it could mean that make didn’t see 
the tab at the beginning of a line containing command_list. Use cat -tv makefile to view all 
tabs as ^I.Tip

das76205_Ch16_485-534.indd   492das76205_Ch16_485-534.indd   492 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 493

 16.2.1 Removing Redundancies
The makefile that we just worked on has a number of redundancies. make is provided 

with a fair amount of intelligence to make the following deductions:

 • If the target and the dependency have the same base name, then command_list need 

not be specified. In other words, if quit.o has quit.c as its dependency, then you 

don’t need to specify cc -c quit.c as the command_list. Simply this statement 

would do as Rule 3:

quit.o: quit.c quit.h No command_list required

 • If the source file itself is omitted in the dependency, make assumes that the base 

source filename is the same as the object file. The preceding line thus gets short-

ened further:

quit.o: quit.h

make assumes that quit.o is created from quit.c. Before we view the next makefile 

that shows the changes, let’s understand from Section 16.2.2 that make is not merely 

concerned with compiling programs.

 16.2.2 Other Functions of make: Cleaning Up and Backup
make doesn’t always need a dependency to work on; it can run a UNIX command de-

pending on the command-line argument. For instance, you can instruct make to remove 

all object files or even perform a backup with tar. Our next makefile incorporates these 

features and the two “intelligent” features discussed previously:

$ cat makefile2
# All redundancies removed
rec_deposit: rec_deposit.o arg_check.o quit.o # Rule 1
    cc -o rec_deposit rec_deposit.o arg_check.o quit.o -lm
  
rec_deposit.o: quit.h arg_check.h # Rule 2
  
quit.o: quit.h # Rule 3
  
arg_check.o: arg_check.h # Rule 4
  
clean: # No dependency list here
    rm *.o
  
tar: # ... and here
    tar -cvf progs.tar *.c *.h

You can see make’s built-in rules implemented in Rules 2 to 4. To consider the second 

rule, rec_deposit.o depends on rec_deposit.c (assumed by make since there’s no 

.c file specified), and if that file or any of the two .h files is modified, make will run 

cc -c rec_deposit.c to generate rec_deposit.o.

das76205_Ch16_485-534.indd   493das76205_Ch16_485-534.indd   493 12/13/11   10:49 AM12/13/11   10:49 AM



494 Your UNIX/Linux: The Ultimate Guide

Now let’s examine the last two rules. There are no dependencies associated with 

the “pseudo-targets”, clean and tar. This time,  make has to be used with the target as 

argument and also with the -f option since we are no longer using the default makefile. 

When make runs with clean as argument, it removes all .o files:

$ make -f makefile2 clean
rm *.o
$ make -f makefile2 tar
tar -cvf progs.tar *.c *.h
a arg_check.c 1K
a compute.c 1K
a rec_deposit.c 1K
a arg_check.h 1K
a quit.h 1K

Many UNIX and Linux applications are available in their source form as .tar.gz or 

.tgz files. A typical application having this format is first extracted with tar and gunzip 

to dump files in a directory structure on disk. The make clean command is then run 

at the beginning to remove all object files in the current directory. This is followed by 

a “regular” make to force compilation of all programs. Finally, a make install moves 

the executables to a system directory.

 16.2.3 Macros
make supports macros, sometimes called variables, that are used to define repeatedly 

used strings. A macro is of the form macroname = value, and is defined at the beginning 

of the makefile. A macro is invoked in a rule with $(macroname) or ${macroname}.

Even though we have used the cc compiler here, some systems may instead use 

GNU’s gcc. To  run the same makefile on another system that uses gcc without making 

major changes in the body of the makefile, we simply define a macro CC = gcc, and 

then use it in a rule as $(CC):

$ cat makefile3
CC = gcc
SOURCES = rec_deposit.c arg_check.c quit.c
OBJECTS = rec_deposit.o arg_check.o quit.o
HEADERS = arg_check.h quit.h
  
rec_deposit: $(OBJECTS)
    $(CC) -o rec_deposit $(OBJECTS) -lm
  
rec_deposit.o: $(HEADERS)
  
arg_check.o: arg_check.h
  
quit.o: quit.h
  

das76205_Ch16_485-534.indd   494das76205_Ch16_485-534.indd   494 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 495

clean:
    rm $(OBJECTS)
  
tar:
    tar -cvf progs.tar $(SOURCES) $(HEADERS)

One of the four macros defines the compiler, and the other three group all files into three 

categories. Note that even though the compiler has changed here, we can still continue 

to omit the command list in three rules. This is because the CC macro is a make builtin, 

and, by default, CC expands to cc. Here, it expands to gcc:

$ make -f makefile3 clean
rm rec_deposit.o arg_check.o quit.o
$ make -f makefile3
gcc   -c  rec_deposit.c
gcc   -c  arg_check.c
gcc   -c  quit.c
gcc -o rec_deposit rec_deposit.o arg_check.o quit.o -lm

Apart from CC, there are two macros that are built into make. CFLAGS lists the options 

that also have to be used in compilation. LDFLAGS determines the options used by the 

linker. We’ll not discuss these flags, but we’ll revisit make after we have learned to build 

a library file with ar.

 16.3 ar: Building a Library (Archive)

In real-life projects, specifying all object files in a makefile could be a tedious job. It’s 

more convenient to group them into a library or archive with the ar command. ar can 

manipulate an archive in the same way tar does, except that an ar archive has the .a 

extension. The command uses the following options:

-r Adds a file if it is not present in the archive or replaces an existing one.

-q Appends a file at the end of the archive.

-x Extracts a file from the archive.

-d Deletes a file in the archive.

-t Displays the table of contents of the archive.

-v Displays verbose output.

Though ar supports options without the hyphen, POSIX requires ar options to be 

hyphen-prefixed. Let’s stick to the example files used in the section on make and create 

an archive named librec.a to initially contain two object files. The -r option creates 

the archive before adding the object files:

$ ar -rv librec.a quit.o arg_check.o
r - quit.o
r - arg_check.o
ar: writing librec.a

das76205_Ch16_485-534.indd   495das76205_Ch16_485-534.indd   495 12/13/11   10:49 AM12/13/11   10:49 AM



496 Your UNIX/Linux: The Ultimate Guide

The library filename is specified first, followed by object filenames. We can add other 

object files with -q, and then check the table of contents with -t:

$ ar -qv librec.a compute.o Appending to archive

a - compute.o
ar: writing librec.a
$ ar -tv librec.a
rw-r--r--  1027/    10    676 Dec 21 14:37 2003 quit.o
rw-r--r--  1027/    10    724 Dec 21 14:37 2003 arg_check.o
rw-r--r--  1027/    10    952 Dec 21 14:38 2003 compute.o

We can now safely delete all three object files from the directory. If required, we can 

extract a file from the archive using -x or remove it from the archive with -d:

$ ar -xv librec.a compute.o
x - compute.o
$ ar -dv librec.a compute.o
d - compute.o
ar: writing librec.a
$ ar -tv librec.a
rw-r--r--  1027/    10    676 Dec 21 14:37 2003 quit.o
rw-r--r--  1027/    10    724 Dec 21 14:37 2003 arg_check.o

By default, the -x option extracts all object files. We deleted compute.o from the archive 

because the sample application doesn’t need it.

 16.3.1 Using the Library
Now that we have a library ready for use, rather than specify all object files separately, we 

can specify instead the library name as an argument to cc (and the -lm option, of course):

cc rec_deposit.c librec.a -lm

We can also use the -l option with our library. Since our library name was chosen care-

fully (lib + rec + .a), the -lrec option is the correct specification, but we also need 

to use -L to specify the location of the library:

cc rec_deposit.c -lrec -L”.” -lm

By default, the compiler looks in /lib and /usr/lib to locate all library files. Our 

library is not located there, so we need to use -L.

If you have built a number of libraries, store them in a separate directory in your own home 
directory tree, and then use the -L option to cc to point to this directory. If others are also 
going to use your library, ensure that this directory has read and execute permission.

 16.3.2 Maintaining an Archive with make
What happens when the sources for these object files are modified? Interactive use of 

ar to maintain an archive can still be quite painful. make is the answer yet again; it can 

Tip

das76205_Ch16_485-534.indd   496das76205_Ch16_485-534.indd   496 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 497

both recompile the source files and replace the archive entries with their newer versions. 

To do this, make identifies an archived object file in this form:

archive_name(object_file)

The object file is placed in parentheses and is preceded by the library name. The fol-

lowing makefile takes care of compiling and archiving:

$ cat makefile4
CC = gcc
rec_deposit: rec_deposit.o librec.a(quit.o) librec.a(arg_check.o)
    $(CC) -o rec_deposit rec_deposit.o librec.a -lm
  
rec_deposit.o: quit.h arg_check.h
  
librec.a(quit.o): quit.h
  
librec.a(arg_check.o): arg_check.h

Observe the changed specification of the object files. The makefile entries are a little 

longer this time, but make here has some additional work to do: it has to ensure that the 

archive is rebuilt:

$ touch quit.c Change modification time of this file

$ make -f makefile4
gcc   -c -o quit.o quit.c
ar rv librec.a quit.o
a - quit.o
ar: writing librec.a
rm -f quit.o
gcc -o rec_deposit rec_deposit.o librec.a -lm

Note that make invokes ar to replace the archive with the updated version of quit.o.

 16.4 Static and Shared Libraries

In Section 16.3, we created a static library. When a program is compiled and linked 

to a static library, the object code of the library is included in the executable. Several 

programs may use the same function, which means that the same library code gets in-

cluded in all of these programs. This bloats the code size and eats up disk space. This 

also means that if the code for the function changes, all programs that have the functions 

statically linked to them must be recompiled. Even though make can do this work for us, 

compilation of several hundred programs can still take a lot of time.

C also supports shared libraries (also called shared objects). In contrast to a 

static library, a program using a shared library loads the library code only during runtime. 

Once loaded, a single copy of the library code is kept in memory for other programs 

das76205_Ch16_485-534.indd   497das76205_Ch16_485-534.indd   497 12/13/11   10:49 AM12/13/11   10:49 AM



498 Your UNIX/Linux: The Ultimate Guide

to use. Programs using shared libraries could be a little slower, but the executables are 

smaller since they don’t include library code. As opposed to static libraries, a change in 

function code doesn’t necessitate recompilation of those programs using the function 

(provided the function prototype is not altered).

Shared libraries usually have the extension .so, and the compiler has system-

dependent options to create them. Look in /lib and /usr/lib, and you’ll see a number 

of these .so files. Many of them are in fact symbolic links to the actual library. For 

instance, libbz2.so could be a symlink to libbz2.so.1.0.0, so named to include 

the version number. Shared libraries are increasingly being used by modern UNIX and 

Linux systems.

 16.5 Version Control with SCCS, RCS, and CVS

A software product is never perfect and has to be maintained in two ways. One, bugs 

must be rectified as and when they are reported. Second, applications must be constantly 

enhanced by incorporation of new features. In most cases, both activities go on concur-

rently, and programs thus experience version changes. For instance, development work 

could be going on for Release 2 when a customer reports a bug in Release 1.2.

When a bug is detected, the program developer needs to access the relevant ver-

sion of the program to make modifications. Since all versions of the program have the 

same filename, how does one store them all without wasting disk space? If you recall 

what diff does (9.5), you might be tempted to adopt a system that stores one version 

in full, and only its differences with subsequent versions. You are on the right track; we 

are talking about version control.
Version control is widely used to maintain multiple versions of programs, shell 

scripts, configuration files, and even documents that undergo revisions. Every UNIX 

system supports the Source Code Control System (SCCS). Berkeley was responsible for 

the Revision Control System (RCS), which is also available on Linux systems. Today, the 

Concurrent Version System (CVS) has gained wide popularity mainly because it can be 

used on a network like the Internet. Irrespective of the system you use, version control 

implies the following:

 • When a program or document has multiple versions, only one of them is stored in 

its entirety. Subsequently, the differences between one version and its immediate 

ancestor need to be stored. The complete information is held in a single encoded file.

 • You can check out (i.e., retrieve) any version from the encoded file for compila-

tion or editing.

 • After the changes have been carried out, they are checked in (put back) to the 

encoded file.

 • The system must not allow two users to edit identical versions of a file even though 

they can be permitted to view their contents or compile them. This is not true for 

CVS, which has a facility to merge all changes or present them for reconciliation.

 • Users can be allowed or denied checkout rights to one or more versions.

In a version control system, the set of changes made to a version is known as a delta. It’s 

the delta that is saved in the special file rather than the complete version. Every version 

das76205_Ch16_485-534.indd   498das76205_Ch16_485-534.indd   498 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 499

is allocated a version number, which in SCCS is known as the SID (SCCS Id). A SID 

or version number comprises two or four components:

 • By default, the system allocates a two-component SID of the form release.level. The 

first SID is 1.1, which represents release 1, level 1. Every time a version is created, the 

level number is incremented, and the SID correspondingly changes to 1.2, 1.3, and so 

forth. The system won’t change the release unless you specifically direct it to do so.

 • When you need to change a version (say, one with SID 1.2) when a later version 

also exists (say SID 1.3), the system creates intermediate versions, called branch 
deltas. The SID of a branch delta has four components, the two additional ones 

being called branch and sequence. In this case, the system will allocate SID 1.2.1.1 

to the next version. Subsequent branch deltas would be 1.2.1.2, 1.2.1.3, and so forth.

Almost all version control systems implement these features with their own set of com-

mands. Both use diff (or a derivative) to maintain these differences in a special encoded 

file but in reverse ways. SCCS saves the first version and applies the saved diff com-

mands to retrieve subsequent versions. RCS and CVS save the final version and retrieve 

earlier versions by working backwards. The systems are incompatible and have different 

file-naming conventions and formats. POSIX includes SCCS but not RCS or CVS. We’ll 

discuss the SCCS system in some detail and the RCS and CVS systems briefly.

The term delta is used liberally in the SCCS system to refer to a set of changes, a version or the 
SID. There is also an SCCS command by that name. RCS or CVS documentation doesn’t use 
this term as much as SCCS does; revision is their delta.

The encoded file contains mainly text but also includes control characters. Never edit this file 
directly to retrieve a version. Always use the appropriate commands that check out and check 
in a version (or delta).

 16.6 An SCCS Session

SCCS comprises a suite of programs that are often held in a separate directory 

(/usr/ccs/bin in Solaris), so make sure that you have the directory in your PATH. These 

programs can be run in two ways:

 • Individually, which we will do with the admin, get, delta, and unget commands.

 • Using the sccs command itself as a frontend to these tools. You can run both get 

and sccs get, but the sccs frontend has certain additional features which are not 

available in the standalone tools.

SCCS saves all versions of a program in a single encoded file that is often called the 

SCCS file or SCCS history file. This file is named with an s. prefix. The program foo.c 

is saved in the SCCS file, s.foo.c. SCCS will first look up the SCCS directory for an 

SCCS file and then the current directory. In the following sections, we’ll use these tools:

 • admin, initially for creating the SCCS file, and later for controlling user access.

 • get to check out any version—read-only or editable.

 • delta to save the changes (deltas) in the SCCS file.

Note

Caution

das76205_Ch16_485-534.indd   499das76205_Ch16_485-534.indd   499 12/13/11   10:49 AM12/13/11   10:49 AM



500 Your UNIX/Linux: The Ultimate Guide

 • unget to reverse the action of get when we discover that the checkout was not 

the right thing to do.

 • sact and prs to report on the current state of editing activity and the state of 

SCCS files.

 • rmdel and comb to compress an SCCS file by removing intermediate versions.

By default, checkout and checkin access is permitted to all users. In Section 16.9, we’ll 

use the admin command to restrict this access. In this section, we’ll create an SCCS file, 

check out a version, make changes to it, and then check it in.

 16.6.1 admin: Creating an SCCS File
For our discussions, we’ll use the program quit.c, a variant of which was used in the 

discussions on make and ar. So let’s first have a look at the contents of the first version 

having the SID 1.1, i.e., release 1, level 1:

$ cat quit.c SID 1.1

#include <stdio.h>
#include <errno.h>
void quit (void) {
   printf(“Error number %d, quitting program\n”, errno);
   exit(1);
}

This file now has to be checked in to its SCCS file, s.quit.c. This file doesn’t yet ex-

ist, so we have to create it with the admin command. The -i option specifies the input 

filename:

$ admin -i quit.c s.quit.c
No id keywords (cm7) cm7 is an SCCS keyword

$ ls -l s.quit.c
-r--r--r--   1 sumit    staff        279 Dec 21 14:49 s.quit.c
$ rm quit.c

admin creates s.quit.c, which contains the contents of quit.c as well as control 

information like the owner of the file and the time of creation. All future versions of 

quit.c must be checked in to this file. We no longer need to maintain quit.c separately.

To understand what SCCS understands by cm7, use its help command with the 

keyword as argument, only to know that the message can be ignored:

$ /usr/ccs/bin/help
Enter the message number or SCCS command name: cm7
cm7:
“No id keywords”
No SCCS identification keywords were substituted for.
You may not have any keywords in the file,
in which case you can ignore this warning.
      ...........

das76205_Ch16_485-534.indd   500das76205_Ch16_485-534.indd   500 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 501

The reason why we used the absolute pathname here is that this author uses the Bash 

shell, and help is a Bash builtin. We’ll also look at some of the other keywords that 

SCCS displays, especially when things don’t work properly.

 16.6.2 get: Checking Out
We now have a single version of quit.c in the SCCS file, s.quit.c. The get command 

checks out a file, and depending on the options used, you can

 • check out a read-only version or delta (the default).

 • display the contents to the standard output using the -p option.

 • check out an editable version using the -e option.

 • check out a specific version using the -r option. The same option is also used to 

change the release number.

Sometimes, we need to check out a noneditable version for compilation, so let’s 

use get to obtain a read-only version:

$ get s.quit.c
1.1 Current version number

7 lines File contains 7 lines

No id keywords (cm7)
$ ls -l quit.c
-r--r--r--   1 sumit    staff        129 Dec 21 14:50 quit.c

SCCS reports that delta 1.1 comprising 7 lines has been checked out. This file doesn’t 

contain keywords, but we’ll learn to place some useful keywords later. get -e checks 

out an editable version and also creates a lock file, p.quit.c:

$ get -e s.quit.c
1.1
new delta 1.2
7 lines
$ ls -l quit.c
-rw-r--r--   1 sumit    staff        129 Dec 21 14:51 quit.c
$ ls -l p.quit.c
-rw-r--r--   1 sumit    staff         32 Dec 21 14:51 p.quit.c

This time SCCS points out that unless you explicitly specify the SID, it will assign 1.2 

to this delta when you return it. The lock file prevents the user from checking out the 

file again:

$ get -e s.quit.c
ERROR [s.quit.c]: writable `quit.c’ exists (ge4)
$ /usr/ccs/bin/help ge4
ge4:
“writable ̀ ...’ exists”
For safety’s sake, SCCS won’t overwrite an existing g-file if it’s writable.
If you don’t need the g-file, remove it and rerun the get command.

das76205_Ch16_485-534.indd   501das76205_Ch16_485-534.indd   501 12/13/11   10:49 AM12/13/11   10:49 AM



502 Your UNIX/Linux: The Ultimate Guide

The lock file maintains information related to the current session. It is used by the sact 

command to be discussed later. SCCS also understands the checked-out file as a “g-file,” 

but we won’t need to use this term again.

When you use get -e, the SCCS file is locked for the delta that was checked out. No other 
user can check out this delta until it has been checked in. However, other users can check out 
editable versions of other deltas, but the files have to reside in different directories since they 
all have the same name.

 16.6.3 delta: Checking In
You can now edit the file that you just checked out, so let’s change the quit function 

to accept the exit status as an argument. After editing, quit.c should look like this:

$ cat quit.c SID 1.2

#include <stdio.h>
#include <errno.h>
void quit (int exit_status) { This line has changed

   printf(“Error number %d, quitting program\n”, errno);
   exit(exit_status); ... and this one

}

Two lines have changed, and it should interest you to know how the SCCS file shown 

in Fig. 16.5 internally stores these two differences. We’ll now use the delta command 

to check this file in. delta pauses for a line of comment, which is also recorded in the 

SCCS file:

$ delta s.quit.c
comments? Function modified to accept exit status as argument
No id keywords (cm7)
1.2
2 inserted
2 deleted
5 unchanged
$ ls -l quit.c
quit.c: No such file or directory

By default, SCCS assigns this version the same SID that was displayed by get (1.2) 

when it was checked out for editing. delta also removes quit.c, so you can’t modify a 

version that is in SCCS custody until you “get” it first. Next time you retrieve a version 

with get -e, the next delta will check it in as SID 1.3.

You must document the changes at the comments? prompt. The prs command dis-

plays these comments, which helps other programmers know why the changes were made 

in the first place. It will also help you when you look at your own program months later.

It is characteristic of many commands of the SCCS suite that changes are reported 

in three parts—the number of lines inserted, deleted, and unchanged. We’ll use delta’s 

-r option in Section 16.8.2, where we’ll learn to handle multiple deltas.

Note

das76205_Ch16_485-534.indd   502das76205_Ch16_485-534.indd   502 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 503

Sometimes, you’ll want to check in a delta because you don’t want to lose the changes but 
would still like to continue editing. In that case, use delta -n, which leaves the file undeleted. 
But the SCCS file has recorded that the delta has been checked in and won’t allow you to check 
in further changes you make to this file. You must rename it before you use get -e again, and 
then overwrite the checked-out version with the one you just edited. RCS handles this situation 
better; it allows you to “lock” the file and check it in.

Tip

^Ah32958
^As 00002/00002/00005
^Ad D 1.2 03/12/21 14:53:41 sumit 2 1
^Ac Function modified to accept exit status as argument
^Ae
^As 00007/00000/00000
^Ad D 1.1 03/12/21 14:49:39 sumit 1 0
^Ac date and time created 03/12/21 14:49:39 by sumit
^Ae
^Au
^AU
^Af e 0
^At
^AT
^AI 1
#include <stdio.h>
#include <errno.h>
^AD 2
void quit (void) {
^AE 2
^AI 2
void quit (int exit_status) {
^AE 2
   printf(“Error number %d, quitting program\n”, errno);
^AD 2
   exit(1);
^AE 2
^AI 2
   exit(exit_status);
^AE 2
}

F I G U R E  1 6 . 5  The SCCS File, s.quit.c, Containing SIDs 1.1 and 1.2

das76205_Ch16_485-534.indd   503das76205_Ch16_485-534.indd   503 12/13/11   10:49 AM12/13/11   10:49 AM



504 Your UNIX/Linux: The Ultimate Guide

 16.6.4 unget: When You Change Your Mind
It’s possible that you checked out a version for editing, then found that the changes 

weren’t worthy of a new delta. You can undo your previous checkout by using the unget 

command:

$ get -e s.quit.c
1.2
new delta 1.3
7 lines
$ unget s.quit.c
1.3 New delta had you checked it in

Since SCCS keeps track of all editable checked-out versions, you can’t check out the 

same delta again for editing unless you reverse the action of get -e. Note that unget 

has nothing to reverse when you check out a read-only version:

$ get s.quit.c
1.2
  ......
$ unget s.quit.c
ERROR [s.quit.c]: ̀ p.quit.c’ nonexistent (ut4)

We’ll be using the get and delta commands again for retrieving multiple deltas and 

changing release numbers. Before that, we need to look at two tools that maintain state 

information.

 16.7 Activity and History Information

You won’t always remember the exact form of the delta tree, nor will you always be 

able to recall the exact SID of a delta that you want to check out. SCCS offers the prs 

command to present the history of an SCCS file and sact to provide information on 

the state of editing activity.

 16.7.1 sact: Displaying Activity Status
The sact command shows the status of editing activity of a file. When no editable ver-

sion has been checked out, it reports an error:

$ sact s.quit.c
ERROR [s.quit.c]: No outstanding deltas

As you are aware, get -e s.quit.c creates the lock file p.quit.c. The same file also 

provides information about editing activity to sact. Here, sact reports that user sumit has 

checked out a version with SID 1.1. Note that the contents of the lock file are identical:

$ sact s.quit.c
1.1 1.2 sumit 03/12/21 14:51:09

das76205_Ch16_485-534.indd   504das76205_Ch16_485-534.indd   504 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 505

$ cat p.quit.c
1.1 1.2 sumit 03/12/21 14:51:09

The current SID (1.1) is followed by the default SID (1.2) to be used for the next delta. 

The output also shows the user and date (in yy/mm/dd format) and time of checking 

out. get -e looks up this file and prevents a checkout if the SID of a requested delta 

is found to be present in the file. When multiple deltas have been checked out, sact 

reports with multiline output:

$ sact s.quit.c
1.2 1.2.1.1 sumit 03/12/21 15:53:46
2.1 2.2 jpm 03/12/21 15:54:30

The second line shows that user jpm has checked out delta 2.1. When all users have 

checked in the changes, the lock file is deleted.

 16.7.2 prs: Displaying the SCCS History
The prs command displays the history of an SCCS file. It helps you identify the delta 

you need by displaying the comments that you provided when you checked in a delta. 

By default, the command presents the complete history:

$ prs s.quit.c
s.quit.c:
  
D 1.2 03/12/21 14:53:41 sumit 2 1       00002/00002/00005
MRs:
COMMENTS:
Function modified to accept exit status as argument
  
D 1.1 03/12/21 14:49:39 sumit 1 0       00007/00000/00000
MRs:
COMMENTS:
date and time created 03/12/21 14:49:39 by sumit

Each delta is presented in a group of four lines with the most recent delta shown first. 

The first line replicates the information provided by sact, but it also shows three 

/-delimited numbers that represent the number of lines inserted, deleted, and unchanged. 

prs obtains this information from the SCCS file itself as shown in Fig. 16.5.

To display output earlier or later than a cut-off date or release, prs uses the -r 

option to identify a specific release and the -c option to set a cut-off date and time. For 

instance you can use -r1.2 or -c031213 as the cut-off point. You then need to use either 

the -e (earlier) or -l (later) option to produce selective output:

prs -r1.2 -e s.quit.c All releases earlier to SID 1.2

prs -c0312141501 -l s.quit.c All releases later than 15:01 hours

 on Dec 14, ‘03

das76205_Ch16_485-534.indd   505das76205_Ch16_485-534.indd   505 12/13/11   10:49 AM12/13/11   10:49 AM



506 Your UNIX/Linux: The Ultimate Guide

 16.8 Continuing Editing with SCCS

We have performed the basic editing and activity monitoring functions. The default SID 

allocation system and version locking should suffice for single-user SCCS sessions. 

However, SCCS also permits you to:

 • Change the release number, using branch deltas as and when required.

 • Edit multiple but different deltas simultaneously.

 • Compress an SCCS file by removing redundant versions.

 • Place identification keywords in an SCCS file.

In the following sections, we’ll examine these features.

 16.8.1 get -r: Changing the Default Numbering Sequence
By default, SCCS increments the level number every time you use get -e to check out 

a file and delta to check it in after modification. At some point, you’ll need to change 

this default numbering scheme:

 • When the changes are significant. In that case,  you may need to assign a new 

release number rather than increment the level number.

 • When you make changes to a previous delta rather than the latest one. The previous 

delta  develops into a branch delta.

Let’s first consider the allocation of a new release number to our quit.c program. You’ll 

first have to indicate to SCCS your intention of doing so when you check out the ver-

sion with get. By default, SCCS displays the next delta in the get output, but you can 

override that by specifying your own release number with the -r option:

$ get -e -r2 s.quit.c
1.2 Last version

new delta 2.1
7 lines

Here, -r2 indicates to SCCS that the next delta would be 2.1, but observe that get 

checks out 1.2, the latest version. After editing, check in the file in the usual manner:

$ delta s.quit.c
comments? Function modified to accept the message as argument.
No id keywords (cm7)
2.1
2 inserted
4 deleted
3 unchanged

Now that you have SID 1.1, 1.2, and 2.1 in the SCCS file, you have to specify the -r option 

with get to retrieve a previous version. For instance, you need to use get -r1.2 s.quit.c 

to check out a read-only version of delta 1.2.

das76205_Ch16_485-534.indd   506das76205_Ch16_485-534.indd   506 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 507

Branch Deltas Consider this real-life situation where you need to check out an editable 

version of an older delta, say, 1.2, for a client when delta 1.3 also exists in the SCCS 

file. What SID would you allocate to the revised version? SCCS then makes use of the 

four-level numbering scheme discussed earlier (16.5). The checked-out version develops 

into a branch delta with SID 1.2.1.1, where the last two numbers represent the branch 

and sequence numbers:

$ get -e -r1.2 s.quit.c
1.2
new delta 1.2.1.1
7 lines
$ sact s.quit.c
1.2 1.2.1.1 sumit 03/12/21 15:00:35

The checkin is done in the usual manner with delta. The next time you need to revise 

this version to 1.2.1.2, you’ll have to “get” it with -r1.2.1.

 16.8.2 Working with Multiple Versions
SCCS allows users to check out multiple but different deltas. Since it checks out all 

versions with the same filename, you must use mv to rename the existing file before you 

check out another delta. Consider this get and mv sequence :

$ get -e -r1.2.1.1 s.quit.c
1.2.1.1
new delta 1.2.1.2
7 lines
$ mv quit.c quit1.c

You can now check out delta 2.1. sact shows the same user has checked out two 

different versions:

$ get -e -r2.1 s.quit.c
2.1
new delta 2.2
5 lines
$ sact s.quit.c
1.2.1.1 1.2.1.2 sumit 03/12/21 15:14:14
2.1 2.2 sumit 03/12/21 15:14:41

The default invocation of delta assumes that only a single delta has been checked out, 

so it fails this time:

$ delta s.quit.c
comments?
ERROR [s.quit.c]: missing -r argument (de1)

das76205_Ch16_485-534.indd   507das76205_Ch16_485-534.indd   507 12/13/11   10:49 AM12/13/11   10:49 AM



508 Your UNIX/Linux: The Ultimate Guide

Since the current file, quit.c, was checked out as SID 2.1, you need to specify this 

number with the -r option:

$ delta -r 2.1 s.quit.c
comments? Identification keywords added
2.2
  .......

Now there’s a single delta left to check in, so let’s rename quit1.c to quit.c before 

running delta. This time delta reports no ambiguity and doesn’t require the -r option:

$ mv quit1.c quit.c
$ delta s.quit.c
comments? No changes this time
No id keywords (cm7)
1.2.1.2
  ........

The resultant delta tree is shown in Fig. 16.6. The trunk comprises the deltas 1.1, 1.2, 

2.1, and 2.2. There is a single branch emanating from this trunk, which comprises the 

branch deltas 1.2.1.1 and 1.2.1.2. We’ll next attempt to remove some of these deltas.

When there are too many deltas in your SCCS files, the prs output needs to be processed 
with grep so you can visualize the tree yourself. Convert the following prs–grep sequence to 
a shell script or a shell function:

$ prs s.quit.c | grep “^D”
D 1.2.1.2 03/12/21 15:17:05 sumit 6 4 00000/00000/00007
D 2.2 03/12/21 15:16:43 sumit 5 3 00004/00000/00005
D 1.2.1.1 03/12/21 15:03:36 sumit 4 2 00001/00001/00006
D 2.1 03/12/21 15:00:12 sumit 3 2 00002/00004/00003
D 1.2 03/12/21 14:53:41 sumit 2 1 00002/00002/00005
D 1.1 03/12/21 14:49:39 sumit 1 0 00007/00000/00000

These are the six deltas that we created in the preceding examples. Two of them are branch 
deltas.

Tip

1.1 2.1 2.2

1.2.1.1 1.2.1.2

1.2

F I G U R E  1 6 . 6  The SCCS Tree

das76205_Ch16_485-534.indd   508das76205_Ch16_485-534.indd   508 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 509

 16.8.3 rmdel and comb: Removing and Combining Versions
After some time, there will be too many versions, and you may not need to revert to all 

of them. You can then delete the ones you don’t need with the rmdel command. But 

before we do that, let’s consider the delta tree shown in Fig. 16.6. All deltas can’t be 

deleted with rmdel, only the ones that are leaves, i.e., the ones that other deltas don’t 

depend on. If you try to delete one that’s not a leaf, SCCS refuses:

$ rmdel -r1.2 s.quit.c
ERROR [s.quit.c]: not a ‘leaf’ delta (rc5)

In Fig. 16.6, deltas 2.2 and 1.2.1.2 are leaves, but the others are not. We can delete them 

with rmdel:

$ rmdel -r1.2.1.2 s.quit.c ;  rmdel -r 2.2 s.quit.c
$ _ Two deltas removed

The comb command preserves only the latest deltas. It removes unnecessary deltas and 

compacts the SCCS file by preserving only the required ancestors. comb considers the 

nonleaf deltas that don’t have branches out of them to be unnecessary. The command 

creates a Bourne shell script that has to be executed separately:

$ comb s.quit.c > quit_comb.sh
$ chmod +x quit_comb.sh
$ ./quit_comb.sh
No id keywords (cm7)

This script includes SCCS commands and sed and ed commands, and it creates a smaller 

SCCS file. Executing it on the SCCS file in the state represented in Fig. 16.6 removes 

three deltas. You are advised to use this command with caution.

 16.8.4 Using Identification Keywords
You can take advantage of SCCS identification keywords to place control information 

in the file itself. A keyword is of the form %keyword%, and some useful keywords are:

%I% SID of the checked-out file

%M% Filename (without .s prefix)

%D% Current date in yy/mm/dd format

%T% Current time in hh:mm:ss format

%U% Time of creation of delta in hh:mm:ss format

These keywords must be embedded in the comments used with /* and */. For instance, 

you can insert the following comment lines at the beginning of your source file:

/* Filename: %M%
   SID: %I%
   Time: %D% %T% */

das76205_Ch16_485-534.indd   509das76205_Ch16_485-534.indd   509 12/13/11   10:49 AM12/13/11   10:49 AM



510 Your UNIX/Linux: The Ultimate Guide

These lines are left alone when you check out an editable version, but when you retrieve 

a read-only version or use get -p, SCCS expands the keywords:

$ get -p -r2.2 s.quit.c | head -n 3
2.2 These two lines are written

9 lines to the standard error 

/* Filename: quit.c
   SID: 2.2
   Time: 03/12/21 15:23:46 */

It’s convenient to maintain the SID and current date and time in the file itself. Note that 

this expansion is not performed on an editable delta, because subsequent deltas could 

be related to this delta. Saving the expanded form would pass on wrong information to 

the next related delta. RCS betters SCCS in the handling of these keywords.

 16.9 Controlling Access to SCCS

By default, every user is allowed checkin and checkout rights provided the SCCS file is 

accessible to the user in the first place. This means that every directory in the pathname 

of the SCCS file must have execute permission. The default rights are changed with the 

admin command, the same command we used to create an SCCS file. The command 

can be used only by the owner of the SCCS file.

 16.9.1 Controlling User Access
admin uses the -a option to add a user or a group and the -e option to remove a user 

or group from the list. Either a username or a numeric GID must be specified with the 

option. Here’s how admin is used to prevent user sumit from checking out quit.c:

$ admin -e sumit s.quit.c
$ get -e s.quit.c
2.1
ERROR [s.quit.c]: not authorized to make deltas (co14)

The user sumit can, however, check out a read-only version; that can’t be restricted by 

admin. To restore the checkout rights to sumit, use the -a option:

$ admin -asumit s.quit.c
$ get -e s.quit.c
2.1
new delta 2.2
5 lines
$ unget s.quit.c We don’t want a new delta

Both options can be used multiple times in a single invocation. Moreover, SCCS was 

designed for users working in a group, so admin can be used with a GID also:

admin -e jpm -e juliet -e romeo -a henry s.quit.c
admin -a202 s.quit.c Access to users with GID 202

das76205_Ch16_485-534.indd   510das76205_Ch16_485-534.indd   510 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 511

 16.9.2 Controlling Releases
admin also supports the -fl and -dl options for controlling checkout access to one or 

more releases. These options are suffixed either by the letter a (all) to allow or deny ac-

cess to all releases or one or more release numbers. The -fla option locks all releases:

$ admin -fla s.quit.c
$ get -e -r2.1 s.quit.c
2.1
ERROR [s.quit.c]: SCCS file locked against editing (co23)

You can remove locks to one or more releases using the -dl option. The following com-

mand restores the SCCS default by unlocking all releases:

admin -dla s.quit.c Unlocks all releases

Specific releases are controlled in these ways:

admin -fl2 s.quit.c Locks release 2

admin -fl2,3 s.quit.c Locks releases 2 and 3

admin -dl2.1 s.quit.c Unlocks release 2.1

SCCS also supports the sccs command, which acts as a frontend to other subcommands. 

Many of these subcommands have the same names as the standalone commands that we 

have used (like get and sccs get), but some sccs subcommands don’t have standalone 

equivalents. Look up the sccs man page for further details.

 16.10 The Revision Control System (RCS)

The Revision Control System (RCS) was created by Berkeley as an alternative to AT&T’s 

SCCS. RCS is standard on all BSD UNIX systems and is also available on many UNIX 

systems. Linux supports the GNU implementation of RCS, which is arguably simpler to use 

than SCCS. The basic functionality is achieved with just three commands: ci, co, and rcs.

Unlike SCCS, RCS saves the latest file in its entirety and reconstructs previous 

versions by working backwards. (SCCS saves the earliest version in full.) The encoded 

RCS file contains the information required to assemble all revisions (the name RCS uses 

for versions or deltas) along with status and activity information. It is not much different 

from an SCCS file in essence, though. However, RCS maintains no separate lock file 

(like the one created by get -e). All locking information is kept in the RCS file itself.

An RCS file is named with a ,v suffix. Thus, quit.c is checked in to the RCS file, 

quit.c,v. The system looks in a directory named RCS for the RCS file, failing which it 

looks in the current directory. To avoid repetition, we’ll briefly repeat the session (us-

ing quit.c) that we went through with SCCS and note the differences, which are also 

presented in Table 16.1. This time, we’ll maintain the RCS file in the ./RCS directory.

 16.10.1 Creating an RCS File with ci
Unlike in SCCS, there are two commands that can create an RCS file. The rcs -i 

command creates an initialized and empty file. Revisions are subsequently checked in 

das76205_Ch16_485-534.indd   511das76205_Ch16_485-534.indd   511 12/13/11   10:49 AM12/13/11   10:49 AM



512 Your UNIX/Linux: The Ultimate Guide

with the ci command. Alternatively, we can use ci itself for both tasks, and the first 

invocation creates version 1.1:

$ ci quit.c
RCS/quit.c,v  <--  quit.c
enter description, terminated with single ‘.’ or end of file:
NOTE: This is NOT the log message!
>> RCS file created with version 1.1
>> . Dot terminates standard input 

initial revision: 1.1
done
$ ls -l RCS
total 4
-r--r--r--    1 sumit    users         342 2003-12-23 12:41 quit.c,v

ci creates this file with revision 1.1 checked in. We’ll use the same command to check 

in editable versions. Unlike admin -i of SCCS, the default invocation of ci removes 

the original file.

Unlike SCCS commands that use the SCCS filename as argument (like s.quit.c), RCS (and 
CVS) commands use the unencoded filename (like quit.c), the file that you actually work with.

 16.10.2 co and ci: Checking Out and In
The co command checks out a file. Like get, it retrieves a read-only version of the latest 

version by default, and it displays the retrieved data on the standard output with the -p 

option. It’s the -l (lock) option that checks out an editable version:

$ co -l quit.c Like get -e s.quit.c

RCS/quit.c,v  -->  quit.c

Note

T A B L E  1 6 . 1  SCCS and RCS: Command Usage (File: foo.c)

SCCS Command RCS Command Significance

admin -i foo.c s.foo.c ci foo.c Creates encoded file with SID 1.1
get s.foo.c co foo.c Checks out read-only version
get -e s.foo.c co -l foo.c Checks out editable version
delta s.foo.c ci foo.c Checks in current editable version
unget s.foo.c rcs -u foo.c Reverses the action of checkout

get -r ver s.foo.c ci -r ver foo.c Specifies release number ver for next 

checkin (at time of checkout for SCCS, 

checkin for RCS)
prs s.foo.c rlog foo.c Prints version history
sact s.foo.c rlog foo.c Prints checked-out status

rmdel -r ver s.foo.c rcs -o ver foo.c Deletes version ver
what s.foo.c ident foo.c Displays version

das76205_Ch16_485-534.indd   512das76205_Ch16_485-534.indd   512 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 513

revision 1.1 (locked)
done
$ ls -l quit.c
-rw-r--r--    1 sumit    users         129 2003-12-23 12:42 quit.c

Unlike SCCS, RCS doesn’t create a lock file, but it still locks a version from concurrent 

editing by placing an entry in the RCS file. If you try to check out again, co issues a 

warning and offers to remove the existing checked-out version:

$ co -l quit.c
RCS/quit.c,v  -->  quit.c
revision 1.1 (locked)
writable quit.c exists; remove it? [ny](n): n
co: checkout aborted

SCCS doesn’t offer this feature, but we preferred not to take advantage of it here by 

entering n at the prompt. You can now edit the file that you just checked out, and then 

use the ci command to check it in:

$ ci quit.c
RCS/quit.c,v  <--  quit.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ‘.’ or end of file:
>> Function modified to accept exit status as argument
>> .
done

RCS assigns revision number 1.2 to this version. We’ll soon use the -r option with both 

ci and co to explicitly specify the revision number.

Reversing the Action of co -l If you have checked out a version for editing and 

now want to reverse the action, use the command rcs -u quit.c (unget in SCCS). 

The rcs command is examined later, but for now, let it be known that here it simply 

removes the entry specifying the lock in the RCS file.

You can’t normally check in a version unless you have checked it out with a lock with co -l. 
In case you have used chmod +w on a read-only version, and edited the file, you need to lock 
this file first with rcs -l filename before you return it to the RCS file with ci.

 16.10.3 Specifying Revisions
Unlike in SCCS, the -r option in co can’t be used to indicate what the next revision 

number would be. For instance, you can’t use this command to indicate that you intend 

to check in the next revision as 2.1:

$ co -l -r2 quit.c
RCS/quit.c,v  -->  quit.c
co: RCS/quit.c,v: revision 2 absent

Tip

das76205_Ch16_485-534.indd   513das76205_Ch16_485-534.indd   513 12/13/11   10:49 AM12/13/11   10:49 AM



514 Your UNIX/Linux: The Ultimate Guide

The -r option is used with co to check out an existing version only. Let’s check out the 

latest version of the file:

co -l quit.c

After you have edited the file, you have to explicitly assign the version number when 

checking it in:

$ ci -r2 quit.c
RCS/quit.c,v  <--  quit.c
new revision: 2.1; previous revision: 1.2
enter log message, terminated with single ‘.’ or end of file:
>> Function modified to accept the message as argument.
>> .
done

You can specify higher version numbers also, but the missing ones can’t then be allocated.

Creating a Branch Delta Like in SCCS, when you check out a version that is not 

the latest, you can check in that version only as a branch delta. RCS follows the same 

four-numbered component scheme used by SCCS:

$ co -l -r1.2 quit.c
RCS/quit.c,v  -->  quit.c
revision 1.2 (locked)
done

Unless you invoke the rlog command to find out the state of the revisions, you won’t know 

at this stage what the next revision would be. You’ll know that only when you check it in:

$ ci quit.c
RCS/quit.c,v  <--  quit.c
new revision: 1.2.1.1; previous revision: 1.2
enter log message, terminated with single ‘.’ or end of file:
>> Creating a branch delta
>> .
done

Working with Multiple Versions The procedure for handling multiple but different 

versions is the same as in SCCS. Rename each version after checkout, and rename it 

back before checkin. For every checkin except the last one, you’ll also have to specify 

the version number with ci -r. This procedure has already been discussed (16.8.2) and 

will not be repeated here.

 16.10.4 rlog and rcs: Other RCS Functions
RCS supports two important tools—rlog and rcs—that are used for a host of func-

tions. rlog combines the sact and prs commands of SCCS in one; it reports both on 

das76205_Ch16_485-534.indd   514das76205_Ch16_485-534.indd   514 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 515

the versions existing in the RCS file and the ones that are locked for editing. Fig. 16.7 

shows the rlog output after version 1.2 is checked out and locked.

The output shows details of each revision in three or four lines, and it also points 

out the one that has a branch. Note that rlog also shows that revision 1.2 is locked by 

user sumit. The annotations reveal certain features of RCS that we are constrained to 

overlook in this text.

F I G U R E  1 6 . 7  The Output of rlog

$ rlog quit.c
RCS file: RCS/quit.c,v Current location of file
Working file: quit.c
head: 2.1 Highest version number
branch:
locks: strict Only a locked file can be checked in
    sumit: 1.2 sumit has locked version 1.2
access list: Accessible to all
symbolic names:
keyword substitution: kv
total revisions: 4; selected revisions: 4
description:
RCS file created with version 1.1
----------------------------
revision 2.1
date: 2003/12/23 07:19:21;  author: sumit;  state: Exp;  lines: +2 -4
Function modified to accept the message as argument.
----------------------------
revision 1.2     locked by: sumit;
date: 2003/12/23 07:12:48;  author: sumit;  state: Exp;  lines: +2 -2
branches:  1.2.1;
Function modified to accept exit status as argument
----------------------------
revision 1.1
date: 2003/12/23 07:10:07;  author: sumit;  state: Exp;
Initial revision
----------------------------
revision 1.2.1.1
date: 2003/12/23 07:20:35;  author: sumit;  state: Exp;  lines: +1 -1
Creating a branch delta
========================================================================

das76205_Ch16_485-534.indd   515das76205_Ch16_485-534.indd   515 12/13/11   10:49 AM12/13/11   10:49 AM



516 Your UNIX/Linux: The Ultimate Guide

The rcs command is used to change RCS file attributes. Apart from creating an 

initialized version of an RCS file, its domain of activity includes lock control, removal 

of versions, and administering user access rights. We’ll briefly discuss these functions 

in the following paragraphs.

Lock Control Applications developed by a single user need not be subjected to the 

locking mechanism. By default, RCS enforces strict locking (as shown in Fig. 16.7); 

you can’t check in a file unless you have it locked in the first place (with co -l). But 

this can be altered using the -U option, which allows the owner to check in a version 

without locking it first:

rcs -U quit.c Can still use ci quit.c

The -u option removes an existing lock on a version and rolls back a locked checkout 

in the same way the SCCS unget command reverses the action of get. As discussed 

before (16.10.2), rcs -u quit.c removes the lock on the latest version of quit.c.

The -l option locks a file. This feature is useful when you have checked out a file 

in nonlocking mode, made alterations to it, and now want to check it backin. This has 

also been discussed (16.10.2—Tip).

Removing Versions You can use the -o option to remove any version provided it 

doesn’t have a branch or is not locked. Thus, rcs -o1.3 quit.c removes revision 1.3 

without renumbering the versions. Look up the man page to know that this option also 

works with a range of revision numbers.

Controlling User Access Like the SCCS admin command, rcs also supports the -a 

option to add a user to its access control list and -e to drop users from the list.

Identification Keywords Like SCCS, RCS also supports the use of identification 

keywords, except that the keywords are both expanded and remain usable even after an 

editable version of the file has been checked out. Here are some of the keywords that 

you can use in the comments section of your C program:

/*
  $RCSfile$
  $Author$
  $Date$
  $Id$
  $Revision$
*/

After you have checked in and checked out the file, you can use the ident command 

to display this section:

$ ident quit.c
quit.c:
     $RCSfile: quit.c,v $

das76205_Ch16_485-534.indd   516das76205_Ch16_485-534.indd   516 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 517

     $Author: sumit $
     $Date: 2003/12/24 08:13:55 $
     $Id: quit.c,v 1.7 2003/12/24 08:13:55 sumit Exp sumit $
     $Revision: 1.7 $

Note that RCS preserves the variable names even after expansion. The scheme is so 

well designed that all editable checked-out versions also contain this information. This 

is not the case with SCCS.

 16.11 The Concurrent Version System (CVS)

RCS is a simpler system to use than SCCS, but it is not without its drawbacks. First, 

RCS can’t handle a group of files as an integrated unit. Each RCS command acts on a 

single file. Also, RCS locks a file when it is checked out, so two or more users can’t 

concurrently make changes to the same file. Finally, RCS can’t be used in a network, 

which means that it is suitable only for small projects involving a few users.

The Concurrent Version System (CVS) addresses all of these issues. CVS considers 

a group of files related to a project as a module, and its commands can act both on the module 

as a single unit and on individual files in the module. As the name implies, CVS permits 

concurrency; two or more users can check out and make changes to the same file. When 

that happens, CVS first tries to merge the changes, failing when it detects a conflict and 

suitably informs the user. Finally, CVS works on the Internet. That’s how Linux came into 

being, so it’s no wonder that much of its development work used CVS for version control.

RCS users should find a friend in CVS because CVS uses the same file formats 

used by RCS. Also, a single command (cvs), using separate arguments, handles all 

version management tasks. In some cases, the arguments are also similar. For instance, 

CVS uses cvs co and cvs ci for checking out and checking in a file, respectively (in 

addition to cvs checkout and cvs commit). A module representing a directory tree is 

housed in a repository from which users check out files into a local directory called the 

sandbox. The important CVS commands are shown in Table 16.2, and in the following 

sections we’ll take them up in sequence.

T A B L E  1 6 . 2  CVS Keywords (Used with the cvs command)

Keyword Significance

init Initializes the repository
import Imports files into repository (not for later addition)
checkout Retrieves files from repository to sandbox
diff Lists differences between version in sandbox and that in repository
update Updates sandbox with current state of repository
commit Updates repository to include changes in sandbox
add Adds files to repository from sandbox (followed by commit)
remove Removes files from repository  (followed by commit)

das76205_Ch16_485-534.indd   517das76205_Ch16_485-534.indd   517 12/13/11   10:49 AM12/13/11   10:49 AM



518 Your UNIX/Linux: The Ultimate Guide

 16.11.1 Setting Up the Repository
On a Linux system, /usr/local is a convenient location for setting up the repository. 

Log in as root and create a directory named, say, cvs_repository. Since Linux users 

generally have users as the default group, we’ll change the group-id of this directory to 

users and assign it write permission:

# cd /usr/local
# mkdir cvs_repository
# chgrp users $_ Using Bash

# chmod g+w $_

All users with users as their group-id can now read or write files in this directory. Now, 

log out of root and switch to your own account. Initialize the repository with the cvs 
init command:

cvs -d /usr/local/cvs_repository/ init

This creates a directory named CVSROOT in /usr/local/cvs_repository with a number 

of control files that you need not bother about. The notable exception is the file modules, 

which is meant to define a module. The commands examined in the following sections 

don’t use this file, so we’ll ignore it.

 16.11.2 Importing Files
Every cvs command needs to know the location of the repository. You can use the -d 

option with every cvs command, but a simpler technique would be to define the variable 

CVSROOT, in which case the -d option need not be used:

export CVSROOT=/usr/local/cvs_repository

Because we’ll change one file in the repository, you should copy some of the programs 

used in Chapter 15 to a separate directory. Now switch to this directory and invoke the 

cvs import command:

$ cvs import -m”A Simple Project” simple_project no_vendor first_release
N ./pointers.c
N ./sizeof.c
N ./type_conversion.c
  
No conflicts created by this import

This command creates the module, a directory named simple_project in $CVSROOT. 

CVS also places the three files in RCS-encoded format (with the ,v suffix) in that 

directory. The letter N at the beginning of each line signifies that the files are new. The 

-m option describes the imported files and the last two arguments are meant to assign a 

vendor tag and a release tag. CVS incorporates these strings in the encoded files. The 

repository is now ready for use.

das76205_Ch16_485-534.indd   518das76205_Ch16_485-534.indd   518 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 519

CVS acts in recursive manner whenever it is used with a directory name as argument. It rep-
licates the directory structure in the repository during an import, and in the sandbox during 
a checkout. Unlike in RCS, you need not issue separate commands for each file of a module 
(though sometimes you’ll need to do so).

 16.11.3 Checking Out
We now need to create a sandbox, i.e., a separate directory where the files will be saved 

when they are checked out. Let’s create a directory named cvs_sandbox, “cd” to it, and 

then use the cvs checkout (or cvs co) command. The following command checks out 

the sizeof.c file from the repository:

$ cvs checkout simple_project/sizeof.c
U simple_project/sizeof.c

The U indicates that the file has not been changed by anyone yet. For checking out the 

entire module, simply specify the name of the module as argument:

$ cvs checkout simple_project
cvs checkout: Updating simple_project
U simple_project/pointers.c
U simple_project/type_conversion.c

In either case, CVS creates the directory simple_project in cvs_sandbox and places 

the files in this directory. Because sizeof.c was checked out earlier, CVS updates the 

checked-out module. This directory now contains a subdirectory named CVSROOT and 

the three C programs (with .c extension).

 16.11.4 Editing and Checking In
Now switch to the directory simple_project (the sandbox) and edit the file sizeof.c. 

We are told that floating-point constants have the type double, so let’s verify it by 

including this line:

printf(“Size of 4.6: %ld bytes\n”, sizeof(4.6));

After you have successfully compiled and executed the program (and found 4.6 to occupy 

8 bytes!), you can now check in the file with the cvs commit (or cvs ci) command. 

Include the -m option to avoid calling up the vi editor:

$ cvs commit -m”An additional printf for checking type of 4.6”
cvs commit: Examining .
/usr/local/cvs_repository/simple_project/sizeof.c,v  <--  sizeof.c
new revision: 1.2; previous revision: 1.1

You now have two versions of sizeof.c in the repository. Just to be sure, find out the 

differences between the two versions with the cvs diff command. Use the -r option 

to specify the release that the latest version has to be compared to:

Note

das76205_Ch16_485-534.indd   519das76205_Ch16_485-534.indd   519 12/13/11   10:49 AM12/13/11   10:49 AM



520 Your UNIX/Linux: The Ultimate Guide

$ cvs diff -r1.1
cvs diff: Diffing .
Index: sizeof.c
=================================================================
RCS file: /usr/local/cvs_repository/simple_project/sizeof.c,v
retrieving revision 1.1
retrieving revision 1.2
diff -r1.1 -r1.2
13a14
>       printf(“Size of 4.6: %ld bytes\n”, sizeof(4.6));

You can see the diff command at work, and the output tells us that a line has been ap-

pended after line 13. The -r option can also be used twice to compare any two versions.

 16.11.5 Merging and Resolving Conflicts
CVS allows multiple users to check out identical versions of a file. If the changes made 

by them do not contradict one another, CVS merges them so that the updated file is 

available to every user. However, conflicts can occur when another user has checked 

in a later version while the current user is still working on the older version. When this 

user checks in her version, CVS puts out a warning:

cvs commit: Up-to-date check failed for `sizeof.c’
cvs [commit aborted]: correct above errors first!

This user now has to use the cvs update command to keep her version in sync with 

the latest version:

$ cvs update sizeof.c
RCS file: /usr/local/cvs_repository/simple_project/sizeof.c,v
retrieving revision 1.3
retrieving revision 1.4
Merging differences between 1.3 and 1.4 into sizeof.c
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in sizeof.c
C sizeof.c

The C before the filename is significant. CVS tells us that someone has checked in a 

version after this user has checked out her version. CVS first tries to merge the dif-

ferences, but here it is unable to do so. It detects a conflict and modifies the file to 

include comments for the user’s benefit. Here’s what this user may find when she opens 

sizeof.c for editing:

<<<<<<< sizeof.c
   return 1;
=======
        exit(0);
>>>>>>> 1.4

das76205_Ch16_485-534.indd   520das76205_Ch16_485-534.indd   520 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 521

The reason behind the conflict is clear. One user has changed return 0; to return 1;, 

while another user has replaced it altogether with exit(0);. The current user has to decide 

which change to keep (preferably after consulting with the other user), and then delete 

the markers from the file.

 16.11.6 Setting Tags and Exporting the Repository
At some point, you may wish to freeze one or more files of a project for shipment to a 

customer without affecting the development work. Later, you may wish to extract the 

files in their frozen state. CVS allows this with the rtag and export commands. For 

instance, to apply the tag Version_1_0 to all files of the module, you’ll have to use the 

cvs rtag command like this:

$ cvs rtag Version_1_0 simple_project 
cvs rtag: Tagging simple_project

At any point later, you can extract the same files from the repository. You can’t do this 

in your current sandbox because that would overwrite the existing files (which could 

be newer):

$ cvs export -r Version_1_0 simple_project 
cvs [export aborted]: cannot export into working directory

Now switch to another directory and repeat the command. You can avoid this step by 

using the -d dir option to download the files to dir instead of simple_project. Also, 

instead of using the -r option, you can use the -D option to set a date. You can thus have 

the latest files in the sandbox and the ones tagged Version_1_0 in a separate directory.

 16.11.7 Other Features
Adding Files From time to time, you’ll need to add files to the repository. The cvs add 

command marks (schedules) files for addition but does not add them. The repository is 

updated only when you issue cvs commit:

$ cvs add arrays.c
cvs add: scheduling file `arrays.c’ for addition
cvs add: use ̀ cvs commit’ to add this file permanently
$ cvs commit -m”arrays.c added”
/usr/local/cvs_repository/simple_project/arrays.c,v  <--  arrays.c
initial revision: 1.1

All users now have access to this file. Note that you can’t do this from the directory from 

where you originally imported the files. The command works only from the sandbox, 

i.e., cvs_sandbox/simple_project.

Removing Files A file can be deleted from the repository with the cvs remove com-

mand. This command, too, marks the file in the repository for deletion. Actual removal 

can take place only after you have deleted the file from the sandbox. You need cvs 
commit again:

das76205_Ch16_485-534.indd   521das76205_Ch16_485-534.indd   521 12/13/11   10:49 AM12/13/11   10:49 AM



522 Your UNIX/Linux: The Ultimate Guide

$ cvs remove dos2unix.c
cvs remove: file ̀ dos2unix.c’ still in working directory
$ rm dos2unix.c
$ cvs remove dos2unix.c
cvs remove: scheduling `dos2unix.c’ for removal
cvs remove: use ̀ cvs commit’ to remove this file permanently
$ cvs commit -m”File deleted”
cvs commit: Examining .
/usr/local/cvs_repository/simple_project/dos2unix.c,v  <--  dos2unix.c
new revision: delete; previous revision: 1.3

Any change made to the repository must be finalized with the cvs commit command. For 
noninteractive behavior, use the -m option whenever you use cvs commit.

Using Help The cvs help command prints a screenful of commands that you can try 

out on your own. The abridged output shows some of the useful ones:

history Show repository access history
import Import sources into CVS, using vendor branches
init Create a CVS repository if it doesn’t exist
log Print out history information for files
ls List files available from CVS
rdiff Create ‘patch’ format diffs between releases
remove Remove an entry from the repository
rlog Print out history information for a module
rtag Add a symbolic tag to a module
status Display status information on checked out files
tag Add a symbolic tag to checked out version of files
unedit Undo an edit command
update Bring work tree in sync with repository

You can obtain further details about a command by using cvs -H with the command 

name. You’ll find the ls and status commands quite useful for learning the names of 

the files in the repository and whether the files in the sandbox are up to date.

 16.12 Debugging Programs with gdb

When a program doesn’t behave properly, as a first measure we place printf statements 

at vulnerable locations in the program to print the values of variables suspected to cause 

improper behavior. This technique doesn’t work with large or complex programs. Also, 

it leaves us with a lot of cleaning up to do because these diagnostic printf statements 

have to be finally removed from the final code. Every programmer must know how to 

use a debugger.

A debugger is a program that controls the execution of another program. It does 

this by capturing the program environment at any specified instant. A programmer can 

Note

das76205_Ch16_485-534.indd   522das76205_Ch16_485-534.indd   522 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 523

then view the state of variables at that instant and change them if necessary. A debugger 

can also specify a breakpoint where a program will halt, or permit the execution of one 

or more statements at a time. A program must be compiled with the -g option of cc or 

gcc for a debugger to work.

In this final section, we discuss gdb, the debugger program from GNU. Because 

of its popularity, we have chosen gdb over BSD dbx, which was featured in the previ-

ous edition of this text. gdb can work with C, C++, Fortran, and Java programs, and it 

is available on all Linux systems and most other platforms, including Windows. This 

debugger can be used in these ways:

 • Debug mode In this mode, the debugger runs the program and allows you to 

monitor the execution of each statement.

 • Attach Mode gdb can attach itself to any running process and make available the 

information in memory that is used by the program.

 • Post-mortem mode If a program crashes for, say, an illegal access of memory, gdb 

can ascertain the cause of the crash by examining the core file (file named core 

or core.pid) that was dumped.

The most commonly used commands of gdb are listed in Table 16.3. In this chapter, 

we’ll use gdb in the debug mode to locate two bugs in the program parsestring.c 

(Fig. 16.8). The program prompts for a multiword string, saves the string with scanf, 

and splits it into words with the strtok library function. The final printf statement 

is meant to print each string on a separate line. All debuggers display line numbers in 

their diagnostic messages, so for convenience we have used nl to number these lines.

T A B L E  1 6 . 3  gdb Commands

Command Significance

list Displays 10 lines of source code

list m, n Displays lines m to n of source code
run Executes program until next breakpoint or watchpoint
cont Continues execution
next Executes next statement (function considered a single statement)
step Executes next statement but descends into function

break n Sets a breakpoint on line number n

break function Sets a breakpoint on line invoking function

break n condition Sets a breakpoint on line number n if condition is true

watch x Sets a watchpoint on variable or expression x

whatis x Displays type of variable or expression x

display x Displays value of variable or expression x

print x Same as above
edit Edits source file with editor defined in EDITOR variable
quit Quits gdb

das76205_Ch16_485-534.indd   523das76205_Ch16_485-534.indd   523 12/13/11   10:49 AM12/13/11   10:49 AM



524 Your UNIX/Linux: The Ultimate Guide

Observe the rather unusual control string used by scanf. The sequence %[^n] 

matches all characters except a newline, so the entire line is saved in buf. strtok, a 

powerful string-handling function, splits (tokenizes) a string stored in buf on the delim-

iter defined in DELIM. The function is a little unusual, which is why it appears twice in 

the code. In the first call, it returns the first word, but subsequent calls require the first 

argument to be NULL. It’s customary to terminate an array of pointers to char with a 

NULL pointer, though this program doesn’t strictly require it. The program, however, 

doesn’t produce the desired behavior:

$ gcc -o parsestring parsestring.c && parsestring
Enter a multiword string: dbx or gdb
$ _ No output!

The for loop was not invoked. For our investigations, we’ll have to run gdb with 

parsestring as argument, but only after the program has been recompiled with the 

-g option:

gcc -g -o parsestring parsestring.c Creates larger executable

  1    #include <stdio.h>

  2    #include <string.h> /* For strtok */

  3    #define BUFSIZE 200 /* Maximum size of command line */

  4    #define ARGVSIZE 40 /* Maximum number of arguments */

  5    #define DELIM “ \n\t\r” /* White-space delimiters for strtok */

  

  6    int main (void) {

  7       int i, n;

  8       char buf[BUFSIZE+1]; /* Stores the input line */

  9       char *clargs[ARGVSIZE]; /* Stores the split strings */

 10       n = 1;

  

 11       printf(“Enter a multiword string: “);

 12       scanf(“%[^\n]”, buf); /* Matches all characters except \n */

  

 13       clargs[0] =  strtok(buf, DELIM);  /* First word */

 14       while ((clargs[n] = strtok(NULL, DELIM)) != NULL)

 15          n++; /* Remaining words extracted */

 16       clargs[n] = NULL; /* Sets last pointer to NULL */

  

 17       for (i = 0; i <n ; i++)

 18          printf(“Word %d is %s\n”,i,  clargs[i]);

  

 19       return 0;

 20    }

F I G U R E  1 6 . 8  parsestring.c A C Program Containing Two Bugs

das76205_Ch16_485-534.indd   524das76205_Ch16_485-534.indd   524 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 525

This copies the symbol table and other debugging information to the executable. gdb looks 

up this table to examine variable names, their types, and their location in the executable. 

Once the program has been successfully debugged, you must recompile the program with-

out the -g option. This drops the symbol table and also reduces the size of the executable.

Breakpoints are a feature of every debugger, but gdb allows the setting of break-
points, watchpoints, and catchpoints. A breakpoint specifies a location (by line number 

or function name) where a program pauses. The programmer can then check the program 

environment, say, some variables. A watchpoint stops the program when the value at a 

specific memory location (often a variable) changes. A program pauses at a catchpoint 
when a specific event occurs. In this section, we’ll examine breakpoints and watchpoints.

Using gdb, we’ll step through the program one statement at a time, running some 

general-purpose gdb internal commands on the way. We’ll reassign a variable from inside 

gdb and then watch its behavior. gdb is a powerful program with a lot of features, but a 

useful subset of these features should suffice for not-too-complex debugging situations.

 16.12.1 Starting gdb
Before we begin a debugging session, let’s set the EDITOR variable in the shell. You can 

then use the vi editor from gdb with its edit command:

export EDITOR=/usr/bin/vi

Now that we have compiled parsestring.c using the debug option (-g), invoke gdb 

with the name of the executable as argument:

gdb parsestring Must be compiled with -g option 

gdb throws out some informative messages on the terminal before pausing at the (gdb) 

prompt. Before invoking run to start program execution, let’s use the help command 

to know the internal commands supported by gdb:

(gdb) help
List of classes of commands:
  
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands
  
Type “help” followed by a class name for a list of commands in that class.

das76205_Ch16_485-534.indd   525das76205_Ch16_485-534.indd   525 12/13/11   10:49 AM12/13/11   10:49 AM



526 Your UNIX/Linux: The Ultimate Guide

Type “help all” for the list of all commands.
Type “help” followed by command name for full documentation.
Type “apropos word” to search for commands related to “word”.
Command name abbreviations are allowed if unambiguous.

This debugger categorizes its commands into 12 classes. The facility shown in the last 

line of output can reduce our typing load quite a bit. For instance, instead of using 

break 10 to set a breakpoint on line number 10, you can use b 10, br 10, etc., because 

break is the only gdb command beginning with b.

Let’s now identify the command that sets a breakpoint. We presume that it belongs to the 

breakpoints class, and the following truncated output shows that break is the command to use:

(gdb) help breakpoints
Making program stop at certain points.
  
List of commands:
  
awatch -- Set a watchpoint for an expression
break -- Set breakpoint at specified line or function
catch -- Set catchpoints to catch events
clear -- Clear breakpoint at specified line or function
commands -- Set commands to be executed when a breakpoint is hit
condition -- Specify breakpoint number N to break only if COND is true
delete breakpoints -- Delete some breakpoints or auto-display expressions
disable breakpoints -- Disable some breakpoints
enable -- Enable some breakpoints
    .......

We can now use help with a command name to obtain context-specific help. The break 

command defines a breakpoint, and this is how you should use it:

(gdb) help break
Set breakpoint at specified line or function.
break [LOCATION] [thread THREADNUM] [if CONDITION]
LOCATION may be a line number, function name, or “*” and an address.
If a line number is specified, break at start of code for that line.
If a function is specified, break at start of code for that function.
If an address is specified, break at that exact address.
   .......

Note that a breakpoint can be set on any line or function. After a breakpoint is reached, 

the program pauses to let you intervene. Program execution can resume when the cont, 

next, or step command is invoked.

 16.12.2 Using a Breakpoint
To identify a breakpoint, we need to list the program first. The list command displays 

the program source, which means the source file must be present in the same directory 

das76205_Ch16_485-534.indd   526das76205_Ch16_485-534.indd   526 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 527

as the executable. Every invocation displays the next 10 lines, but list can also be used 

with a range (like list 11,20) to display any section of code:

(gdb) list 11,20
11         n = 1;
12
13         printf(“Enter a multiword string: “);
14         scanf(“%[^\n]”, buf); /* Matches all characters except \n */
15
16         clargs[0] =  strtok(buf, DELIM); /* First word */
17         while ((clargs[n] = strtok(NULL, DELIM)) != NULL)
18            n++; /* Remaining words extracted */
19         clargs[n] = NULL; /* Sets last pointer to NULL */
20

Since the program didn’t produce any output, we would first like to set a breakpoint at 

line 16 to evaluate the values of clargs[0] and buf. The run command executes the 

program:

(gdb) break 16
Breakpoint 1 at 0x400612: file parsestring.c, line 16.
(gdb) run Starts program execution

Starting program: /home/sumit/personal/project12/parsestring
Enter a multiword string: There is a fly in the soup
  
Breakpoint 1, main () at parsestring.c:16
16         clargs[0] =  strtok(buf, DELIM);   /* First word */

gdb numbers all breakpoints and watchpoints in the sequence in which their commands 

are invoked. The program has paused at breakpoint number 1 in line 16 of the program 

parsestring.c. This program doesn’t use arguments, but for programs that do, the 

arguments have to be supplied with run (e.g., run < foo1 > foo2) and not when 

invoking gdb.

At this point, we can inspect two variables with the print or display command:

(gdb) print buf
$1 = “There is a fly in the soup\000(+\000\000\000\000\000\000\000\000\000\000
wd\211(+\000\000\030eh\211(+\000\000\001”, ..........
(gdb) print clargs[0]
$2 = 0xfe36c02e <Address 0xfe36c02e out of bounds>

buf has been properly assigned the input string followed by NULL (shown as \000). 

clargs[0] is currently set at an inaccessible address; it will be properly set only after 

the current line is executed. gdb remembers these variables as $1 and $2, so next time 

you can simply use print $2 instead of print clargs[0]. A cont statement will 

continue the program, but we’ll prefer to move a line at a time.

das76205_Ch16_485-534.indd   527das76205_Ch16_485-534.indd   527 12/13/11   10:49 AM12/13/11   10:49 AM



528 Your UNIX/Linux: The Ultimate Guide

gdb supports conditional breakpoints where the condition may be represented by any valid C 
expression. For instance, the command break 20 if (n == 5) conditionally stops the program.

 16.12.3 Stepping Through the Program
We can now use next or step to single-step through our program. The two commands 

are similar, differing only in the way they handle a function. next treats a function call 

as one instruction, while step descends the function. Both accept a numeric argument n 

that repeats the command n times. So, next 6 executes the next 6 lines before pausing. 

Let’s step one line forward and have a look at clargs[0] again:

(gdb) next
17         while ((clargs[n] = strtok(NULL, DELIM)) != NULL)
(gdb) print clargs[0]
$3 = 0x7fff21465390 “There is a fly in the soup”

clargs[0] is wrongly represented as the entire line instead of a single word (There). 
It’s obvious that the first strtok call (at line 16) didn’t do the job properly. Now use 

list 1,10 again to see the value of DELIM and note that it doesn’t include a space. 

We’ll correct this later, but let’s move on, one step at a time:

(gdb) next
19         clargs[n] = NULL; /* Sets last pointer to NULL */

(gdb) [Enter] gdb repeats the last command

21         for (i = 0; i <n ; i++)

gdb repeats the previous command when a user simply presses the [Enter] key. It also 

has a history mechanism which lets you use the cursor control keys to recall previous 

commands (similar to the Bash shell).

We are now at the beginning of the for loop. Why did this loop not execute? Let’s 

find out more about the variable n with the whatis and print commands:

(gdb) whatis n
type = int
(gdb) print n
$4 = 0

Here’s the second error; n was wrongly initialized to 0 when it should have been 1. Let’s 

set n to 1 inside the debugger and run the program again without recompilation. After 

confirmation from gdb, we’ll make the two changes in the source from gdb using its 

edit command, but we still have to leave gdb to recompile the program.

 16.12.4 Making a Reassignment
Let’s now use the set variable command to change the value of n to 1 without recom-

piling the program. But because n is set to 0 every time gdb runs the program, we have 

to make this new assignment only after we have reached the breakpoint. Let’s run the 

program again:

Note

das76205_Ch16_485-534.indd   528das76205_Ch16_485-534.indd   528 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 529

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
  
Starting program: /home/sumit/personal/project12/parsestring
Enter a multiword string: gdb is a better debugger
  
Breakpoint 1, main () at parsestring.c:16
16         clargs[0] =  strtok(buf, DELIM);   /* First word */
(gdb) set n = 1

We reassigned n when the program stopped at the breakpoint defined earlier. Now let’s 

issue a series of next commands until we reach line 22. Key in next once and then 

press [Enter] a number of times:

(gdb) next
17         while ((clargs[n] = strtok(NULL, DELIM)) != NULL)
(gdb) [Enter]
19         clargs[n] = NULL;                  /* Sets last pointer to NULL */
(gdb) [Enter]
21         for (i = 0; i <n ; i++)
(gdb) [Enter]
22            printf(“Word %d is %s\n”,i,  clargs[i]);
(gdb) [Enter]
Word 0 is gdb is a better debugger
21         for (i = 0; i <n ; i++)

The for loop has been executed once, but that was expected because the while loop was 

not executed at all. We now need to edit the program. We can either use edit or leave 

gdb with quit and separately invoke vi. Make the following changes to lines 5 and 11:

#define DELIM “ \n\t\r” Space introduced before \n

n = 1; Instead of n = 0;

The program should now work, but we’ll continue with the debugging process. Don’t 

forget to use the -g option of the compiler.

 16.12.5 Setting a Watchpoint
We’ll now use a watchpoint to monitor the value of n to see whether the for loop is 

executing properly. The watch command sets a watchpoint, so enter the debugger once 

more with gdb parsestring and find out how watch is used:

(gdb) help watch
Set a watchpoint for an expression.
A watchpoint stops execution of your program whenever the value of an 
expression changes.

das76205_Ch16_485-534.indd   529das76205_Ch16_485-534.indd   529 12/13/11   10:49 AM12/13/11   10:49 AM



530 Your UNIX/Linux: The Ultimate Guide

Run the program again after setting a breakpoint at line 18. When the point is reached, 

use watch to set a watchpoint on n:

(gdb) break 18
Breakpoint 1 at 0x40062c: file parsestring.c, line 18.
(gdb) run
Starting program: /home/sumit/personal/project12/parsestring
Enter a multiword string: gdb is a better debugger
  
Breakpoint 1, main () at parsestring.c:18
18            n++;                            /* Remaining words extracted */
(gdb) watch n
Hardware watchpoint 2: n
(gdb) display n
1: n = 1

Instead of using next to continue program execution, we’ll now use the cont (or 

continue) command. Because a watchpoint has been set on n, the program will pause 

every time n changes, and because of the display directive the changed value will also 

be displayed:

(gdb) cont
Continuing.
  
Breakpoint 1, main () at parsestring.c:18
18       n++;                            /* Remaining words extracted */
1: n = 2
(gdb) [Enter] Repeats cont command

Continuing.
  
Breakpoint 1, main () at parsestring.c:18
18       n++;                            /* Remaining words extracted */
1: n = 3
(gdb) [Enter]
Continuing.
  
Breakpoint 1, main () at parsestring.c:18
18       n++;                            /* Remaining words extracted */
1: n = 4
(gdb) [Enter]
Continuing.
Word 0 is gdb
Word 1 is is
Word 2 is an
Word 3 is excellent
Word 4 is debugger for loop executed 5 times

  

das76205_Ch16_485-534.indd   530das76205_Ch16_485-534.indd   530 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 531

Watchpoint 2 deleted because the program has left the block in
which its expression is valid.
0x00002b698c3779b0 in _dl_fini () from /lib64/ld-linux-x86-64.so.2
(gdb) quit
The program is running.  Exit anyway? (y or n) y
$ _

Now that both loops are working properly, you can run the program without using gdb. 

Once you are satisfied with the behavior of the program, recompile it without using the 

-g option.

 16.12.6 Other Features of gdb
There’s another useful feature of gdb that you need to know because your programs 

will have user-defined functions. When function f1 calls f2, which calls f3, and so on, 

it’s often difficult to locate the bug. You’ll then find the backtrace (abbreviated to bt), 

frame, up, and down commands very useful. 

In Chapter 18, you’ll know that a call to a function pushes some data, like the 

function parameters and local variables, to a separate region of memory called the stack. 

Each function call creates a separate stack frame, and these frames are numbered by 

gdb. You can use bt to perform a full backtrace to determine how you got to your cur-

rent location. You can then select the frame numbered n with frame n, and display the 

variables visible in that frame. To move to the frame of the caller, use the up command. 

The action of up can be reversed with down.

Before we close, let’s briefly mention the other mode of this debugger. gdb can 

also work in post-mortem mode. When a program crashes, the operating system saves the 

memory image of the program at the time of the crash in a file named core (core.pid in 

Linux). gdb can be used to analyze this file to determine the cause of the crash, often by 

identifying the signal that was generated at the time of the crash.

S U M M A R Y

A C program is compiled and assembled to create an object (.o) file and linked to create 

the executable. Object files should be retained for multisource programs to avoid recom-

pilation of unchanged sources. Functions should be placed in separate files to be reusable.

make monitors the last modification times of the executable, object, source, and 

header files to determine the sources that need to be recompiled. It looks up a makefile 

for associating a target with a dependency, and then takes a defined action if the depen-

dency is found to be newer than the target.

The ar command combines a group of object files into a static library or archive. 

make can automatically recompile a module and replace it in the archive. A shared library 

or shared object is not linked to the executable but is loaded during runtime.

The Source Code Control System (SCCS) saves the first version in full and its dif-

ferences with subsequent versions in an encoded SCCS file. A delta (version) is checked 

out (get) and checked in (delta) after editing. Revision of an intermediate version 

das76205_Ch16_485-534.indd   531das76205_Ch16_485-534.indd   531 12/13/11   10:49 AM12/13/11   10:49 AM



532 Your UNIX/Linux: The Ultimate Guide

creates a branch delta. The admin command is used both for creation of an SCCS file 

and access control.

The Revision Control System (RCS) saves the latest revision. A revision is checked 

in with ci and checked out with co. The rcs command controls version locking and 

user access and is also used to remove versions.

The Concurrent Version System (CVS) improves upon RCS by allowing concur-

rent editing of the same version. CVS stores files in a repository from which they are 

checked out (checkout) to the user’s sandbox. Any change made to the repository, in-

cluding checking in, must be confirmed with commit. Wherever possible, CVS merges 

versions, failing which it presents the conflicting versions to the user for rectification. 

CVS also allows a set of files to be frozen (rtag) so that they can be retrieved later in 

that state (export).

gdb is used for debugging programs. You can control program execution by using 

breakpoints (break) and watchpoints (watch), and by executing one or more statements 

at a time (next and step). You can display (print) and reassign (set) a variable used in 

the program. For programs containing multiple user-defined functions, you can perform 

a full backtrace (bt) and display the environment of each function (frame).

S E L F - T E S T

16.1 Name the three phases a program has to go through before an executable is cre-

ated from it.

16.2 Name the two commands invoked by the cc command to create an executable.

16.3 Place the function definitions of arg_check and quit (16.1.1) in a single file, 

foo.c. Can the main program, rec_deposit (in rec_deposit.c), access them?

16.4 Why does a static library have the lib prefix? What suffix does it have? Where 

are the system’s library and include files available?

16.5 The command cc -c foo.c compiles without error. Explain why make could 

still generate an error with a makefile that contains the following entry:

foo.o: foo.c
    cc -c foo.c

16.6 How is libc.a different from other libraries?

16.7 Mention two advantages a shared library has over a static library.

16.8 Create a file foo containing a line of text. Mention the commands needed to (i) 

create the SCCS file for foo, (ii) check out an editable version of foo, (iii) check 

in foo after editing.

16.9 Look up the man page of sccsdiff, and then create two deltas of a file. How 

will you use the command to display their differences?

16.10 Why do we enter comments when using the delta command? How can we see 

them?

16.11 Explain when you need to create a branch delta. Is 1.2.1 a branch delta?

16.12 Mention three advantages CVS has over RCS.

das76205_Ch16_485-534.indd   532das76205_Ch16_485-534.indd   532 12/13/11   10:49 AM12/13/11   10:49 AM



Chapter 16: Program Development Tools 533

16.13 Name the CVS command that (i) loads the repository after initialization, (ii) lists 

differences between versions 1.3 and 1.6, (iii) downloads files from repository 

to make the sandbox up-to-date.

16.14 gdb refuses to run a program or list its source. What could be the possible reason?

16.15 What is the difference between a breakpoint and a watchpoint? 

E X E R C I S E S

16.1 How does an executable C program differ from its associated object files?

16.2 It makes no sense to save object files if other programs are not going to use them. 

Right or wrong?

16.3 Explain the significance of the -c, -o, -l, and -g options of the C compiler.

16.4 Modify the application presented in Section 16.1.2 to implement the following:

 (i)  The compute function should be in a separate file, compute.c, and its 

include statement in compute.h.

 (ii)  All function prototypes should be defined in a single file, prototype.h.

 Modify makefile2 discussed in Section 16.2.2 accordingly.

16.5 Look up the man page of make to find out how it can be invoked to display the 

command line that it would execute without actually executing it.

16.6 Explain how make may run without error with a makefile that contains only the 

following entry. What command will it run?

foo:

16.7 A make rule doesn’t always have a dependency, and the target need not be a disk 

file. Explain with an example of a makefile entry.

16.8 Specify the commands that will (i) create an archive named foobar.a containing 

the object files foo1.o and foo2.o, (ii) delete foo2.o from the archive. Can this 

archive be used with the -l option to cc?

16.9 What does this entry in a makefile mean? What command does make run if a.h 

is modified?

foo.a(a.o): a.h

16.10 SCCS and RCS basically use the same mechanism to store file versions, but they 

work in opposite directions. Explain. Which system do you think reconstructs a 

version faster?

16.11 You have three versions of a program named foo1.c, foo2.c, and foo3.c. 

Mention the steps needed to check in all three versions to a single SCCS file.

16.12 Mention the set of commands that produce the deltas 1.1, 1.2, 1.3, and 1.2.1.1 

of foo.c. Now use get -r9 s.foo.c and get -e -r9 s.foo.c. What do you 

observe?

16.13 Which file does sact obtain activity information from? When is the file created 

and deleted?

das76205_Ch16_485-534.indd   533das76205_Ch16_485-534.indd   533 12/13/11   10:49 AM12/13/11   10:49 AM



534 Your UNIX/Linux: The Ultimate Guide

16.14 You checked out a delta with get -e s.foo.c and then realized that you shouldn’t 

have done so. What should you do now and why?

16.15 When does CVS detect a conflict, and how does it resolve it?

16.16 What do the letters N, C, and U represent when seen before a filename in the 

output of some CVS commands?

16.17 How will you attach a label to a group of files in their current form, and later 

retrieve the same versions from the repository?

16.18 The CVS commit command doesn’t only check in a file. The command is needed 

for other purposes also. Explain.

16.19 To use gdb, why does a program need to be compiled with the -g option?

16.20 How do you run gdb with a program that uses arguments?

16.21 Look up the help feature of gdb to explain the significance of the backtrace 

and frame commands.

das76205_Ch16_485-534.indd   534das76205_Ch16_485-534.indd   534 12/13/11   10:49 AM12/13/11   10:49 AM



535

17 
C H A P T E R  17

Systems Programming I—Files

You now know quite well what UNIX applications have to offer. However, 

because UNIX is written in C, some questions are inescapable: How can we 

write some of these applications ourselves? What functions are available to a C program-

mer for determining a file’s attributes or for forking a process? The answers to these 

questions lie in the system call library available to a C programmer using UNIX. For 

many, the real charm of UNIX lies in using these system calls to develop useful tools.

In this chapter and Chapter 18, we examine the essential system calls that support 

the UNIX system. We also examine some internals—mostly featured in insets—that need 

to be well understood by a UNIX programmer. This chapter takes up the system calls 

associated with the file system; Chapter 18 does the same for processes. The file-related 

system calls are organized in three categories—those related to I/O, directories, and at-

tributes. In some cases, we are forced to discuss and use some library functions as well.

  Objectives
 • Understand the basics of system calls and library functions.

 • Learn how system call errors are handled and reported with errno and perror.

 • Perform file I/O with open, read, write, lseek, and close, using a file descriptor.

 • Learn why it is important to properly set the size of the buffer used by read and write.

 • Navigate a directory structure with chdir and getcwd.

 • Read directory entries with opendir and readdir, and examine the dirent structure.

 • Handle hard and symlinks using the link, symlink, and unlink calls. 

 • Understand the consequences of unlinking an open file.

 • Discover the combined role of the stat structure and stat calls in retrieving inode 

information.

 • Determine the file type using S_IFMT and the S_ISxxx macros. 

 • Test each permission bit using symbolic constants. 

 • Use access to test a file’s access rights.

 • Use other system calls to change a file’s permissions, ownership, and time stamps.

das76205_Ch17_535-569.indd   535das76205_Ch17_535-569.indd   535 12/13/11   10:50 AM12/13/11   10:50 AM



536 Your UNIX/Linux: The Ultimate Guide

 17.1 System Call Basics

A system call is a routine that can be invoked from a C program to access a system 

resource. System calls are used to perform file I/O, allocate memory, create processes, 

and so forth. Unlike the standard ANSI C library functions like fopen and printf that 

are available as object modules bundled into an archive, system calls are built into the 

kernel. They are often written in assembly language but provide a C-like function interface 

so we can invoke them as functions from a C program running on UNIX.

Normally, a process run by a user has access to its own memory address space and 

can execute a restricted set of machine instructions. The process is then said to run in 

user mode. However, when the process invokes a system call, the CPU switches from 

user mode to a more privileged mode—the kernel mode (supervisory mode in operating 

system parlance). In this mode, the kernel runs on behalf of the user, has access to any 

memory location and can execute any machine instruction. After the system call returns, 

the CPU switches back to user mode.

All UNIX systems offer around 200 system calls that are internally used by native 

applications like cat and grep. Redirection and pipelines are also implemented by us-

ing system calls. They are very well explained in Section 2 of the man documentation. 

POSIX specifies the functionality of a set of calls that an operating system must offer 

to be certified as UNIX. Many commands and system calls share the same name; the 

chmod command invokes the chmod system call.

 17.1.1 Anatomy of a System Call
Irrespective of the way they are implemented, for all practical purposes system calls 

behave like C functions. They accept arguments of all types (int, char, void, etc.) and 

return values as can be seen from this prototype declaration of the write system call:

ssize_t write(int fd, const void *buf, size_t count);

In addition to the primitive types, you’ll see derived types (like size_t) used by system 

calls. C uses derived types for many functions to let the compiler decide which primitive 

types to map them to. For instance, size_t and ssize_t could ultimately be “typedef’d” 

to unsigned int and int, respectively, on one machine and unsigned long and long 

on another.

ANSI C introduced the concept of a generic data type named void, and many 

system calls (like write) use this data type. In the prototype for write shown in 

the preceding declaration, void *buf signifies a generic buffer that can represent 

char *buf, int *buf, and so on. We don’t need to cast this generic buffer to the type 

that we actually use in our program.

Unlike library functions, which often return NULL on error, system calls gener-

ally return -1. We must check every system call for a negative return value unless the 

system call itself can never return an error (like umask) or not return at all (like the 

exec functions).

das76205_Ch17_535-569.indd   536das76205_Ch17_535-569.indd   536 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 537

 17.1.2 System Calls vs. Library Functions
On one hand, system calls offer a high-level interface that let us ignore the internals of a 

device. On the other hand, they are low-level interfaces that have to be used judiciously. 

Consider the read system call that reads a block of data at a time. To read a line using 

read, you need to write additional code. And this is where system calls could be inefficient.

Enter library functions. Every ANSI C compiler (on UNIX and non-UNIX systems 

alike) is shipped with a set of the standard library functions. On UNIX systems, these 

library functions serve as wrappers of system calls by calling the system calls them-

selves. The standard library offers separate functions to read a block of data (fread), 

a line (fgets), and a single character (fgetc). Even though these functions internally 

invoke the read system call on UNIX, we generally use these wrapper functions for the 

convenient interfaces they offer.

However, library functions often don’t provide the finer control features offered 

by system calls. For instance, fopen can’t set file permissions in chmod-style, which 

open does easily. You can know the size of a file only by using the stat system call. 

Further, a process can be created only with the fork system call.

There are significant overheads associated with system calls and their related mode 

switches (user mode to kernel mode, and vice versa). If you need to use system calls in your 

program, make sure that they are invoked the minimum number of times. This is not a problem 

with library functions because they are designed to make the right number of invocations.

The man documentation features system calls and library functions in Sections 2 and 3, 
respectively. Sometimes, the same name represents both a UNIX command and a system 
call (like read, write, and exec), so calling man without the section number could display the 
wrong man page. (man read shows the man page for the shell’s built-in read command.) You 
must use man 2 read or man -s2 read to display the documentation for the read system call.

 17.2 errno and perror: Handling Errors

Errors can occur for a host of reasons—a resource not available, the receipt of a signal, 

I/O operational failures, or invalid call arguments. A system call returns -1 on error, so 

to create robust code, we should always check for this condition (unless we are certain 

that this check isn’t really necessary).

When a system call returns -1, the kernel sets the static (global) variable, errno, 

to a positive integer. This integer, represented by a symbolic constant, is associated with 

an error message. For instance, ENOENT has the value 2 and signifies No such file or 
directory. There are two things we can do when an error occurs:

 • Use perror to print the error message associated with errno.

 • Determine the cause of the error by checking errno.

We use perror only when a system call returns an error. The function follows this syntax:

void perror(const char *s);

Note

das76205_Ch17_535-569.indd   537das76205_Ch17_535-569.indd   537 12/13/11   10:50 AM12/13/11   10:50 AM



538 Your UNIX/Linux: The Ultimate Guide

The function takes a character string, s, as argument and prints the string, a colon, and a 

space followed by the message associated with errno. We demonstrate the use of errno 

and perror in the program show_errors.c (Fig. 17.1) by trying to open a file which 

either doesn’t exist or is not readable.

This is the simplest syntax of the open system call, one that opens a file in read-

only mode. If open returns -1, the program uses fprintf to print the value of errno 

and perror to display its associated message—both to the standard error. Now run the 

program with two filenames that are guaranteed to return an error:

$ ./a.out foofoo
errno = 2 This is ENOENT

open: No such file or directory
$ ./a.out /etc/shadow
errno = 13 This is EACCES

open: Permission denied

These error numbers are associated with symbolic constants defined in <sys/errno.h>, 

and a subset is shown in Table 17.1. Program flow is often dependent on the cause of 

the error, so we should check the value of errno to determine what action to take.

You must check the value of errno immediately after a system call returns an error, and before 
you do anything else. The behavior of errno in the event of a successful call is undefined. Some 
systems leave it unchanged, but some don’t. If necessary, save the value of errno in a separate 
variable if you need this value later in your program.

Caution

F I G U R E  1 7 . 1  show_errors.c

/* Program: show_errors.c -- Displaying system call errors with perror
 Filename provided as argument */
#include <fcntl.h> /* For O_RDONLY in open */
#include <stdio.h> /* For stderr in fprintf */
#include <stdlib.h> /* For exit */
#include <sys/errno.h> /* For errno */
  
int main (int argc, char **argv) {
   if (open(argv[1], O_RDONLY) == -1) {  /* Opening in read-only mode */
       fprintf(stderr, “errno = %d\n”, errno);
       perror(“open”);
   }
   exit(0);
}

das76205_Ch17_535-569.indd   538das76205_Ch17_535-569.indd   538 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 539

 17.3 open: Opening and Creating a File

We begin our discussion on system calls with the ones related to file I/O. These comprise 

the following calls:

 • open and close
 • read and write
 • lseek
 • truncate and ftruncate

A file needs to be opened with open before one can read or write it. open has two forms: 

the first form assumes that the file exists, and the second one creates it if it doesn’t. Both 

forms are represented by this syntax:

int open(const char *path, int oflag, ... );

open returns a file descriptor as an int, the lowest number available for allocation. (Recall 

that the descriptors 0, 1, and 2 are used by the shell for the three standard streams.) This 

number is subsequently used by other calls for identifying the file. Normally, the first 

open in your program should return file descriptor 3. On error, open returns -1.

The first argument (path) is a pointer to a character string that represents the file’s 

pathname (either absolute or relative). The second argument (oflag) is used to set the 

mode of opening (read, write, or read-write), which is conveniently represented by 

three symbolic constants. Only one of the following modes must be specified with open:

O_RDONLY Opens file for reading.

O_WRONLY Opens file for writing.

O_RDWR Opens file for reading and writing.

T A B L E  1 7 . 1  Significance of Symbolic Constants Associated with errno

Symbolic Constant errno Message

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 I/O error
EACCES 13 Permission denied
EEXIST 17 File exists
ENOTDIR 20 Not a directory
EISDIR 21 Is a directory
ENOSPC 28 No space left on device
ESPIPE 29 Illegal seek
EROFS 30 Read only file system

das76205_Ch17_535-569.indd   539das76205_Ch17_535-569.indd   539 12/13/11   10:50 AM12/13/11   10:50 AM



540 Your UNIX/Linux: The Ultimate Guide

These constants are defined in the file fcntl.h in /usr/include, so you need to place 

the statement #include <fcntl.h> at the top of your program. This is how we open 

a file in read-only mode:

int fd; The file descriptor

if ((fd = open(“/etc/passwd”, O_RDONLY)) == -1) {
   perror(“open”); Use our quit function

   exit(1);
}

This is typically the way you invoke a system call: Check its return value for -1 and then 

use perror to print a message corresponding to the error. For many examples in this 

chapter and the next, we’ll work with a modified version of the quit function shown 

in Fig. 16.3. Replace the fprintf statement there with perror(message);, and then 

create the object file by using cc -c quit.c. Now that the file has been opened, other 

system calls can access this file by fd, the file descriptor.

The previous open call also sets the file offset pointer to the beginning of the file. 

This pointer determines where in the file the subsequent read will take place. When writ-

ing files, you need to provide more parameters to open. In fact, for added functionality, 

you need to use one or more of the following status flags (also defined in fcntl.h) as 

components of oflag:

O_APPEND Opens file in append mode (only if file opening mode is O_WRONLY or 

 O_RDWR).

O_TRUNC Truncates file to zero length (same conditions as above).

O_CREAT Creates file if it doesn’t exist.

O_EXCL Generates an error if O_CREAT is also specified and the file also exists.

O_SYNC Synchronizes read-write operations. Ensures that write doesn’t return 

 until the data is written to disk (explained later).

These status flags are used with the bitwise OR operator, |, along with the mode of 

opening. Here are two ways of opening a file for writing; this time, we don’t use error-

checking code:

fd = open(“foo.txt”, O_WRONLY | O_APPEND) ; Similar to shell’s >>

fd = open(“../foo.txt”, O_WRONLY | O_TRUNC) ; Similar to >

The first call opens foo.txt for appending (O_APPEND), which sets the offset pointer 

to EOF. A subsequent write call here doesn’t overwrite this file but increases its size. 

The second call truncates a file’s contents (O_TRUNC) and positions the offset pointer at 

the beginning.

If the file doesn’t exist, then you need to create it using O_CREAT (and sometimes, 

O_EXCL also) and specify its permissions as the third argument. The permissions can be 

represented in chmod-style (except that you have to use a zero prefix if you use octal 

numbers, like 0644 instead of 644). However, you are advised to use the symbolic con-

stants provided in sys/stat.h, and they are displayed below in tabular form:

das76205_Ch17_535-569.indd   540das76205_Ch17_535-569.indd   540 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 541

Permission User Group Others All

Read S_IRUSR S_IRGRP S_IROTH S_IRWXU

Write S_IWUSR S_IWGRP S_IWOTH S_IRWXG

Execute S_IXUSR S_IXGRP S_IXOTH S_IRWXO

Since each permission is represented by a separate bit, you need to use the (bitwise) 

OR operator on these constants to obtain the desired permissions. For instance, 0644 

is the same as:

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH

Let’s now open a file for writing after truncation (O_TRUNC) and also ensure that the file is cre-

ated if it doesn’t exist (O_CREAT). We need to specify the permissions as the third argument:

fd = open(“foo.txt”, O_WRONLY | O_CREAT | O_TRUNC,
             S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) ; Permissions are 0644

Note that the actual permissions will be reduced by the umask value, and this can be set 

in your program with the umask system call (17.10).
The status flag O_EXCL provides protection from overwriting an existing file. If 

used at all, it must be combined with O_CREAT (O_CREAT | O_EXCL). open will then 

return -1 if the file exists. We can use this mechanism to test for the existence of a file.

Many of the system calls discussed in this chapter also have siblings as library functions. In most 
cases, these library functions have the “f” prefix. For instance, you can open a file with either the 
open system call or the fopen library function. open returns a file descriptor, but fopen returns a 
pointer to a structure of type FILE. Some of the other library functions whose corresponding 
system calls are discussed in this chapter are fclose, fread, fwrite, ftruncate, and fseek. 

If you are using numbers (like 644) rather than the symbolic constants to represent the permis-
sions, don’t forget to prefix a 0 to the number. You have to take care of this when using the 
chmod system call as well.   

The O_EXCL feature comes in handy when you devise a scheme to let two processes share a 
file, foo, in a cooperative manner. To make the scheme work as an advisory form of file locking, 
both programs must agree to first create a lock file (with the same name) before they write to 
foo, and then remove the lock file when they are done with foo. If all cooperating programs 
use the O_EXCL flag in their open calls that attempt to create the lock file, the first open will 
succeed and the others will fail. Adherence to this agreement ensures that a file is not written 
simultaneously by two or more processes.

 17.4 close: Closing a File

A program automatically closes all open files before termination, but it’s good practice to 

close them explicitly when you no longer require them. The close system call closes a file:

int close(int fd);

Note

Caution

Tip

das76205_Ch17_535-569.indd   541das76205_Ch17_535-569.indd   541 12/13/11   10:50 AM12/13/11   10:50 AM



542 Your UNIX/Linux: The Ultimate Guide

close returns 0 if successful and -1 otherwise. It actually deallocates the file descriptor 

for that process and makes it available for the next open (if there is one).

Multiple processes may open the same file, so there are a number of things you 

need to note about open and close:

 • When a file foo is opened by two processes A and B (or by two open calls in the 

same program), the kernel simply assigns two separate file descriptors for them. 

The file foo can be accessed independently by each descriptor.

 • Closing foo in process A simply releases the descriptor for process A; process B 

would still find foo open. The file can be deleted only when all its descriptors are 

deallocated.

 • You can close any of the standard streams explicitly in your program. You can use 

close(1); to close the standard output file and then open a disk file to return 1 as 

the descriptor value. (Disk file as standard output!)

How all of this happens will be taken up in Chapter 18 with reference to three tables 

that the kernel maintains in memory for every open file. We’ll also learn to close the 

standard input and output files to implement redirection.

 17.5 read: Reading a File

Two system calls—read and write—handle all read-write operations on a regular file 

(as well as pipes and sockets). Both calls share a similar syntax that makes use of a 

user-defined buffer. read accesses a file with the file descriptor returned by a prior open:

ssize_t read(int fildes, void *buf, size_t nbyte);

read attempts to read nbyte characters from the file descriptor filedes into the buffer buf. 
This buffer represents a pointer to a generic buffer (which could be any of the primitive 

data types, often char). nbyte is generally the size of the buffer itself. This is how you 

read 4096 bytes with every read invocation:

#define BUFSIZE 4096
int n;
char buf[BUFSIZE];
while ((n = read(fd, buf, BUFSIZE)) > 0) fd obtained from a prior open

read returns the number of characters read until it encounters EOF, when it returns 0. 

When used in a loop to read an entire file, the number read is generally equal to the 

number requested in every iteration except probably the last one, when read returns the 

number of characters left to read (since the file size may not be an exact multiple of the 

buffer size). On error, read returns -1.

If you have to process every character you read, declare buf as a char variable 

and then pass its address to read:

int fd, n; char buf ;
while ((n = read (fd, &buf, 1)) > 0) fd obtained from a prior open

das76205_Ch17_535-569.indd   542das76205_Ch17_535-569.indd   542 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 543

Reading 100 characters with a single character buffer (as above) would require 100 

system call invocations, which is rather expensive. A library function like fgetc would 

be a better choice here.

The fread library function behaves in a similar manner except that it uses, not 

a file descriptor as argument, but a pointer to a structure of type FILE (FILE *). Use 

man 3 fread to find out the significance of its four arguments. 

 17.6 write: Writing a File

The write call writes a file descriptor obtained with open. The prototype declaration 

of write is virtually identical to that of read:

ssize_t write(int fildes, const void *buf, size_t nbyte);

Each invocation of write writes nbyte number of bytes from buf to the file descriptor 

filedes. write returns the number of characters written, which must be equal to the 

number requested. However, if the disk fills up while a write is in progress or if the 

file size exceeds the system’s limit, write returns -1.

For writing data in blocks of, say, 8192 bytes, buf should be declared as a character 

array for holding that many characters, and write’s third argument should represent 

the size of this array:

#define BUFSIZE 8192
int n; char buf[BUFSIZE];
n = write(fd, buf, BUFSIZE));

As in read, you can write one character at a time, in which case you should declare 

buf as a char variable:

char buf ;
write(fd, &buf, 1)); fd obtained from a prior open

The buffer size for both read and write is determined by the device written to (ter-

minal, hard disk, etc.) and the size of the kernel buffer maintained in memory. This is 

an important issue and will be discussed in Section 17.9, where you will see why it is 

sometimes better to use fwrite than write.

When reading and writing the standard streams, we should use the symbolic constants, 
STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO as the file descriptors rather than the 
integers, 0, 1, and 2, that they represent. These symbolic constants are defined in unistd.h.

 17.7 ccp.c: Copying a File

This program, ccp.c (Fig. 17.2), copies /etc/passwd to passwd.bak. The source file is 

opened in read-only mode (O_RDONLY). The destination file is opened in the write mode 

(O_WRONLY), is created if it doesn’t exist (O_CREAT), and is truncated if it does (O_TRUNC). 

Each open returns a file descriptor, which should have the values 3 and 4 in this program.

Note

das76205_Ch17_535-569.indd   543das76205_Ch17_535-569.indd   543 12/13/11   10:50 AM12/13/11   10:50 AM



544 Your UNIX/Linux: The Ultimate Guide

For copying operations, both read and write need to use the same buffer. We set 

up a loop that attempts to read 1024 bytes into buf (an array of 1024 characters) from the 

descriptor fd1. The return value of read is next used by write to write the same number 

of characters to descriptor fd2. The loop terminates when read returns 0 (on EOF).

F I G U R E  1 7 . 2  ccp.c

/* Program: ccp.c -- Copies a file with the read and write system calls */
  
#include <fcntl.h> /* For O_RDONLY, O_WRONLY, O_CREAT etc. */
#include <sys/stat.h> /* For S_IRUSR, S_IWUSR, S_IRGRP etc. */
#include "quit.h" /* For quit */
#define BUFSIZE 1024 /* May not be the right size here */
  
  
int main(void) {
    int fd1, fd2; /* File descriptors for read and write */
    int n; /* Number of characters returned by read */
    char buf[BUFSIZE]; /* Size of buffer used by read and write */
  
    if ((fd1 = open(“/etc/passwd”, O_RDONLY)) == -1)
       quit(“open”, 1);
    
    if ((fd2 = open(“passwd.bak”, O_WRONLY | O_CREAT | O_TRUNC,
                 S_IRUSR | S_IWUSR | S_IRGRP |S_IWGRP | S_IROTH)) == -1)
       quit(“open2”, 2);
  
    while ((n = read(fd1, buf, BUFSIZE)) > 0) /* Return value of read */
       if (n != write(fd2, buf, n)) /* is used by write */
           quit(“write”, 3) ;
  
    close(fd1);
    close(fd2);
    exit(0);               /* This would have closed all file descriptors */
}

File Descriptors and File Pointers
The library function fopen doesn’t return a file descriptor, but a pointer to a FILE 

structure. The other functions like fread and fwrite access the file through this 

pointer. Beneath the hood, these functions actually run the corresponding system 

calls, open, read, and write, and the file descriptor is embedded in the FILE struc-

ture as a separate member.

das76205_Ch17_535-569.indd   544das76205_Ch17_535-569.indd   544 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 545

The program checks for errors in open and write (but not in read!) and uses 

the quit function that we developed in Section 16.1.1 and modified in Section 17.3 to 

handle errors. After compiling the program, run a.out and then invoke cmp to confirm 

the faithfulness of the copy:

$ cc ccp.c quit.o Create quit.o using cc -c quit.c

$ ./a.out
$ cmp /etc/passwd passwd.bak
$ _ Prompt returns—files identical

You need not always write data to disk; you can write to the standard output also. So 

if we replace fd2 in the write statement with 1 (rather, STDOUT_FILENO), we can use 

the program as a simple cat command. The second open and close calls then won’t 

be required.

 17.8 lseek: Positioning the Offset Pointer

lseek doesn’t do any physical I/O. It simply moves the file offset pointer to a specified 

point where the next I/O operation will take place. Here’s its syntax:

off_t lseek(int fildes, off_t offset, int whence);

The offset and whence arguments together control the location of the file’s offset pointer. 

offset signifies the position (positive or negative) of this pointer relative to whence, which 

can take one of three values:

SEEK_SET Offset pointer set to beginning of file.

SEEK_END Offset pointer set to end of file.

SEEK_CUR Offset pointer remains at current location.

Sometimes, you need to take advantage of both worlds. You generated a file 

descriptor with open, possibly to set its permissions to 755, but now you want to 

read a line at a time using fgets (a library function). To do that, simply convert the 

file descriptor to a file pointer with the fdopen function. Conversely, if you opened 

a file with fopen and now want to run stat to obtain the file’s size,  use the fileno 

function to convert the file pointer to a descriptor:

 file descriptor                             file pointer

 fdopen
 file pointer                             file descriptor

 fileno

Because of the different ways library functions and system calls handle buffering, 

intermingling descriptors and pointers when performing I/O is not recommended. But 

in some cases, you just won’t have a choice. If you have opened a file in the parent 

process, the child process can only access the file descriptor. The child inherits all 

descriptors but not FILE pointers.

das76205_Ch17_535-569.indd   545das76205_Ch17_535-569.indd   545 12/13/11   10:50 AM12/13/11   10:50 AM



546 Your UNIX/Linux: The Ultimate Guide

With some restrictions, offset can be a positive or negative integer, so it is represented 

by a signed data type. For instance,

lseek(fd, 10, SEEK_CUR) fd obtained from prior open

moves the pointer forward by 10 characters from its current position, and

lseek(fd, -10, SEEK_END) Negative offset

sets the pointer 10 characters before EOF. You can’t have a negative offset with whence 

set to SEEK_SET, but strangely enough you can have a positive offset with whence at 

SEEK_END. In this case, the pointer moves beyond EOF, thus creating a sparse file—also 

called a file with a “hole.” Sparse files find use in database applications, but our next 

program also moves the offset pointer beyond EOF.

lseek returns the position of the pointer in bytes from the beginning of the file. 

This value can be used to determine the size of the file:

size = lseek(fd, 0, SEEK_END); This returns the file size

Unlike read and write, which work with practically all file types, lseek works only 

with those files that are capable of “seeking.” It doesn’t work with the terminal file or 

with a socket or pipe, and it is mainly used for disk files.

There are two ways of appending data to a file. You can use open with the O_APPEND status 
flag, which positions the file’s offset pointer to EOF. Alternatively, you can use open (without 
the flag) followed by lseek(fd, 0, SEEK_END). The former technique represents an atomic 
operation (see inset) and is recommended for use, but not the latter.

Note

Atomic Operations
When you program in a multiprogramming environment like UNIX, there’s one 

thing that you have to keep in mind at all times: Multiple processes can contend 

for a single resource—like a file. These resources must be shared without causing 

conflict. Wherever possible, you need to take care that certain critical operations 

are performed in an atomic manner.

An atomic operation comprises multiple actions that are performed either 

in their entirety or not at all. Using two system calls in succession can’t be an 

atomic operation because that allows a second process to run in between. The UNIX 

system uses atomicity wherever possible. The deletion of a directory entry and 

the corresponding modification of the inode entry must be performed atomically.

You too must take care of atomicity in your programs. For instance, the 

check for the existence of the file with O_EXCL and then creating it with O_CREAT 

must be performed as a single operation. Otherwise, another process could create 

the file in between and write some data to it. We no longer use the creat system 

call to create a file because we would still need open to check for its existence 

first, and that would make the operation nonatomic.

das76205_Ch17_535-569.indd   546das76205_Ch17_535-569.indd   546 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 547

 17.8.1 reverse_read.c: Reading a File in Reverse
You can’t read a file from the end to the beginning using the standard UNIX utilities 

(except perl), but using lseek in a C program, reverse_read.c (Fig. 17.3), you can. 

You have to first move the file pointer to one character beyond EOF. Then use a loop to 

move the pointer back by two positions every time a character is read.

Unlike in ccp.c, where we picked up data in chunks, this application requires 

us to read one character at a time. Hence, we use a single-character buffer with read 

and write. While read advances the pointer one byte forward, the next lseek takes it 

back by two bytes.

/* Program: reverse_read.c -- Reads a file in reverse - uses error handling  */
  
#include <fcntl.h>                  
#include <unistd.h> /* For STDOUT_FILENO */
#include <stdio.h>
#include "quit.h"
  
int main(int argc, char **argv) {
    int size, fd;
    char buf; /* Single-character buffer */
    char *mesg = “Not enough arguments\n”;
  
    arg_check(2, argc, mesg, 1) ;
  
    if ((fd = open(argv[1], O_RDONLY)) == -1)
        quit(“open”, 2);
    
    lseek(fd, 1, SEEK_END); /* Pointer taken to EOF + 1 first */
 
    while (lseek(fd, -2, SEEK_CUR) >= 0) { /* and then back by two bytes */
       if (read(fd, &buf, 1) != 1)
          quit(“read”, 1);
       if (write(STDOUT_FILENO, &buf, 1) != 1)
          quit(“write”, 1);
    }
    close(fd); /* Can have error here too */
    exit(0); /* exit doesn’t return - hence no error */
}

F I G U R E  1 7 . 3  reverse_read.c

das76205_Ch17_535-569.indd   547das76205_Ch17_535-569.indd   547 12/13/11   10:50 AM12/13/11   10:50 AM



548 Your UNIX/Linux: The Ultimate Guide

The program accepts the input filename as argument and writes to the standard 

output. We make use of two functions, quit and arg_check (also defined in Section 

16.1.1), and the first two invocations of a.out actually call them:

$ ./a.out
Not enough arguments From quit

$ ./a.out /etc/host.equiv
open: No such file or directory From arg_check

$ ./a.out /etc/hosts.equiv
... A blank line ... The terminating \n of the last line

retipuj This is jupiter in reverse

yrucrem mercury

htrae earth

nrutas saturn

This program has serious drawbacks. If it is used to read a file having 100,000 bytes, 

it would require 300,000 system call invocations (for read, write, and lseek). The 

program would then take a long time to complete. This is where system calls should be 

avoided; you must use library functions. (See next inset.)

 17.9 truncate and ftruncate: Truncating a File

The O_TRUNC flag used with open truncates a file to zero bytes, but the truncate and 

ftruncate calls can truncate a file to any length. One of them doesn’t need to open 

the file, either:

int truncate(const char *path, off_t length);
int ftruncate(int fildes, off_t length);

truncate needs the pathname (path) as argument, but ftruncate works with the file 

descriptor (fildes). Both truncate the file to length bytes. These calls are often used in 

combination with lseek to overwrite a certain segment of a file. Truncate a file to any 

desired length, and then use lseek to take the pointer to the location of truncation so 

that you can start writing from there.

Buffered and Unbuffered I/O
To appreciate the debate that concerns system calls and library functions, you need 

to know something about the way disk I/O actually takes place. The read and write 

calls never access the disk directly. Rather, they read and write a pool of kernel 

buffers, called the buffer cache (19.7.1). If the buffer is found to be empty during 

a read, the kernel instructs the disk controller to read data from disk and fill up the 

cache. The read call blocks (waits) while the disk is being read, and the process 

even relinquishes control of the CPU.

das76205_Ch17_535-569.indd   548das76205_Ch17_535-569.indd   548 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 549

 17.10 umask: Modifying File Permissions During Creation

The permissions specified with open (when used with O_CREAT) are modified by the 

shell’s umask value. This mask reduces the default file and directory permissions (666 

and 777, respectively) by the value of the mask (4.5). The umask system call sets the 

mask to the value specified as argument:

mode_t umask(mode_t cmask);

umask returns the previous value of the mask. Unlike the shell’s umask statement, how-

ever, the umask system call can’t display the current value of the mask without changing 
it. To use a workaround, store the current mask by changing it to some arbitrary value, 

and then display it before restoring it. In our next program, umask.c (Fig. 17.4), we 

change the mask, print its old value, and then create two files with two different settings 

of the mask.

We first set the mask to 0 and save its previous value in old_mode. After printing 

the previous value of the mask, we create a file with permissions 777. Next, we restore 

To ensure that a single invocation of read gathers all bytes stored in the ker-

nel buffer, the size of the latter and buffer used by read (char buf[BUFSIZE] in 

a previous example) should be equal. Improper setting of the buffer size can make 

your program inefficient. So if each kernel buffer stores 8192 bytes, then BUFSIZE 

should also be set to 8192. A smaller figure makes I/O inefficient, but a larger figure 

doesn’t improve performance.

write also uses the buffer cache, but it differs from read in one way: it returns 

immediately after the call is invoked. The kernel writes the buffer to disk later at a 

convenient time. Database applications often can’t accept this behavior, in which 

case you should open a file with the O_SYNC status flag to ensure that write doesn’t 

return until the kernel has finally written the buffer to disk.

Unlike the standard library functions, the read and write calls are unbuffered 

when they interact with the terminal. When you use write to output a string to the 

terminal, the string appears on your display as soon as the call is invoked. On the 

other hand, the standard library functions (like printf) are line-buffered when they 

access the terminal. That means a string is printed on the terminal only when the 

newline character is encountered.

The size of the kernel buffer is system-dependent and is set at the time of 

installation of the operating system. To develop portable and optimized applica-

tions, you must not use a feature that is system-dependent. You can’t arbitrarily set 

BUFSIZE to 8192. This is where library functions come in.

The I/O-bound library functions use a buffer in the FILE structure and adjust 

its size dynamically during runtime using malloc. Unless you are using system 

calls for their exclusive features, it makes sense to use library functions on most 

occasions. The previous program, reverse_read.c, is terribly inefficient as it uses 

single-character buffers. We should have used library functions there.

das76205_Ch17_535-569.indd   549das76205_Ch17_535-569.indd   549 12/13/11   10:50 AM12/13/11   10:50 AM



550 Your UNIX/Linux: The Ultimate Guide

the old mask and then create another file with permissions 764. The output makes for 

some interesting reading:

$ ./a.out
Previous umask value: 22
$ ls -l foo?
-rwxrwxrwx   1 sumit    sumit           0 Dec  1 12:01 foo1
-rwxr--r--   1 sumit    sumit           0 Dec  1 12:01 foo2

Note that we created a file with all permissions; this is something we can’t do from the 

shell. The permissions of foo2 are 744, which isn’t what you get when you subtract 

022 from 764. A umask value of 022 indicates that a file will be created with the write 

permission bit absent for group and others. A simple arithmetic subtraction (764 − 022) 

would result in write permission for others—something that wasn’t intended!

The restrictions placed by umask in no way affect our ability to change the permissions later 
with the chmod system call. chmod is taken up in Section 17.16.1.

 17.11 Directory Navigation

We now move on to the directory, first to navigate to it and then to read its entries. There 

are two system calls that perform the action of the cd command. They are chdir and 

fchdir, which use a pathname and a file descriptor, respectively, as argument:

Note

/* Program: umask.c -- Changes umask twice and checks effect on permissions */
  
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
  
int main(void) {
   mode_t old_mode;
  
   old_mode = umask(0); /* No mask */
   printf(“Previous umask value: %o\n”, old_mode);
  
   open(“foo1”, O_RDONLY | O_CREAT, 0777); /* Create file using new mask */
   umask(old_mode); /* Revert to previous mask */
   open(“foo2”, O_RDWR | O_CREAT, 0764); /* Create file using old mask */
   exit(0);
}

F I G U R E  1 7 . 4  umask.c

das76205_Ch17_535-569.indd   550das76205_Ch17_535-569.indd   550 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 551

int chdir(const char *path);
int fchdir(int fildes);

The current directory is obtained by the getcwd library function. Some UNIX systems 

feature other functions (like getwd), but POSIX recommends the use of getcwd:

extern char *getcwd(char *buf, size_t size);

Here, buf is defined as a character array of size bytes. After invocation of getcwd, the 

pathname of the current directory is made available in buf.
The next program, dir.c (Fig. 17.5), uses chdir to switch to a directory. It also 

invokes getcwd to obtain the pathname of the current directory, both before and after 

the switch. The buffers that store the directory pathnames are provided with one extra 

slot for storing the NULL character.

/* Program: dir.c -- Directory navigation with chdir and getcwd */
  
#include <stdio.h>
#include "quit.h"
#define PATH_LENGTH 200  
  
int main(int argc, char **argv) {
    char olddir[PATH_LENGTH + 1]; /* Extra character for NULL */
    char newdir[PATH_LENGTH + 1];
  
    if (getcwd(olddir, PATH_LENGTH) == -1) /* Get current directory */
        quit(“getcwd”, 1);
    
    printf(“pwd: %s\n”, olddir);
  
    arg_check(2, argc, “Specify a directory\n”, 1) ;
  
    if ((chdir(argv[1]) == -1)) /* Change to another directory */
        quit(“chdir”, 2);
    printf(“cd: %s\n”, argv[1]);
  
    getcwd(newdir, PATH_LENGTH); /* Get new directory */
    printf(“pwd: %s\n”, newdir);
    
    exit(0);
}

F I G U R E  1 7 . 5  dir.c

das76205_Ch17_535-569.indd   551das76205_Ch17_535-569.indd   551 12/13/11   10:50 AM12/13/11   10:50 AM



552 Your UNIX/Linux: The Ultimate Guide

Let’s now switch to the directory /usr/include/sys. The program prints the 

current directory both before and after the switch:

$ a.out /usr/include/sys
pwd: /users1/home/staff/sumit
cd: /usr/include/sys
pwd: /usr/include/sys Change of directory inside program . . .

$ pwd
/users1/home/staff/sumit . . . is not available outside it

After completion of the program, we also ran the shell’s pwd command. As explained 

previously (7.6.1), a change of environment inside a program is not available outside it.

 17.12 Reading a Directory

Directories are also files, and they can be opened, read, and written in the same way as 

regular files. The format of a directory is not consistent across file systems—and even 

across different flavors of UNIX. Using open and read to list directory entries can be a 

grueling task. UNIX offers a number of library functions to handle a directory:

DIR *opendir(const char *dirname); Opens a directory 

struct dirent *readdir(DIR *dirp); Reads a directory 

int closedir(DIR *dirp); Closes a directory 

Note that we can’t directly write a directory; only the kernel can do that. These three 

functions take on the role of the open, read and close system calls as applied to ordinary 

files. As library functions, they encapsulate the file descriptors they actually work with. 

opendir understands dirname as a pathname and returns a pointer to a DIR structure 

(whose structure need not bother us). The other two functions use the address of this 

structure as argument.

A directory maintains the inode number and filename for every file in its fold. As 

expected, these two parameters are members of the dirent structure that is returned by 

readdir. Every invocation of readdir fills up this structure with information related to 

the next directory entry (i.e., the next filename). POSIX requires the dirent structure 

(defined in <dirent.h>) to provide at least these two members:

struct dirent {
    ino_t  d_ino Inode number 

    char   d_name[] Directory name

};

Both Solaris and Linux have at least two more members (signifying the record length 

and the offset of the directory entry), but we’ll ignore them to keep our programs por-

table. UNIX systems usually have the upper limit for d_name[] set to 256, so filenames 

can’t exceed 255 characters (one element of the array to be reserved for the terminating 

NULL).

das76205_Ch17_535-569.indd   552das76205_Ch17_535-569.indd   552 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 553

 17.12.1 lls.c: Listing Filenames in a Directory
Let’s now use the three functions and the dirent structure in our next program, lls.c 

(Fig. 17.6), to list for every file in a directory its inode number and filename.

We first define two variables of type pointer to DIR and pointer to struct dirent. 

The opendir call returns the pointer dir of type DIR, and readdir uses this pointer to 

return another pointer, direntry of type struct dirent. The members of this structure 

are accessed using the pointer notation ->. The partial output of the program shows the 

inode number and names of all files in the root directory:

$ ./a.out /
 2 . Program shows hidden files also

 2 ..
 6784 usr
 13568 var
 20352 export
 54272 etc

F I G U R E  1 7 . 6  lls.c

/* Program: lls.c -- Uses readdir to populate a dirent structure */
  
#include <dirent.h> /* For DIR and struct dirent */
#include <stdio.h>
#include "quit.h"
  
int main(int argc, char **argv) {
    DIR *dir; /* Returned by opendir */
    struct dirent *direntry; /* Returned by readdir */
      
    arg_check(2, argc, “Specify a directory\n”, 1) ;
    
    if ( (dir = opendir(argv[1])) == NULL) /* Directory must exist and */
        quit(“opendir”, 1); /* have read permission */
  
    while ((direntry = readdir(dir)) != NULL) /* Until entries are exhausted */
        printf(“%10d %s\n”, direntry->d_ino, direntry->d_name);
  
    closedir(dir);
    
    exit(0);
}

das76205_Ch17_535-569.indd   553das76205_Ch17_535-569.indd   553 12/13/11   10:50 AM12/13/11   10:50 AM



554 Your UNIX/Linux: The Ultimate Guide

 67840 dev
 5 lib
 407040 sbin
   ......

This is how ls -ia / displays the contents of the root directory.

There are three other functions available for handling directories. The rewinddir 

function rewinds the directory list so you can start reading it from the beginning with 

readdir. telldir returns the current location of the DIR pointer. This location can be 

used as an argument to seekdir to set the pointer to a specific location.

In the output of the previous program, both directories . and .. represent root, which has 
the inode number 2.

 17.13 Modifying Entries in Directory

Even though we can’t directly edit a directory, we can use functions to add, remove, 

or modify entries in a directory. In this section, we take up the following system calls:

 • mkdir and rmdir—These calls have the same significance as the commands of 

the same name.

 • link and symlink—link behaves like the ln command, but only to create a hard 

link. symlink creates a symbolic link.

 • unlink — Like rm, unlink removes a directory entry for an ordinary file or a 

symbolic link. It doesn’t remove a directory.

 • rename—Like mv, this call is used to modify the name in a directory entry.

Every function in this group uses a syntax that is identical to the simplest form of its 

corresponding UNIX command. They are, therefore, considered briefly in the following 

paragraphs.

 17.13.1 mkdir and rmdir: Creating and Removing Directories
Like a regular file, a directory also has an entry in its parent directory. The mknod system 

call can be used by the superuser to create a directory, but a nonprivileged user can use 

the mkdir and rmdir calls to create and remove a directory:

int mkdir(const char *path, mode_t mode);
int rmdir(const char *path);

The second argument to mkdir sets the permissions the directory will have on creation. 

The permissions are also modified by the umask setting.

 17.13.2 link and symlink: Creating a Hard and Symbolic Link
Unlike the ln command, which creates both hard and symbolic links, the system call library 

has two separate functions, link and symlink, for these tasks. Both require two arguments:

int link(const char *path1, const char *path2);
int symlink(const char *path1, const char *path2);

Note

das76205_Ch17_535-569.indd   554das76205_Ch17_535-569.indd   554 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 555

Here, both link and symlink create a directory entry with the name path2 for an existing 

file path1. symlink creates a new inode for path2 also. link doesn’t create an inode but 

simply updates the link count of the existing inode for path1 by one.

 17.13.3 unlink: Removing a Link
The unlink call reverses the action of link and symlink. It removes the directory entry 

for the file (the argument) and decrements the link count in its inode by one:

int unlink(const char *path);

Although link doesn’t create a symbolic link, unlink removes one, but not the file it 

points to; that has to be done separately. A file is considered to be removed when its 

link count in the inode has dropped to zero. When that happens, the kernel frees the 

inode and the associated disk blocks for fresh allocation, provided the file is closed also. 

We need to understand exactly how the kernel responds to an unlink call (see inset).

Can We Delete an Open File?
There’s one important thing that you need to remember when you use unlink on 

a file that has a single link count: If the file has been opened by another program 

or by code in your own program, the kernel will remove the directory entry all 

right, but it won’t delete the file as long as at least one file descriptor points to the 

file. So it’s possible to issue an unlink command immediately after an open and 

then read the file like this:

fd = open(“foo”, O_RDONLY);
unlink(“foo”); Even after “removing the file”

while ((n = read(fd, buf, BUFSIZE)) > 0) you can still read it!

Here, foo will be deleted only after it is closed or on termination of the 

program, which closes all open file descriptors. Note that you can read the file 

even after issuing unlink. But the kernel has already removed the directory entry 

for the file, so another open on this file will fail.

The facility to “unlink” a file immediately after opening it can be gainfully 

used in a program having multiple exit points. If your application needs to per-

form I/O on a temporary file and then delete it before program termination, then 

by unlinking the file at an early stage you are assured that the file will eventually 

be deleted.

 17.13.4 rename: Renaming a File, Directory, or Symbolic Link
The rename system call is used for renaming any type of file. Like mv, it can work with 

the three types of files shown in the section header, and it follows this syntax:

int rename(const char *old, const char *new);

das76205_Ch17_535-569.indd   555das76205_Ch17_535-569.indd   555 12/13/11   10:50 AM12/13/11   10:50 AM



556 Your UNIX/Linux: The Ultimate Guide

Here, rename modifies the directory entry by replacing the filename old with new. When 

operated on regular files or symbolic links, the behavior of rename is identical to that 

of mv. However, rename differs from mv when handling directories:

 • If old is a directory and new exists as a directory, rename simply removes new and 

moves old to new. The mv command makes old a subdirectory of new.

 • If old is a regular file, new can’t be a directory. mv doesn’t operate with this 

constraint.

You’ll recall how simply you used the command mv *.c workc to move all C source 

files to the workc directory. To emulate this function in your C program, you’ll have to 

call rename as many times as there are C programs.

 17.14 Reading the Inode: struct stat and stat

In the remaining sections of this chapter, we discuss file attributes. They are maintained 

in the inode on disk and in the stat structure of a program. This structure is populated 

with the stat system call (structure and system call having the same names). Let’s first 

examine the members of the stat structure as mandated by POSIX:

struct stat {
    ino_t st_ino Inode number

    mode_t st_mode Mode (type and permissions)

    nlink_t st_nlink Number of hard links

    uid_t st_uid UID (owner)

    gid_t st_gid GID (group owner)

    dev_t st_rdev Device ID (for device files)

    off_t st_size File size in bytes

    time_t st_atime Last access time

    time_t st_mtime Last modification time

    time_t st_ctime Last time of change of inode

    blksize_t st_blksize Preferred block size for I/O

    blkcnt_t st_blocks Number of blocks allocated

};

The ls command looks up this structure to gather file attributes, and the dirent struc-

ture for the filename. You can do that too with the stat system call (or with its two 

derivatives, fstat and lstat). All three calls use an address to a stat structure as the 

second argument:

int stat(const char *path, struct stat *buf);
int fstat(int fildes, struct stat *buf);
int lstat(const char *path, struct stat *buf);

stat requires the pathname as the first argument, but fstat requires a file descriptor. stat 

follows symbolic links, so if a file foo is symbolically linked to a file bar (foo->bar), 

doing a “stat” on foo will actually populate the stat structure with the attributes of bar. 

lstat behaves exactly like stat for ordinary files and directories, but it doesn’t follow 

das76205_Ch17_535-569.indd   556das76205_Ch17_535-569.indd   556 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 557

symbolic links, so an “lstat” on foo actually extracts the attributes of foo. We’ll be using 

lstat, rather than stat, for the examples in this chapter.

Some of the members of the stat structure need some processing before they can 

be displayed in a meaningful format. stat (the structure) stores the three time stamps 

in seconds elapsed since the Epoch (January 1, 1970), so we’ll use the library function 

ctime to display the time stamps in the Internet format. We need to process the st_mode 

member too, but before we do that, let’s first write a program that prints the values of 

some of these members.

 17.14.1 attributes.c: Displaying Some File Attributes
Our next program, attributes.c (Fig. 17.7), uses lstat to populate the statbuf 

variable of type struct stat. It uses the ctime function to format the time stamps by 

/* Program: attributes.c -- Uses lstat call and
 struct stat to display file attributes*/
#include <stdio.h>
#include <sys/stat.h>   /* For struct stat */
#include "quit.h"  
  
int main(int argc, char **argv) {
    struct stat statbuf;  /* We’ll use lstat to populate this */
  
    arg_check(2, argc, “Single filename required\n”, 1) ;
    
    if (lstat(argv[1], &statbuf) == -1)
       quit(“Couldn’t stat file”, 1);
  
    printf(“File: %s\n”, argv[1]);
    printf(“Inode number: %d \n”, statbuf.st_ino);
    printf(“UID: %d   “, statbuf.st_uid);
    printf(“GID: %d\n”, statbuf.st_gid);
    printf(“Type and Permissions: %o\n”,  statbuf.st_mode);
    printf(“Number of links: %d \n”, statbuf.st_nlink);
    printf(“Size in bytes: %d\n”, statbuf.st_size);
    printf(“Blocks allocated: %d\n”, statbuf.st_blocks);
    printf(“Last Modification Time: %s”, ctime(&statbuf.st_mtime));
    printf(“Last Access Time: %s\n”, ctime(&statbuf.st_atime));
    
    exit(0);
}

F I G U R E  1 7 . 7  attributes.c

das76205_Ch17_535-569.indd   557das76205_Ch17_535-569.indd   557 12/13/11   10:50 AM12/13/11   10:50 AM



558 Your UNIX/Linux: The Ultimate Guide

passing the address of the respective member (st_mtime or st_atime) as argument. 

The program shows how easy it is to display file attributes.

All numeric data are printed in decimal (with %d) except the file type and permis-

sions, which are formatted in octal. On running this program on /etc/passwd, you can 

see all attributes that ls also shows us with its various options (except that you need 

separate invocations of ls to display each time stamp):

$ ./a.out /etc/passwd
File: /etc/passwd
Inode number: 54412
UID: 0   GID: 3
Type and Permissions: 100755
Number of links: 1
Size in bytes: 10803
Blocks allocated: 22
Last Modification Time: Tue Nov 19 16:29:13 2002
Last Access Time: Tue Nov 26 19:57:01 2002

Observe the line that displays the file type and permissions as a single number in octal 

(100755). Unfortunately, UNIX doesn’t have separate members for them in stat, so we 

need to mask out one attribute to obtain the other. This is what we are going to do next.

 17.14.2 S_IFMT: Manipulating the st_mode Member
The st_mode member of stat combines the file type with its permissions in a space of 

16 bits. The organization of these bits is as follows:

Bits File Attribute

1–4 Type

5–7 SUID, SGID and sticky bit permissions

8–10 Owner permissions

11–13 Group permissions

14–16 Other permissions

The four most significant bits contain the file type. We need 12 bits (and not nine) 

to represent a file’s permissions completely. Recall that three separate bits are needed 

to set the SUID, SGID, and the sticky bit (4.6—Inset). In the previous example, the file 

type is represented by the octal number 100000 and the permissions by 755.

To extract these components separately, we need to use the S_IFMT mask. When 

the bitwise AND operation is performed with st_mode and this mask, it returns the file 

type. An inverse AND operation (with ~) returns the permissions. This is how you should 

be using S_IFMT in your programs:

mode_t file_type, file_perm;
file_type = statbuf.st_mode & S_IFMT; Bits 1–4

file_perm = statbuf.st_mode & ~S_IFMT; Bits 5–16

das76205_Ch17_535-569.indd   558das76205_Ch17_535-569.indd   558 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 559

Once you can separate the two components with this mask, you can identify files of a 

specific type or ones having (or not having) a specific permission. Checking file types 

for numeric values is not very convenient, so UNIX provides a number of macros that 

make our task simpler.

 17.14.3 Using the S_ISxxx Macros to Determine File Type
All UNIX systems provide a set of macros beginning with S_IF (often called the S_IFxxx 

macros) that simplify the work of checking for file types, but modern UNIX systems 

make this task even simpler with the S_ISxxx macros (Table 17.2). Each S_ISxxx macro 

uses the st_mode member as argument and returns true or false. For instance, S_ISREG 

checks for a regular file, and S_ISDIR checks for a directory. This is how you determine 

whether a file is a directory:

if (S_ISDIR(statbuf.st_mode)) 
    printf(“File is a directory\n”);

These macros actually mask out the file type from st_mode with S_IFMT and then check 

the residual value. We’ll make use of the S_IFMT and S_ISDIR macros in our next program.

 17.14.4 Accessing the Permission Bits
You can access each permission bit that’s embedded in the st_mode member of the stat 

structure. Recall from Section 17.14.2 that the S_IFMT mask has to be used this way to 

extract the permissions from st_mode:

file_perm = statbuf.st_mode & ~S_IFMT;

To test for a specific permission, we need to perform a bitwise AND operation of 

file_perm with the symbolic constant that represents the permission. The expression 

returns true if the permission bit is on. For instance, to test a file for read permission 

for the others category, we should use this statement:

if (file_perm & S_IROTH)
     printf(“File is readable by others\n”);

T A B L E  1 7 . 2  The S_ISxxx Macros

Macro Returns True If File Type Is

S_ISREG Regular
S_ISDIR Directory
S_ISBLK Block special
S_ISCHR Character special
S_ISLNK Symbolic link
S_ISFIFO FIFO
S_ISSOCK Socket

das76205_Ch17_535-569.indd   559das76205_Ch17_535-569.indd   559 12/13/11   10:50 AM12/13/11   10:50 AM



560 Your UNIX/Linux: The Ultimate Guide

Note that this is something we can’t do with shell programming, where all permission 

tests apply only to the user running the script.

 17.14.5 lsdir.c: Listing Only Directories
ls has no option to list only directories, but using the information in the stat structure, 

we can devise such a program. This program, lsdir.c (Fig. 17.8), uses the S_IFMT 

mask and the S_ISDIR macro to display the file type, permissions, and the name of 

every subdirectory of the directory name provided as argument. We are not recursively 

examining directories here.

As we have done in a previous program (lls.c, Fig. 17.6), we first have to obtain 

a pointer to a DIR structure with opendir, and then use readdir to return a pointer 

(direntry) to a dirent structure. However, this time we must change to the directory 
with chdir before we use readdir.

Next, we extract the filename from direntry (direntry->d_name) and then use 

lstat to populate a stat structure (statbuf) with the attributes of the file. From this 

structure, we extract the st_mode member (statbuf.st_mode) and then use it with the 

S_ISDIR macro to filter out only directories. For each directory we find, we mask its 

st_mode value with S_IFMT and ~S_IFMT to obtain the file type and permissions. We 

print both along with the filename.

Note that the chdir call is essential because the d_name member of struct dirent 

evaluates to a filename without slashes. Without chdir, lstat would look for the file 

in the current directory (when it shouldn’t be). 

Let’s run this program with the root directory as argument; a censored list follows:

$ ./a.out /
40000  755 .
40000  755 ..
40000  700 lost+found
40000  755 usr
40000  755 var
40000  755 export
40000  755 etc
40000  755 sbin
40000 1777 tmp The 1 shows the sticky bit is set

40000  755 .dt

The first character of the first field shows 4 (representing a directory) as the file type; 

the other four octal digits (here, 0000) have been masked out with S_IFMT. The second 

field shows the file’s permissions. Note the entry for tmp; it shows the sticky bit set for 

the directory. You now have a command that lists only directory names but also includes 

those beginning with a dot.

 17.15 access: Checking the Real User’s Permissions

We often need to know whether a program run by us has the necessary access rights 

to a file. Checking each permission bit in stat.st_mode doesn’t provide a clue since 

das76205_Ch17_535-569.indd   560das76205_Ch17_535-569.indd   560 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 561

/* Program: lsdir.c --
                      Lists only directories - Uses S_IFMT and S_ISDIR macros */
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <dirent.h>
#include "quit.h"
  
int main(int argc, char *argv[]) {
   DIR *dir;
   struct dirent *direntry; /* Returned by readdir() */
   struct stat statbuf; /* Address of statbuf used by lstat() */
   mode_t file_type, file_perm;
  
   arg_check(2, argc, “Directory not specified\n”, 1) ;
  
   if ((dir = opendir(argv[1])) == NULL)
      quit(“Couldn’t open directory”, 1);
   
   if ((chdir(argv[1]) == -1)) /* Change to the directory before */
      quit(“chdir”, 2); /* you starting reading its entries */
  
   while ((direntry = readdir(dir)) != NULL) { /* Read each entry in directory*/
      if (lstat(direntry->d_name, &statbuf) < 0) { /* dname must be in */
          perror(“lstat”);  /* current directory */
          continue;
      }
      if (S_ISDIR(statbuf.st_mode)) {  /* If file is a directory */
          file_type = statbuf.st_mode & S_IFMT;
          file_perm = statbuf.st_mode & ~S_IFMT;
          printf(“%o %4o %s\n”, file_type, file_perm, direntry->d_name);
      }
   }
   exit(0);
}

F I G U R E  1 7 . 8  lsdir.c

we then need to know the user category also. The access system call makes this job 

easier because it looks at the real UID and real GID of the user running the program 

and determines whether the file is accessible by the “real” user:

int access(const char *path, int amode);

das76205_Ch17_535-569.indd   561das76205_Ch17_535-569.indd   561 12/13/11   10:50 AM12/13/11   10:50 AM



562 Your UNIX/Linux: The Ultimate Guide

The first argument is the pathname, and amode specifies the access permission to be 

tested, which can be one or more of these four values:

R_OK—Read permission OK

W_OK—Write permission OK

X_OK—Execute permission OK

F_OK—File exists

Checking for specific permissions makes sense only when the file exists, and 

access is frequently used with F_OK to make the test for existence before continuing with 

the program. The program, faccess.c (Fig. 17.9), makes this check for multiple files.

The program uses a for loop to iterate through a list of command-line arguments 

representing filenames. For each argument, it performs all four tests with access. We’ll 

now find out the access rights a nonprivileged user has to /etc/passwd and /etc/shadow, 

but let’s observe their listing first:

/* Program: faccess.c --
                 Determines a file’s access rights using the read UID and GID */
#include <unistd.h> /* For F_OK, R_OK, etc. */
#include <stdio.h>
#include "quit.h"

int main(int argc, char *argv[]) {
   short count;
   for (count = 1; count < argc; count++) {
      printf(“%s: “, argv[count]);
  
      if (access(argv[count], F_OK) == -1)
         quit(“File not found”, 1);
      if (access(argv[count], R_OK) == -1 )
         printf(“Not readable  “);
      if (access(argv[count], W_OK) == -1)
         printf(“Not writable  “);
      if (access(argv[count], X_OK) == -1)
         printf(“Not executable  “);
  
      printf(“\n”);
   }
   exit(0);
}

F I G U R E  1 7 . 9  faccess.c

das76205_Ch17_535-569.indd   562das76205_Ch17_535-569.indd   562 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 563

$ echo $LOGNAME
romeo The real user

$ ls -l /etc/passwd /etc/shadow
-r--r--r--   1 root     sys         9953 Nov 28 15:30 /etc/passwd
-r--------   1 root     sys         5425 Nov 28 15:30 /etc/shadow

The real user is romeo and the listing shows that passwd is not writable or executable by 

romeo. Also, shadow doesn’t even have read permission for this user. This is confirmed 

by the output:

$ a.out /etc/passwd /etc/shadow
/etc/passwd: Not writable  Not executable
/etc/shadow: Not readable  Not writable  Not executable

You can perform an OR operation on the symbolic constants used by access to test for 

multiple permissions. For instance, access(“foo”, R_OK | W_OK) tests for both read 

and write permission.

 17.16 Modifying File Attributes

Finally, let’s end this chapter with a discussion on the manipulation of file attributes. The 

stat structure is useful for accessing a file’s attributes, but it can’t be used to set them 

except in an indirect manner. To change these attributes, we need to use the following 

system calls, some of which have identical command names in UNIX:

 • link and unlink—For creating a hard link and removing both a hard and symbolic 

link. This has already been discussed.

 • chmod and fchmod—For changing file permissions.

 • chown—This handles both ownership and group ownership.

 • utime—This changes the file’s modification and access times.

Each call in the list sets one or two file attributes to absolute values. Some of them (like 

chmod and utime) can be used in a relative manner also. For doing that, the general 

principle is to obtain the current value of the attribute from the stat structure and then 

add to or subtract from it.

 17.16.1 chmod and fchmod: Changing File Permissions
There’s nothing special to mention about these two calls except to note that chmod 

identifies a file by its pathname, while fchmod uses a file descriptor:

int chmod(const char *path, mode_t mode);
int fchmod(int fildes, mode_t mode);

The second argument (mode) represents the permissions and can be used by performing 

the OR operation on any number of the symbolic constants listed in Section 17.3. For in-

stance, to set permissions in an absolute manner, this is how you should use the chmod call:

chmod (“foo”, S_IRUSR | S_IWUSR | S_IRGRP) Same as chmod 640 foo

das76205_Ch17_535-569.indd   563das76205_Ch17_535-569.indd   563 12/13/11   10:50 AM12/13/11   10:50 AM



564 Your UNIX/Linux: The Ultimate Guide

Unlike the chmod command, the chmod system call can’t be used directly to set relative 

permissions. To do that, you’ll have to first extract the current permissions from st_mode 

and then use chmod with the bitwise

 • OR combination of the existing permissions and the specific permission to be assigned.

 • AND combination of the existing permissions and the complement of the specific 

permission to be removed.

To consider an example, you can assign execute permission to foo in two steps:

lstat(“foo”, &statbuf);
chmod(“foo”, statbuf.st_mode | S_IXUSR); Adding a permission

To remove a permission, you have to use the AND operator with the complement of the 

permission. The first example that follows removes the user’s execute permission, while 

the second one removes all permissions for the user:

chmod(“foo”, statbuf.st_mode & ~S_IXUSR);
chmod(“foo”, statbuf.st_mode & ~(S_IRUSR | S_IWUSR | S_IXUSR));

You may be wondering why we didn’t use S_IFMT to extract the permissions from 

st_mode before applying chmod. Fortunately, chmod also accepts the value of st_mode 

(which includes the file type) as its second argument.

 17.16.2 chown: Changing Ownership
Like its command counterpart, the chown system call is used to change both the owner 

and group owner. As with stat, there are three versions whose differences should now 

be obvious:

int chown(const char *path, uid_t owner, gid_t group);
int fchown(int fildes, uid_t owner, gid_t group);
int lchown(const char *path, uid_t owner, gid_t group);

For these calls, owner and group are represented by the numeric UID and GID, respec-

tively. To change either the owner or group owner, set the unchanged argument to -1 

(the first time we encounter -1 as an argument to a system call). Here are two examples:

chown(“foo”, 512, 100); UID changed to 512, GID to 100

fchown(4, -1, 100); UID unchanged, GID changed to 100

If the chown command can be used only by the superuser on your system, then the same 

restriction applies to the chown system call family also. Similarly, your system may permit 

changing your GID to only another group to which you also belong (supplementary group).

 17.16.3 utime: Changing the Time Stamps
The last system call that we take up is utime. This call is used to change a file’s modi-

fication and access times. It takes two arguments:

int utime(const char *path, const struct utimbuf *times);

das76205_Ch17_535-569.indd   564das76205_Ch17_535-569.indd   564 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 565

The first argument is obviously the pathname. The second argument represents a pointer 

to a structure of type utimbuf. (Note the missing “e”.) This structure contains two 

members of type time_t:

struct utimbuf {
    time_t actime Last access time

    time_t modtime Last modification time

};

These two members store the last access and modification times in seconds since the 

Epoch. To obtain the existing values for a file, you need to “stat” it and then examine the 

st_atime and st_mtime members in struct stat. But to set them to different values, 

you’ll have to populate the utimbuf structure before using utime.

 17.16.4 atimemtime.c: Creating a File with Identical Time Stamps
Can you create a file having the same time stamps as another file using UNIX commands? 

It’s not as easy as you might think, but our next C program, atimemtime.c (Fig. 17.10), 

makes the task look simple. It requires two filenames as arguments; the time stamps of 

the first file are used to set the stamps for the second.

We first use lstat to fill up statbuf with the attributes of an existing file 

(argv[1]). Next, we populate the utimbuf structure with the two time stamps obtained 

from the previous lstat call. We open a second file (argv[2]), creating it if necessary, 

and then use utime to change its time stamps to the values stored in timebuf. This 

operation can be performed even if the file is not open; the file was opened simply to 

make sure that it’s created if it doesn’t exist.

Let’s use this program to create a file with the same time stamps as one of the 

profiles—like .profile. Let’s first see its time stamps:

$ cd ; ls -l ~/.profile ; ls -lu ~/.profile
-rw-r--r--   1 sumit    staff         61 Dec 12 20:14 .profile
-rw-r--r--   1 sumit    staff         61 Feb  2 12:33 .profile

The last access time for this file (obtained with ls -lu) is generally the time we logged 

in, and it’s a good idea to save this time by creating another file with identical time 

stamps. We’ll move the a.out executable to the home directory before running it:

$ mv a.out $HOME; cd ; ./a.out .profile .logintime
$ ls -l .logintime ; ls -lu .logintime
-rw-r--r--   1 sumit    staff          0 Dec 12 20:14 .logintime
-rw-r--r--   1 sumit    staff          0 Feb  2 12:33 .logintime

Note that the time stamps for the two files are identical. Using a C program, we have 

done something that we couldn’t do using UNIX commands and the shell.

You can now start writing programs that use these system calls. But we still have 

some way to go. We must be able to create processes, run programs in them, open files 

in one process, and pass on the descriptors to the child. We also need to manipulate 

these descriptors to implement redirection and piping. The programmer’s view of the 

process is presented in Chapter 18.

das76205_Ch17_535-569.indd   565das76205_Ch17_535-569.indd   565 12/13/11   10:50 AM12/13/11   10:50 AM



566 Your UNIX/Linux: The Ultimate Guide

S U M M A R Y

A system call is a routine built into the kernel to perform a function that requires com-

munication with the hardware. It switches the CPU to kernel mode from user mode. 

Library functions are built on top of the system calls.

Many of the system calls have corresponding library functions, which have an “f” 

prefix. When a system calls returns an error (often, -1), it sets a global variable, errno, 

to an integer whose associated text can be printed with perror.

open returns a file descriptor that is used by the other I/O calls. It sets the opening 

mode (read, write, etc.) and status flags that can create (O_CREAT) or truncate (O_TRUNC) 

a file or allow data to be appended (O_APPEND).

/* Program: atimemtime.c --
 Sets a file’s time stamps to those of another file */
#include <sys/stat.h>
#include <fcntl.h>
#include <utime.h> /* For struct utimbuf */
#include "quit.h"  
  
int main(int argc, char **argv) {
   struct stat statbuf; /* To obtain time stamps for an existing file */
   struct utimbuf timebuf; /* To set time stamps for another file */
  
   arg_check(3, argc, “Two filenames required\n”, 1) ;
   
   if (lstat(argv[1], &statbuf) == -1)
      quit(“stat”, 1);
  
   timebuf.actime  = statbuf.st_atime; /* Setting members of timebuf with */
   timebuf.modtime = statbuf.st_mtime; /* values obtained from statbuf */
  
   if (open(argv[2], O_RDWR | O_CREAT, 0644) == -1)
      quit(“open”, 2);
   close(argv[2]); /* Previously used open only to create it */
  
   if (utime(argv[2], &timebuf) == -1) /* Sets both time stamps for file */
      quit(“utime”, 3); /* that was just created */
   
   exit(0);
}

F I G U R E  1 7 . 1 0  atimemtime.c

das76205_Ch17_535-569.indd   566das76205_Ch17_535-569.indd   566 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 567

read and write use a buffer whose size should be set equal to the size of the kernel 

buffer for best performance. lseek moves the file offset pointer and can take it beyond 

EOF to create a sparse file. Unlike read, write returns immediately even though the 

actual writing can take place later.

File permissions specified with open are modified by either the shell’s umask 

setting or a previous umask system call. umask returns the previous value of the mask.

Directories are usually handled with library functions because of the nonstandard 

format of the directory structure. opendir returns a pointer to a DIR structure that is used 

by readdir to read a directory entry. readdir returns a pointer to a dirent structure 

that contains the filename and inode number as its members. chdir changes the current 

directory and getcwd returns the pathname of the current directory.

Files can be hard linked (link) and symbolically linked (symlink), but unlink 

removes both. When unlink is invoked on an open file, the kernel removes the directory 

entry, but its data blocks are deallocated only when the file is closed.

The inode information is maintained in the stat structure, which is populated by 

stat, lstat, and fstat. The file type and its permissions are maintained in a single 

field, st_mode, which can be split into separate components using the S_IFMT mask. 

The S_ISxxx macros can be used to test for specific file types.

access tests a file’s access rights (which includes the test for its existence) using 

the real UID and real GID of the process.

The chmod and chown calls do the same jobs as their command counterparts. 

utime is used to set a file’s access and modification time stamps using a structure of 

type utimbuf.

S E L F - T E S T

Use system calls wherever possible. However, you may use printf, perror, and the 
directory handling library functions.
17.1 Explain the difference between system calls and library functions. What happens 

in the CPU when a system call is invoked?

17.2 Why must we immediately check the value of errno after a system call fails, 

rather than later?

17.3 What is a file descriptor, and what is it used for?

17.4 Check the man pages of open, dup, dup2, pipe, and fcntl and see if you find 

anything they have in common.

17.5 Write a program that ascertains the size of the file descriptor table by opening a file 

repeatedly. Display the cause of the error that led to the aborting of the program.

17.6 Specify how the open call can be used to emulate the function performed by the 

shell’s (i) >, (ii) >> symbols.

17.7 Group the following symbolic constants into two categories and explain the sig-

nificance of the categories: (i) O_RDONLY, (ii) O_CREAT, (iii) O_SYNC, (iv) O_RDWR, 

(v) O_TRUNC, (vi) O_APPEND, (vii) O_WRONLY. What is the role of the O_SYNC flag 

when using write?

17.8 Write a program that uses a filename as argument and displays its contents in 

uppercase.

das76205_Ch17_535-569.indd   567das76205_Ch17_535-569.indd   567 12/13/11   10:50 AM12/13/11   10:50 AM



568 Your UNIX/Linux: The Ultimate Guide

17.9 Write a program that (i) creates a file foo with permissions 666 and a directory 

bar with permissions 777, (ii) removes foo and bar.

17.10 Write a program that accepts a directory name as argument and creates it if it 

doesn’t already exist. If there is an ordinary file by that name, the program should 

remove it before creating the directory.

17.11 Write a program that accepts a directory name as argument, changes to that 

directory, and displays its absolute pathname. Is the change permanent?

17.12 Write a program that lists from the current directory all ordinary filenames whose 

size exceeds 100,000 bytes. It should also remove all zero-sized files.

17.13 Write a program that sets the user mask to zero before creating a file foo. Now, 

change the permissions of foo to (i) 764, (ii) 440. The previous value of the 

mask should be restored before program termination.

E X E R C I S E S

Use system calls wherever possible. However, you may use printf, perror, strerror, 

and the directory handling library functions.
17.1 Look up the man page of strerror before you write a program that prints all 

possible error numbers and their corresponding text as shown in Table 17.1. 

The number of error messages on your system is held in the extern variable, 

sys_nerr.

17.2 Explain what an atomic operation is. Specify the statement that opens a file 

and (i) truncates it if it exists (ii) creates it if it doesn’t. What is the advantage 

of using open to create a file instead of creat, which is designed only for that 

purpose?

17.3 Write a program that copies a file using the source and destination as arguments. 

The destination can also be a directory.

17.4 Modify the program in 17.8 (Self-Test) so that the output is displayed in lower-

case when invoked by the name lower, and uppercase when invoked as upper. 

What else do you need to do to run it?

17.5 Explain why the selection of the buffer size used by read and write is crucial 

in writing efficient programs.

17.6 Write two programs that read /etc/passwd using (i) a single-character buffer, 

(ii) a buffer of 2048 bytes with read. Use the time command with each and 

compare their performance.

17.7 Write a program that displays the current value of the user mask but leaves it 

unchanged.

17.8 Using access, devise an advisory locking mechanism which allows two programs, 

lock1.c and lock2.c, to read a file foo only if the file .lockfile doesn’t 

exist. Both programs will first create the lock file if it doesn’t exist and then will 

remove it before termination.

17.9 Write a program to split the contents of a file specified as argument into multiple 

files so that each file contains at most 10,000 bytes. Name the files foo.1, foo.2, 

and so forth if foo is the argument.

das76205_Ch17_535-569.indd   568das76205_Ch17_535-569.indd   568 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 17: Systems Programming I—Files 569

17.10 Write a program that uses error checking to perform the following on an exist-

ing file foo: (i) opens foo and then deletes it without closing it; (ii) reads foo 

and displays its output; (iii) opens foo again. After the program has completed 

execution, check whether foo has actually been deleted. Explain your observa-

tions with reference to the behavior of the unlink system call.

17.11 Write a program that moves a group of ordinary files to a directory. The filenames 

are provided as arguments, and the last argument is a directory. Provide adequate 

checks to ensure that the files exist as ordinary files and the directory is created 

if it doesn’t exist.

17.12 Write a program that does the following: (i) creates a file foo with permissions 

644, (ii) assigns write permission to the group, (iii) removes the read permission 

from others. Look up the system library function, and use it to display the listing 

at each stage.

17.13 Write a program that removes the read, write, and execute permissions for oth-

ers for all files in the current directory that are owned by the user running the 

program. (Hint: Use getuid to obtain your own UID.)

17.14 Write a program to create a file foo1 with the same permissions, modification 

time, and access time as another file, foo2.

17.15 Write a program that uses a filename as argument and checks each of the 

12 permission bits. The program should display a message if the bit is set. For 

instance, if the user has read permission, then it should display User-readable. 

Develop the code in a modular manner using two separate functions, A and B:

(i)  A will populate a stat structure with the attributes of the file and print its 

permissions in octal format as a four-character string.

(ii)  B will extract each permission bit from stat.st_mode and then print a 

message like User-readable if the respective bit is set.

das76205_Ch17_535-569.indd   569das76205_Ch17_535-569.indd   569 12/13/11   10:50 AM12/13/11   10:50 AM



570

18 
C H A P T E R  18

Systems Programming II—
Process Control

In this chapter we discover answers to some old questions. How does the shell 

run our programs? How do we manipulate the standard streams to implement 

redirection and pipelines? Why does one program respond to the interrupt key, but not 

another? A systems programmer must know these answers because she has to create 

processes, divide the work between them, and determine how they should react to signals 

and how to pass messages between them.

We’ll examine in some detail the fork-exec-wait cycle that will help us create 

processes using the system call library. We handled file descriptors in Chapter 17, but 

here we’ll make use of the kernel’s descriptor-replicating properties to implement two 

important shell features—redirection and piping. We’ll also examine the basics of the 

elaborate POSIX signal-handling mechanism.

  Objectives
 • Examine the different segments of the virtual address space of a process.

 • Learn the significance of the entries of the process table.

 • Use fork to create a process and study the environmental changes in the child.

 • Replace the existing process address space with a new program using the exec fam-

ily of functions.

 • Use wait and waitpid to wait for a change of status in the child and gather its exit 

status from the process table.

 • Understand the three-table scheme associated with every open file and how the scheme 

changes when a file is accessed by multiple processes.

 • Perform shell-like redirection using the dup and dup2 system calls.

 • Learn the basics of signal handling and the concept of signal disposition.

 • Install signal handlers with sigaction, and generate signals with kill and raise.

 • Understand the attributes of a pipe, and create a pipeline using the pipe system call.

das76205_Ch18_570-606.indd   570das76205_Ch18_570-606.indd   570 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 571

 18.1 The Process Revisited

The basic concepts related to processes have been discussed in Chapter 7, but we need 

to expand that knowledge before we use system calls to create and control processes. 

UNIX supports preemptive multitasking, which means that the kernel preempts a pro-

cess when its time period expires. However, the norms are sometimes relaxed, especially 

when a process invokes a system call.

Generally, a system call is allowed to complete even after the process has 

consumed its time slice, but the behavior of certain system calls necessitates the use 

of a different control mechanism. For instance, if a system call keeps the CPU idle 

(when waiting for an I/O operation to complete, for instance), the process blocks by 

voluntarily giving up control of the CPU. The process sleeps on an event, and when 

the event occurs, the kernel wakes up the process so that it can start running again 

when its turn arrives.

The kernel allocates memory for the process image, but it also maintains control 

information in a number of registers. It uses this information for switching processes. 

We examine here two key concepts—the process address space and the process table.

 18.1.1 The Virtual Address Space
When you execute a C program, the program loader transfers the binary code from the 

program on disk to memory. The kernel also creates additional space in memory as and 

when needed by the process. This collection of memory locations that the process can 

access is referred to as its virtual address space. This space is organized into a number 

of segments (Fig. 18.1):

 • The text segment. This segment, containing the instructions to be executed, is 

read in from the program’s disk file. Multiple instances of one program will share 

this segment; three users running vi will use a single text segment.

 • The data segment. This segment represents the global and static variables used 

in the program.

 • The stack. It stores the arguments and local variables of functions as well as the 

address to return to. The stack grows and shrinks in size as functions are invoked 

and complete execution.

 • The heap. This segment is used to dynamically allocate memory during program 

runtime (using functions like sbrk, malloc, and calloc). The heap and stack are 

separated by unallocated space, and they grow at the expense of each other.

 • Other segments. Command-line arguments and environment variables are gen-

erally found at the bottom of the stack (top in Fig. 18.1). Shared libraries, if used 

by a program, are located between the heap and stack.

A process can only access its own address space, which is why one process can’t cor-

rupt the address space of another. The preceding discussions actually featured the user 

das76205_Ch18_570-606.indd   571das76205_Ch18_570-606.indd   571 12/13/11   10:50 AM12/13/11   10:50 AM



572 Your UNIX/Linux: The Ultimate Guide

address space. When the process invokes a system call, the kernel runs on behalf of the 

user in its own address space—the kernel address space—to service the call.

F I G U R E  1 8 . 1  The Process Virtual Address Space

Command Line Arguments
and Environment Variables

Stack

Heap

Data

Text

How Virtual Addresses Are Interpreted and Translated
The addresses of the process segments (text, data, stack, etc.) created by the linker 

are virtual because they don’t point to physical memory locations. It is possible 

for the virtual address space of all programs to begin from address 0 and yet run 

without conflict. The linker can only specify the relative location of the segments 

within a program. It can’t predetermine a physical memory location; the location 

may not be free.

At runtime, the Memory Management Unit (MMU) converts these virtual 

addresses to nonconflicting physical memory locations using a set of address 
translation maps. The MMU contains a set of hardware registers that point to the 

translation maps of the currently running process.

Every process has a context that represents the entire environment available 

to the process when it is running. This environment includes the address space, 

the status of the hardware registers, and the information maintained in the process 

table. The kernel saves the process context before it uses a context switch to force 

one process to vacate the CPU and make room for another. The kernel then sets 

the registers to point to the translation maps of the new process. Because every 

process has its own set of translation maps, one process can’t access another’s 

address space.

das76205_Ch18_570-606.indd   572das76205_Ch18_570-606.indd   572 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 573

 18.1.2 The Process Table
The attributes of every active process are stored in a fairly large structure that represents 

an entry in the process table. Modern UNIX systems no longer swap out portions of the 

process table to disk, but maintain the entire table in memory. The important attributes 

of the process table are:

 • The PID and PPID of the process.

 • The state of the process—whether running, sleeping, zombie, and so forth.

 • The real UID and GID of the process.

 • The effective UID and GID of the process.

 • The file descriptor table.

 • The file creation mask.

 • CPU usage information.

 • The pending signals mask. This is a list of signals pending against the process. The 

process can know that it has received a signal only when it “peeks” into this field.

 • A signal disposition table. It specifies the action to take when the process receives 

a signal.

The process table entry of a forked child has many fields copied from the parent. When 

the child execs a new program, the process table entry is retained (since the PID doesn’t 

change), but some of these fields change. For instance, the child may decide to close some 

descriptors before an exec. When a process dies, the process table entry is cleared only 

after the parent has gathered the child’s exit status. This has already been discussed (7.8).
Note that the process table maintains important data related to signals. A process 

knows that it has received a signal by looking up the pending signals mask, but the ac-

tion it has to take for a signal is specified by the signal disposition table. We have more 

to say about them later.

 18.2 The Process Environment

The environment of a process includes the shell’s environment variables stored at the 

bottom of the stack (Fig. 18.1). These variables are available in the global environ 

variable, which you may need to define in your C program like this:

extern char **environ; Array of pointers to char

Like argv[] (used as the second argument to main), environ[] represents an array of 

pointers to char. This array stores pointers to environment variable strings of the form 

name=value. These values can be retrieved and set by two functions, getenv and setenv:

char *getenv(const char *name);
int setenv(const char *envname, const char *envval, int overwrite);

getenv returns a pointer to the value of a variable, whose string representation is passed 

to it as the name argument. For instance, you can obtain the current value of PATH in 

this manner:

char *path = getenv(“PATH”);

das76205_Ch18_570-606.indd   573das76205_Ch18_570-606.indd   573 12/13/11   10:50 AM12/13/11   10:50 AM



574 Your UNIX/Linux: The Ultimate Guide

The first two arguments of setenv are meant to pass the variable name and value. The 

third argument, overwrite, determines whether an existing value of a variable will be 

overwritten (0 signifies that the value is to be left alone). This is how you can reset PATH 

to include only the current directory:

setenv(“PATH”, “.”, 1); 1 allows updating 

BSD created setenv, and even though POSIX recommends its use, it is not available 

on some SVR4 systems. If you don’t find setenv on your machine, then use SVR4’s 

putenv (not preferred by POSIX). The previous setenv call can be replaced with 

putenv(“PATH=.”).

 18.2.1 process.c: Looking Up Some Process Credentials
Our first program, process.c (Fig. 18.2), accesses and updates PATH. It also displays the 

PID and PPID of the current process along with the ownership credentials. Six system 

calls are used here, and their names reflect their function.

The process obtains its own PID and its parent’s PID using the getpid and 

getppid system calls. The program also prints the effective UID and GID, which 

normally are equal to the real UID and GID:

$ ./a.out
PID : 1035, PPID: 1028
UID : 102, GID: 10 Real UID and GID are the same

EUID: 102, EGID: 10 as their effective cousins

PATH=/usr/local/bin:/usr/bin:/usr/X11R6/bin:/bin:/usr/local/java/bin:.
New PATH=.

/* process.c -- Prints PID, PPID, real and effective UIDs and GIDs
                                  Also fetches and sets PATH */
#include <stdio.h>
#include <stdlib.h>

int main(void) {
    printf(“PID : %4d, PPID: %4d\n”, getpid(), getppid());
    printf(“UID : %4d,  GID: %4d\n”, getuid(), getgid());
    printf(“EUID: %4d, EGID: %4d\n”, geteuid(), getegid());
    printf(“PATH=%s\n”, getenv(“PATH”));
    setenv(“PATH”, “.”, 1); /* Use putenv(“PATH=.”) in Solaris */
    printf(“New PATH=%s\n”, getenv(“PATH”));
    exit(0);
}

F I G U R E  1 8 . 2  process.c

das76205_Ch18_570-606.indd   574das76205_Ch18_570-606.indd   574 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 575

When Effective UID Doesn’t Equal Real UID To understand how the SUID bit affects 

the effective UID, let’s set the SUID bit of this executable from the superuser account 

(19.1.1) and transfer the ownership to root. Confirm your actions by observing the listing:

# chmod u+s a.out ; chown root a.out ; ls -l a.out
-rwsr-xr-x    1 root      sumit        12211 Dec 17 09:49 a.out

Now quit superuser mode and run the program again. The effective UID now becomes 

the owner of the file (root, whose UID is 0):

$ ./a.out | grep UID
UID :  102,  GID:   10
EUID:    0, EGID:   10

In the next few sections, we examine each phase of the process life cycle—fork, exec, 

and wait—along with their associated system calls and library functions. We also need 

to discuss the process exit mechanism and how it impacts wait.

 18.3 fork: Replicating the Current Process

You can’t run an external program unless you replicate your current process first with 

the fork system call. fork has a simple syntax but returns in an unusual manner:

pid_t fork(void); Copies current process to child

The replicated process is the child of the process invoking fork. Parent and child have 

different PIDs and PPIDs, and that’s probably the only major difference between them. 

After fork returns, both processes continue execution at the statement following fork 

(code before fork ignored by child). For the kernel to distinguish between the original 

and its replica, fork returns twice with two different values:

 • Zero in the child, which is safe because no process can be created with that PID.

 • The PID of the child in the parent, so the parent can later access the child with this PID.

When fork is invoked, the kernel replicates the address space of the current process 

(its text, data, stack, etc.). It also creates a separate entry in the process table contain-

ing several fields copied from the entry of the parent. This includes the file descriptors, 

current directory, and umask value. Because the child runs in its own address space, 

changes made to these parameters don’t affect the parent.

UNIX systems impose limits on the number of processes a user can create. Further, 

the size of the process table also places restrictions on the total number of processes 

that the machine can support. If an attempt to fork a process violates either of these 

restrictions, fork returns -1.

 18.3.1 fork.c: A Simple Child Creation Program
You may find the behavior of fork a little confusing initially, so let’s demonstrate its 

effect with a small program, fork.c (Fig. 18.3). The program simply forks a process 

and then uses getpid and getppid to obtain the PID and PPID of both parent and child.

das76205_Ch18_570-606.indd   575das76205_Ch18_570-606.indd   575 12/13/11   10:50 AM12/13/11   10:50 AM



576 Your UNIX/Linux: The Ultimate Guide

Since fork returns two different values, we need to examine these values to dis-

tinguish between parent and child. Observe from the output that follows that the first 

and second printf statements are executed in the parent, and the third one in the child. 

The final printf is executed by both processes:

$ ./a.out
Before forking
CHILD -- PID: 1556 PPID: 1555
Both processes continue from here This statement runs in child ...

PARENT -- PID: 1555 PPID: 1450, CHILD PID: 1556
Both processes continue from here ... as well as in parent

/* Program: fork.c -- A simple fork
                         Shows PID, PPID in both parent and child */
#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
  
int main (void) {
   pid_t pid;
  
   printf(“Before fork\n”);
   pid = fork(); /* Replicate current process */
  
   if (pid > 0) { /* In the parent process; make sure */
       sleep(1); /* that parent doesn’t die before child */
       printf(“PARENT -- PID: %d PPID: %d, CHILD PID: %d\n”,
                            getpid(), getppid(), pid);
   }
   else if (pid == 0) /*In the child process */
       printf(“CHILD -- PID: %d PPID: %d\n”, getpid(), getppid());
   else { /* pid must be -1 here */
       printf(“Fork error\n”);
       exit(1);
   }
  
   printf(“Both processes continue from here\n”);    /*In both processes */
   exit(0);
}

F I G U R E  1 8 . 3  fork.c

das76205_Ch18_570-606.indd   576das76205_Ch18_570-606.indd   576 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 577

Note that the parent is aware of the PID of three generations, while the child has knowl-

edge of two. After a process is forked, it’s not specified (either by POSIX or by conven-

tion) which runs first—the parent or the child. On Solaris, the child runs first, but the 

opposite is true on Linux. We deliberately introduced the sleep call to ensure that the 

parent doesn’t die before the child. The consequences of letting the parent die first are 

examined in Section 18.6, “When the Parent Dies Before the Child.”

 18.4 exec: The Final Step in Process Creation

We fork to create a process, but more often than not, we follow it with an exec to run a separate 

program in the address space of the child. Exec replaces this address space (the text, data, 

and stack) with that of the new program, which then starts running by executing its main 

function. Since no new process is created, the PID doesn’t change across an exec. Because 

the stack is replaced with a new one, the call to exec doesn’t return unless it results in an error.

What Happens to the I/O Buffers After a Fork?
The standard I/O library that includes functions like printf maintains an addi-

tional set of buffers. These buffers are different from the buffer cache available in 

the kernel. Forking copies the I/O buffers as well, which means any data held by 

them before the fork are also available to the child. This creates problems when 

using functions like printf with fork. 

Unlike write, which is totally unbuffered, printf is line-buffered when writ-

ing to the terminal. This means that the buffer contents are written to the terminal 

when a newline is encountered. printf is, however, fully buffered when writing to 

disk (say, when using redirection); the buffer is written only when it is full. This 

allows a child to acquire a partially filled buffer from its parent. Redirect the output 

of the program, fork.c, to a file, and you’ll find the program behaving differently.

Many of the attributes inherited during a fork don’t change with an exec. For 

instance, the previous program’s file descriptors, the current and root directory, umask 

settings, and the global environment remain the same. However, a programmer can 

change the exec’d environment in two ways:

 • By closing one or more file descriptors, so files opened before or after a fork can’t 

be read directly in the exec’d process.

 • By passing a separate environment to the exec’d process instead of the default en-

vironment maintained in the global environ variable. Two exec functions (execve 

and execle) are designed to work this way.

“Exec” is the name we commonly use to refer to this overlaying; there’s no system call 

named exec. In fact, there’s one—execve—on top of which five library functions are 

built. We’ll refer to them simply as “exec” or the “exec family.” The entire set can be 

grouped into two parts, which we’ll call the “execl” set and the “execv” set, because the 

names of their members have the prefix “execl” and “execv”.

das76205_Ch18_570-606.indd   577das76205_Ch18_570-606.indd   577 12/13/11   10:50 AM12/13/11   10:50 AM



578 Your UNIX/Linux: The Ultimate Guide

First, commit to memory this simple statement: The “l” (el) in execl (and its variants) represents 
a fixed list of arguments, while the “v” in execv (and its variants) signifies a variable number 
of arguments.

 18.4.1 execl and execv: The Key Members
In this section, we examine two library functions, execl and execv. The execl func-

tion requires each component of the command line of the new program to be specified 

as individual arguments:

int execl(const char *path, const char *arg0, ... /*, (char *) 0 */);

execl doesn’t use PATH; the first argument (path) signifies the absolute or relative 

pathname of the program. The other arguments represent each word of the command 

line beginning with the name of the command (*arg0). The ellipsis representation in 

the syntax (... /*) points to the varying number of arguments.

To consider an example, here’s how we use execl to run the wc -l command 

with foo as argument:

execl(“/bin/wc”, “wc”, “-l”, “foo”, (char *) 0);

execl uses the first argument to locate the program. The remaining arguments are specified 
exactly in the way they will appear as main’s arguments in wc. So, argv[0] in wc’s main is 

wc. The list is terminated with a NULL pointer. This is simply a zero cast to pointer to char.

Let’s use execl in our next program, execl.c (Fig. 18.4), to run the wc command 

with two options and one filename. We don’t fork a process here, so execl replaces the 

address space of the current process with that of wc. Because a successful execl never 

returns, the printf statement is not executed:

$ ./a.out
     166    9953 /etc/passwd

We can also use NULL in place of (char *) 0. Because execl requires each word of 

the command line to be specified individually, this creates problems when the argument 

list is known only at runtime. The solution is execv, which requires a list:

int execv(const char *path, char *const argv[]);

Tip

/* Program: execl.c -- Uses execl to run wc */
  
#include <stdio.h>
int main (void) {
    execl (“/bin/wc”, “wc”, “-l”, “-c”, “/etc/passwd”, (char *) 0);
    printf (“execl error\n”);
}

F I G U R E  1 8 . 4  execl.c

das76205_Ch18_570-606.indd   578das76205_Ch18_570-606.indd   578 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 579

The first argument is the same. The command to run and its arguments are bundled into 

an array of pointers to char, and the address of the first element is passed as the second 

argument. In this case also, the last element of argv[] must be a NULL pointer. This is 

how we use execv to run the wc command that was run with execl in Fig. 18.4:

char *cmdargs[] = { “wc”, “-l”, “-c”, “/etc/passwd”, NULL };
execv (“/bin/wc”, cmdargs);

Note that cmdargs here is the same as &cmdargs[0]. This method of invocation suggests 

that we can input any command line during runtime. After examining wait, we’ll design 

a program that accepts the command line of another program as its own arguments.

Why a NULL Pointer Is Required
To understand why we follow the argument list with a NULL pointer ((char *) 0) 

or NULL), let’s first see how arguments are passed to a C program. By convention, 

we use one of these two syntaxes for main when a program is run with arguments:

int main(int argc, char **argv) {
int main(int argc, char *argv[]) {

The startup routine that eventually runs main populates argv[] (an array of point-

ers to char) with the string arguments specified in the command line. A NULL 

pointer is also placed at the end of the array. The number of arguments (excluding 

the NULL pointer) is then evaluated and assigned to argc. When main runs, it 

knows the number of arguments passed to it.

When we use exec to run a program, there’s no provision to specify the 

number of arguments (no argc); exec has to fill up argc “by hand.” The only 

way for execl to know the size of the argument list is to keep counting until it 

encounters the NULL pointer.

 18.4.2 The Other exec Members
execlp and execvp These functions use PATH to locate the command, so the first 

argument need only be the name of the command:

int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);
int execvp(const char *file, char *const argv[]);

Note that pathname has now become file; the other arguments remain the same. This 

means that instead of /bin/wc, we can simply specify wc as the first argument:

execlp(“wc”, “wc”, “-l”, “foo”, (char *) 0);
execvp(“wc”, cmdargs);

However, there’s another advantage these functions have over execl and execv: They 

can run a shell, awk, or perl script. By default, execlp and execvp spawn a Bourne 

das76205_Ch18_570-606.indd   579das76205_Ch18_570-606.indd   579 12/13/11   10:50 AM12/13/11   10:50 AM



580 Your UNIX/Linux: The Ultimate Guide

shell to read the commands in the script, but if you have #!/usr/bin/bash as the she-

bang line, they’ll call up the Bash shell.

execle and execve All the previous four exec calls silently pass the environment of the 

current process (through the environ[] variable) to the exec’d process. Sometimes, you 

may need to provide a different environment to the new program—a restricted shell, for 

instance. In that case, use the remaining members of the exec family, execle and execve:

int execle(const char *path, const char *arg0, ... /*,
             (char *) 0, char *const envp[]*/);
int execve(const char *path, char *const argv[], char *const envp[]);

Unlike the other four members, both execle and execve use an additional argument 

to pass a pointer to an array of environment strings (of the form variable=value) to the 

program. It’s only this environment that is available in the exec’d process, not the one 

stored in environ[]. The last one, execve, is the only system call in the exec family; 

the others internally invoke execve.

exec overwrites the I/O buffers, so make sure that you flush them before using exec. fork 
inherits all I/O buffers, which creates problems when using printf (18.3.1).

 18.5 Gathering the Exit Status

A process terminates normally either by falling through main or by invoking exit or 

return. It returns the exit status to the caller, which, in the shell, is available in the 

parameter $?. The exit library function specifies this value as its argument:

void exit(int status);

exit internally executes the _exit system call. When a process terminates without 

explicitly calling exit, the exit status is zero. In either case, the kernel closes all open 

files, flushes all output streams, and deallocates the process address space. But the 

process is not completely removed yet.

Next, the kernel places status (the exit status) in the process table and changes 

the state of the child to zombie. This scheme is based on the “hope” that the parent may 

eventually call wait or waitpid to pick up the exit status. If the parent eventually does 

so, the kernel frees the process table entry and removes the process from the system.

You can’t kill a zombie because it’s not a process, but too many zombies just eat 

into the available slots of a process table. The ps output shows zombie processes as the 

string <defunct> in the last column. A system reboot may be required to clear zombies.

 18.5.1 wait: When the Parent Waits
After the child has done an exec, it’s normal for the parent to wait for its death. This is com-

monly done by invoking the wait system call, which uses a pointer to int as argument:

pid_t wait(int *stat_loc);

Tip

das76205_Ch18_570-606.indd   580das76205_Ch18_570-606.indd   580 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 581

wait blocks until a child dies (one reason why waitpid is preferred to wait) or is 

suspended. It returns the PID of the dead or suspended child, or zero if no such child 

is available. It also fills up stat_loc with information that includes the exit status. The 

parent then resumes operation with the statement following wait. Here’s a snippet of 

code that shows the role of wait:

switch(fork()) {
   case 0: /* Child */

       execv(argv[1], &argv[2]);
  default: /* Parent */

       wait(&status);
}

The exit status is available in the eight least significant bits of status (*stat_loc in syntax). 

When a process terminates normally, this value is fetched by the WEXITSTATUS macro:

fprintf(stderr, “Exit status: %d\n”, WEXITSTATUS(status));

The argument to wait actually represents the termination status, which contains other 

information—like whether a process terminated normally or is suspended, along with 

the signal that suspended the process.

 18.5.2 waitpid: A More Powerful Waiting Mechanism
With most shells today supporting job control, it is usual for a parent to run multiple jobs 

in the background. It can’t afford to block (by invoking wait) after forking, but it still 

needs to clean up the process table of zombies as and when its children die. waitpid 

is the solution here:

pid_t waitpid(pid_t pid, int *stat_loc, int options);

stat_loc has the same significance as in wait. pid is specified as -1 and options is set to 

zero if waitpid has to behave like wait, that is, has to wait for any child to change state:

waitpid(-1, &status, 0);

But waitpid can also wait for a child with a specific PID to die. options here are repre-

sented by one or more symbolic constants in an OR combination. The one that is used 

most often is WNOHANG, which makes waitpid run in nonblocking mode:

waitpid(pid, &status, WNOHANG); Waits for child with pid as PID

waitpid(-1, &status, WNOHANG); Waits for any child

This isn’t waiting really; waitpid returns immediately whether a child has changed state 

or not. But then how does one use this system call? There are two ways:

 • Invoke it in a loop with a finite delay between successive invocations to check if 

the child has changed state. But system calls are expensive, and polling in this 

manner isn’t always desirable.

das76205_Ch18_570-606.indd   581das76205_Ch18_570-606.indd   581 12/13/11   10:50 AM12/13/11   10:50 AM



582 Your UNIX/Linux: The Ultimate Guide

 • Let the parent wait for the SIGCHLD signal, which the kernel sends to the parent 

when a child changes state. On receipt of the signal, the parent invokes waitpid, 

which returns successfully with the necessary information.

Space constraints don’t permit an exhaustive discussion on waitpid, but you are advised 

to look up the man page with man 2 waitpid or man -s2 waitpid.

 18.6 fork_exec_wait.c: Using All Three Calls

The previous program (Fig. 18.4) used execl in the current process. We normally don’t 

use exec like this; often we do an exec in a child process so that the parent is free to do 

what it likes. In the following program, fork_exec_wait.c (Fig. 18.5), the command 

line to execute is specified as the program’s arguments. We fork a process, run execv in 

the child, and then make the parent wait for the child’s death. To illustrate inheritance, 

the parent opens a file, and both parent and child write it using the same descriptor or 

its copy.

Recall that execv requires the absolute pathname of the command as the first 

argument, and the entire command line as the remaining arguments. Both parent and 

child write the same log file, foo.log. The child runs grep, but the parent knows grep’s 

exit status:

$ ./a.out /bin/grep grep -i -n SUMIT /etc/passwd
15:sumit:x:102:10::/users1/home/staff/sumit:/usr/bin/bash
Exit status: 0

The shell does a similar thing with our input except that we provide input differently. 

Now look at the log file:

$ cat foo.log
About to fork
About to exec This line and the next

Parent waiting could appear reversed. Why?

Child Terminated

There are two things to note here. The parent opened the file, but the child wrote it 

using a copy of the descriptor used by the parent. Also, closing foo.log in the child 

made no difference to the parent, which wrote the last line. Both of these features make 

redirection and pipelines possible.

Often, you’ll find it more convenient to use the system library function, which is built on top 
of the fork, exec, and wait calls. system takes the entire command line (which can also be a 
shell builtin or a shell script) as a single argument:

system(“ls -lu /etc/passwd > foo”)

The function uses a shell (by default, Bourne) to execute the command and also makes use of 
PATH. system works with redirection and can also run a pipeline.

Tip

das76205_Ch18_570-606.indd   582das76205_Ch18_570-606.indd   582 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 583

/* Program: fork_exec_wait.c --
 Uses fork, exec and wait to run a UNIX command
 The WEXITSTATUS macro fetches the exit status. */
#include <stdio.h>
#include <wait.h>
#include <fcntl.h>
#include "quit.h"

int main (int argc, char **argv) {
    int fd, status ;
  
    fd = open(“foo.log”, O_WRONLY | O_CREAT | O_TRUNC, 0644);
    write(fd, “About to fork\n”, 14); /* First write */
  
    switch(fork()) {
      case -1: quit(“fork”, 1);
       case 0: /* Child */
           write(fd, “About to exec\n”, 14);
           close(fd); /* Closing here doesn’t affect parent’s copy */
           if ((execv (argv[1], &argv[2]) < 0)) {
              fprintf(stderr, “execl error\n”);
              exit(200);
           }
      default: /* Parent */
           write(fd, “Parent waiting\n”, 15);
           wait(&status); /* or waitpid(-1, &status, 0); */
           write(fd, “Child Terminated\n”, 17);
           fprintf(stderr, “Exit status: %d\n”, WEXITSTATUS(status));
           close(fd); /* Closing here doesn't */
 /* child's copy */
           exit (0);
    }
}

F I G U R E  1 8 . 5  fork_exec_wait.c

When the Parent Dies Before the Child
It’s possible for the parent to die before its child. The kernel clears the process table 

slot of the parent all right, but before doing so, it checks whether there are any pro-

cesses spawned by the parent that are still alive. When it finds an orphaned child, it 

makes init its parent by changing the PPID field of the child in the process table. 

das76205_Ch18_570-606.indd   583das76205_Ch18_570-606.indd   583 12/13/11   10:50 AM12/13/11   10:50 AM



584 Your UNIX/Linux: The Ultimate Guide

 18.7 File Sharing

The previous program proved that it is possible to open a file in the parent and write it 

in the child without the child needing to know the filename. To implement redirection 

in our programs, we need to understand the significance of the three data structures 

(Fig. 18.6) that the kernel maintains for every open file:

 • The file descriptor table—This structure contains all allocated file descriptors for 

a process. Each entry points to the file table.

 • The file table—It contains all parameters that are supplied as the second argument 

to open. It also contains the file offset. This table points to the vnode table.

 • The vnode table—This contains all inode information and can be considered an 

approximation of the inode in memory (in-core inode).

 18.7.1 The File Descriptor Table
The file descriptor returned by open is stored in the file descriptor table. This table is 

maintained separately for every process. The shell’s three standard files occupy the first 

File Descriptor Table File Table Vnode Table

0

1

2

3

4

ptr

Offset Pointer

Inode Information

Reference Count

Reference Count

ptr

ptr

ptr

ptr

File Opening Mode
O_RDONLY, O_WRONLY,

O_RDWR

Status Flags
O_CREAT, O_EXCL,
O_TRUNC, O_APPEND

O_SYNC

....

F I G U R E  1 8 . 6  File Sharing—The Three Tables

Recall that when we ran a job with nohup and logged out, we found the PPID of 

the job had changed to 1 (7.10.2).
init relies on the same signaling mechanism that was discussed with waitpid to 

know the death of its child (either spawned by it or an orphaned one). When a user logs 

out, her shell terminates, and the kernel sends a SIGCHLD signal to init. init’s signal 

handler then immediately fork-execs a getty at that terminal to display the login prompt. 

This sequence is discussed in Section 19.6.1. We take up signal handling in Section 18.9.

das76205_Ch18_570-606.indd   584das76205_Ch18_570-606.indd   584 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 585

three slots (0, 1, and 2) in the table. If you close, say, descriptor number 1, the kernel will 

allocate this number to the next file that is opened. We’ll use this behavioral property to 

implement redirection.

Every descriptor is associated with a flag, FD_CLOEXEC, that is also stored in the 

descriptor table. This flag is not used by open, but by a powerful system call named 

fcntl to determine whether the descriptor will be closed when the process does an exec. 

By default, a descriptor is not closed on an exec.

 18.7.2 The File Table
Every entry in the file descriptor table points to a file table. This table contains all flags 

specified in the second argument to open. To be specific, it contains:

 • The mode of opening (like O_RDONLY).

 • The status flags (like O_CREAT, O_TRUNC, etc.).

 • The file’s offset pointer location.

 • A reference count that indicates the number of descriptors that point to this table.

The file’s status flags (though not its mode) can be changed by the fcntl system call—

the same call that controls the FD_CLOEXEC flag in the file descriptor table. The kernel 

releases the file table from memory only when there’s no descriptor pointing to it, i.e., 

when the reference count has dropped to zero.

 18.7.3 The Vnode Table
The file table contains a pointer to the vnode table, the third table in the scheme. This was once 

called the inode table, but with UNIX supporting multiple file system types today, the vnode 

abstraction was created to make it possible to access the inode in a file-system-independent 

way. This table contains all information present in the inode. There’s only a single copy 

of the vnode in memory. The inode on disk is updated from the information in the vnode.

Like the file table, the vnode table also maintains a reference count field that sig-

nifies the number of file table entries that point to this table. When a file is deleted, the 

kernel has to first check the reference count to see whether any process still has the file 

open. If the reference count is at least one, the kernel can’t delete the file and release 

the inode, although it will delete the directory entry for the file. This unusual behavior 

has already been discussed (17.13.3, “Can We Delete an Open File?”).

 18.7.4 When the Linkage Changes
Why the file’s status and mode flags are kept in the file table and not in the descriptor 

table can be understood if you consider that the general scheme that we just discussed 

can change with certain operations:

 • When a file is opened twice.

 • When a process forks.

 • When a descriptor is replicated. This is discussed in Section 18.8.

When a file is opened twice in the same process, the file descriptor table will have two 

entries for the file. Each file descriptor will point to its own file table, so there will be two 

file tables as well. However, both file tables will point to the same vnode table (Fig. 18.7). 

das76205_Ch18_570-606.indd   585das76205_Ch18_570-606.indd   585 12/13/11   10:50 AM12/13/11   10:50 AM



586 Your UNIX/Linux: The Ultimate Guide

When the same file is opened by a different process, an entry is made in the descriptor 

table of that process, which will also point to its own file table, but there’s only one 

vnode table that it will point to.

When a process forks, the child maintains a separate copy of the file descriptor 

table of its parent. But the descriptors of both parent and child point to the same file 

table (Fig. 18.8). This means that the file offset pointer set by an I/O operation in the 

parent is seen by the child when using a copy of the descriptor. That’s why foo.log 

1

2

3

4

5

6

7

ptr

ptr

ptr

ptr

ptr

ptr

ptr

File Descriptor Table File Table Vnode Table

....

F I G U R E  1 8 . 7  When a File Is Opened Twice in the Same Process

File Descriptor Table
(Process A)

1

2

3

4

ptr

File Table
Vnode Table

ptr

ptr

ptr

File Descriptor Table
(Process B)

1

2

3

4

ptr

ptr

ptr

ptr

....

....

F I G U R E  1 8 . 8  When a Process Forks

das76205_Ch18_570-606.indd   586das76205_Ch18_570-606.indd   586 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 587

could be written sequentially by parent and child in the program fork_exec_wait.c 

(Fig. 18.5). However, note that subsequently changing the entries of the descriptor table 

in one process won’t have any effect on the other.

 18.8 File Descriptor Manipulation

While fork replicates the entire descriptor table of the parent, it is also possible to 

replicate a descriptor in the same process. This is done with the dup, dup2, and fcntl 

system calls. We’ll first learn to use dup, understand how dup2 is better, and then use 

dup2 along with fork and exec to redirect the standard streams.

 18.8.1 dup and dup2: Duplicating a File Descriptor
Descriptors are replicated by the dup and dup2 system calls (and by fcntl). The first 

one has a very simple syntax:

int dup(int fildes);

Here, dup duplicates filedes and returns the lowest numbered descriptor available for 

allocation. As in fork, both filedes and its replicated descriptor share the same file table 

as shown in Fig. 18.9.

Assuming that the three standard streams are the only files open in a process, 

dup(1) will return the value 3. Now consider this sequence:

fd = open(“foo”, O_WRONLY | O_CREAT | O_TRUNC, 0600);
close(STDOUT_FILENO);
dup(fd); This should return descriptor 1 

Because the descriptor 1 returned by dup now points to the file table of foo, anything 

you now write to standard output should end up in foo. You have now understood the 

key concept behind redirection.

We say “should” and not “must” because there is a slender chance that the preceding 

sequence can fail. The process could have a defined signal handler (18.9) that creates a 

file bar. If the process receives a signal after close and before dup, the signal handler 

File Descriptor Table

1 ptr File Table Vnode Table

2 ptr

3 ptr

4 ptr

5 ptr

6 ptr

7 ptr
....

F I G U R E  1 8 . 9  When a Descriptor Is Replicated with dup (4 replicated to 6)

das76205_Ch18_570-606.indd   587das76205_Ch18_570-606.indd   587 12/13/11   10:50 AM12/13/11   10:50 AM



588 Your UNIX/Linux: The Ultimate Guide

will create bar, which will be allocated the descriptor that we wanted from dup. This 

sequence will then fail.

To overcome this problem, we use the dup2 system call, which uses two arguments:

int dup2(int fildes, int fildes2);

dup2 replicates filedes to filedes2, closing it if found open, and returns it. dup2 thus 

combines the actions of close and dup. The previous sequence is more appropriately 

framed this way:

fd = open(“foo”, O_WRONLY | O_CREAT | O_TRUNC, 0600);
dup2(fd, STDOUT_FILENO); Closes standard output simultaneously 

The advantage here is that dup2 performs both functions as an atomic operation. A 

signal can’t interrupt an atomic operation that is partially complete. We have learned a 

very important lesson here:

If you want to write an open file foo using a specific file descriptor (here, 1) that 
is already allocated to bar (here, standard output), then replicate the existing descriptor 
of foo to return the one used by bar. foo will then be accessible with the new descriptor.

This will be the guiding principle for any task that involves redirection, but we 

are not there yet. dup2 will be followed by a call to exec, whose standard output will be 

automatically redirected. But doing an exec in the current process leaves us with noth-

ing more to do since exec doesn’t return. Further, by closing standard output, we ensure 

that we can’t write to the terminal again. For these two reasons, both tasks should be 

performed in a child process.

 18.8.2 redirection.c: Redirection at Last
The program redirection.c (Fig. 18.10) achieves the effect of redirection without 

using the < and > symbols. The first two arguments represent the filenames to be used 

for redirection; the remaining arguments are the components of the command line to 

be executed. File opening, descriptor manipulation, and exec operations are all done in 

a child process. The parent simply forks and waits for the child to die. To demonstrate 

how the parent correctly obtains the exit status of the command run by the child, let’s 

use the program to run grep twice:

$ ./a.out /etc/passwd passwd.cnt grep joker
Exit status: 1 joker not found in /etc/passwd

$ ./a.out /etc/passwd passwd.cnt grep sumit
Exit status: 0 sumit found in /etc/passwd

$ cat passwd.cnt
sumit:x:500:500:sumitabha das:/home/sumit:/bin/bash

We have said this before for UNIX users (6.5.1), and we say it again, this time for sys-

tems programmers: grep didn’t open either /etc/passwd or passwd.cnt. They were 

already open and were allocated the correct descriptors before grep was called. This is 

what redirection is all about.

das76205_Ch18_570-606.indd   588das76205_Ch18_570-606.indd   588 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 589

There are basically two ways of duplicating a file descriptor—using fork, and using dup and 
dup2 (or their fcntl equivalents). fork makes a copy of the parent’s descriptor available in the 
child, while dup and dup2 add an entry to the descriptor table of the current process. In either 
case, the end result is that both original and copy share the same file table, i.e., the same file 
offset, opening modes, and status flags.

Note

F I G U R E  1 8 . 1 0  redirection.c

/* Program: redirection.c -- Opens files in the child and uses dup2 to
   reassign the descriptors. First two arguments are input and output filenames.
   The command line to execute is specified as the remaining arguments */
  
#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <wait.h>
#include "quit.h"
  
#define OPENFLAGS (O_WRONLY | O_CREAT | O_TRUNC)
#define MODE6OO (S_IRUSR | S_IWUSR)
  
int main(int argc, char **argv) {
   int fd1, fd2, rv, exit_status;
  
   if (fork() == 0) { /* Child */
      if ((fd1 = open(argv[1], O_RDONLY)) == -1)
         quit(“Error in opening file for reading\n”, 1);
      if ((fd2 = open(argv[2], OPENFLAGS, MODE6OO)) == -1)
         quit(“Error in opening file for writing\n”, 1);
      dup2(fd1,STDIN_FILENO);
      dup2(fd2,STDOUT_FILENO);
      execvp(argv[3], &argv[3]); /* Uses PATH */
      quit(“exec error”, 2);
  
   } else { /* Parent */
      wait(&rv); /* Or use waitpid(-1, &rv, 0) */
      printf(“Exit status: %d\n”, WEXITSTATUS(rv));
      exit(0);
   }
}

das76205_Ch18_570-606.indd   589das76205_Ch18_570-606.indd   589 12/13/11   10:50 AM12/13/11   10:50 AM



590 Your UNIX/Linux: The Ultimate Guide

 18.8.3 fcntl: Recommended over dup and dup2
POSIX calls dup and dup2 “redundant” functions, and advocates the use of the fcntl 

system call. Space constraints don’t permit a thorough examination of this versatile 

system call, but you should at least know that descriptor replication is one of fcntl’s 

numerous functions. Here are the fcntl equivalents to dup and dup2:

dup and dup2 fcntl Equivalents

fd = dup(filedes); fd = fcntl(fildes, F_DUPFD, 0);

fd = dup2(fildes, fildes2); close(fildes2);

fd = fcntl(fildes, F_DUPFD, fildes2);

Note that fcntl loses its atomicity when emulating dup2 because it is preceded by the 

close call. POSIX recommends the use of signal blocking (18.9) to avoid this problem.

fcntl can also manipulate information held in the file descriptor table and file 

table. Every file descriptor is associated with the FD_CLOEXEC flag, which determines 

whether the descriptor will be closed across an exec. By default, descriptors remain 

open, but a prior call to fcntl can reverse this behavior. fcntl can also change the 

file’s status flags (though not its opening modes) while it is open.

 18.9 Signal Handling

We were introduced to signals in Section 7.9 as a simple form of interprocess communica-

tion (IPC)—a mechanism used by the kernel to communicate the occurrence of an event 

to a process. Signals can be synchronous (predictable) or asynchronous (unpredictable) 

and can originate from the following sources:

 • The keyboard. Signals generated from the keyboard affect the current foreground 

job (or process group). [Ctrl-c] generates SIGINT to terminate a process. [Ctrl-z] 

sends SIGTSTP to suspend a job.

 • The hardware. Signals can be generated on account of an arithmetic exception 

like divide-by-zero (SIGFPE), an illegal instruction (SIGILL), or a memory access 

violation (SIGSEGV).

 • A C program. The system call library offers some functions that generate signals. 

alarm generates SIGALRM after the end of a specified time. The raise and kill 

functions can generate any signal.

 • Other sources. When a child dies, the kernel sends SIGCHLD to the parent. When 

a background job tries to read from the terminal, the terminal driver generates 

SIGTTIN.

The action that a process takes on receipt of a signal is known as its disposition. Every 

signal is associated with a default disposition (Table 18.1), which in most cases terminates 

the process, but you can make your program do one of these things:

 • Ignore the signal.
 • Restore the default. This could be required when the signal’s default disposition 

has been changed by a signal handler and now you want to change it back again.

das76205_Ch18_570-606.indd   590das76205_Ch18_570-606.indd   590 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 591

 • Catch the signal. React to the signal by invoking a signal-handling function. This 

is what we’ll usually be doing in the examples that follow.

Like a process, a signal has a life cycle of its own. A signal is first generated and then 

delivered to a process. A signal is considered to be delivered when the signal disposi-

tion has occurred—even if the disposition is to ignore the signal. A signal can also be 

blocked to prevent immediate delivery and is considered to be pending. The signal can 

then be delivered only when it is unblocked.

When a signal is sent to a process, the kernel sets a bit in the pending signals 
mask field of the process table (18.1.2). This field has a bit reserved for each type of 

signal. The process checks this field and then the signal disposition table, also in the 

process table. If the disposition is to catch the signal, the process suspends execution 

and invokes the handler. Once the handler returns, the process resumes operation. In 

this respect, signals resemble interrupts, which also have their own interrupt handlers.

Two signals—SIGKILL and SIGSTOP—can’t be caught or ignored. These signals 

will always do the work they are designed to do. Further, there’s no provision in the 

process table to detect the receipt of multiple instances of the same signal. A process 

merely knows that it has received at least one instance of the signal.

Irrespective of the action you take, there are two signals that you can neither ignore nor catch 
by invoking a signal handler. They are SIGKILL and SIGSTOP. It’s necessary for the superuser to 
have the powers to kill any process (with SIGKILL) or stop it (with SIGSTOP). If the superuser 
didn’t have these powers, runaway processes could bring life to a standstill.

Note

T A B L E  1 8 . 1  Signals and Default Disposition

Signal Name Significance Default Action

SIGINT Terminal interrupt ([Ctrl-c]) Terminate
SIGQUIT Terminal quit ([Ctrl-\]) Terminate with core dump
SIGTSTP Terminal stop ([Ctrl-z]) Stop
SIGABRT Abnormal termination (abort call) Terminate
SIGCHLD Change of child’s status Ignore
SIGCONT Continue stopped child Continue
SIGALRM Timer (set by alarm call); sends signal after 

end of timeout period

Terminate

SIGHUP Hangup signal Terminate
SIGTERM Software termination Terminate
SIGPIPE Write to pipe with read ends closed Terminate
SIGILL Illegal instruction Terminate with core dump
SIGFPE Arithmetic exception Terminate with core dump
SIGSEGV Segmentation violation; process tries to 

access memory outside its own address 

space

Terminate with core dump

SIGKILL Sure kill Terminate; can’t be caught
SIGSTOP Process stop Stop; can’t be caught

das76205_Ch18_570-606.indd   591das76205_Ch18_570-606.indd   591 12/13/11   10:50 AM12/13/11   10:50 AM



592 Your UNIX/Linux: The Ultimate Guide

 18.9.1 The System Calls
The original signal-handling system was based on the signal system call. This call was 

considered unreliable because its behavior differed across systems. We discuss here the 

reliable POSIX signal-handling mechanism. This is an elaborate and somewhat complex 

system comprising a large number of calls. It also makes use of signal sets to block a 

group of signals. We are constrained to ignore signal sets in this text, but we’ll examine 

the following system calls and library functions:

 • sigaction. This call specifies the signal handler. Two of the arguments to this 

call specify a structure that is also named sigaction.

 • alarm. The alarm call is used in the next example to set a timer that generates 

the SIGALRM signal after the timeout period. The library function sleep uses alarm.

 • pause. This is somewhat like the shell’s read statement. It holds up program 

execution until a signal is received.

 • kill. You can send a signal to a process using this system call. A library func-

tion, raise, uses kill to send any signal to the current process.

In most cases, system calls are allowed to complete before a process invokes a signal 

handler. For instance, if a process is sleeping on the completion of disk I/O, the kernel 

allows the system call to complete before performing signal delivery. However, if the 

process is waiting to take input from the terminal, the kernel will abort the call, which 

is reasonable because waiting for terminal input could be a wait forever. The POSIX 

system also permits restarting a system call.

 18.10 sigaction: Installing a Signal Handler

The sigaction system call specifies mainly the signal’s disposition. Two of its three 

arguments represent a pointer to a structure of type sigaction:

int sigaction(int sig, const struct sigaction *restrict act,
 struct sigaction *restrict oact);

When this call is invoked, it installs the handler. Subsequently, when the process receives 

the sig signal, it invokes the handler that is specified in the act structure. oact stores the 

current signal disposition and is used to restore it after the default disposition has been 

changed. Depending on what we want the function to do, either argument can be set to 

NULL but not both. sigaction returns -1 on error.

Both act and oact are actually pointers to a structure of type sigaction. POSIX 

requires this structure to have at least these four members:

struct sigaction {
     void (*sa_handler)(int)
     sigset_t sa_mask
     int sa_flags
     void (*)(int, siginfo_t *, void *) sa_sigaction
}

das76205_Ch18_570-606.indd   592das76205_Ch18_570-606.indd   592 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 593

The first member sets the signal disposition. sa_handler can either be the name of a 

function or one of the following symbolic constants:

SIG_IGN    Ignore the signal.

SIG_DFL    Revert to the default disposition.

sa_mask specifies a set of signals that are blocked while the handler is executing. 

sa_flags specifies optional flags. The SA_RESTART flag restarts a system call, and 

SA_RESETHAND sets the disposition of the handler to the default after invocation. 

sa_sigaction is used only when sa_flags is specified.

In the examples that follow, we’ll only set the first member of the structure and 

ignore the others. This argument can either point to a signal-handling function or be 

assigned SIG_IGN or SIG_DFL. We’ll consider the handling function first:

struct sigaction act;
act.sa_handler = alrm_handler; alrm_handler is a function

This assigns the alrm_handler function to the sa_handler member of struct sigaction. 

The function must be defined in the program. We now have to invoke sigaction to 

install the handler for the SIGALRM signal:

if (sigaction(SIGALRM, &act, NULL) == -1)

Now that the handler is installed, it will be invoked by the process when it receives 

SIGALRM. Note that we set the third argument to NULL because we are not interested in 

saving the current disposition of SIGALRM.

The act.sa_handler member can also specify one of the two symbolic constants, 

SIG_IGN or SIG_DFL. The interrupt key can’t terminate a program if sigaction installs 

the handler for SIGINT with sa_handler set to SIG_IGN:

act.sa_handler = SIG_IGN; Disposition set to ignore 

if (sigaction(SIGINT, &act, NULL) == -1)

Why We Should Use sigaction and not signal
Before the POSIX signaling system was adopted by most UNIX implementations, a 

signal handler was installed with the signal system call. signal was unreliable in 

that a signal’s disposition was reset to the default before the handler was invoked. 

A second signal of the same type would then be subject to the default disposition. 

If we required the disposition to be persistent, we had to reinstall the handler at the 

beginning of the handling function:

void alrm_handler(int signo) {
    signal(SIGALRM, alrm_handler);   /* Resetting signal handler */
     ..........

das76205_Ch18_570-606.indd   593das76205_Ch18_570-606.indd   593 12/13/11   10:50 AM12/13/11   10:50 AM



594 Your UNIX/Linux: The Ultimate Guide

You can make use of this protective feature to place these statements at the beginning 

of a critical section of code that you won’t want to be interrupted. You can then revert 

to the default disposition by placing these statements after the critical code section:

act.sa_handler = SIG_DFL; Disposition set to default 

if (sigaction(SIGINT, &act, NULL) == -1)

Signal handlers are executed in the user mode. Let’s now write our first signal-handling 

program to catch the SIGALRM signal.

 18.10.1 signal.c: Catching the SIGALRM Signal
The program signal.c (Fig. 18.11) uses the alarm call to set up a timer that times out 

in five seconds. The program prompts the user for a filename, which is displayed if the 

user inputs it in five seconds. If the user is late in responding, SIGALRM is generated, 

which invokes a signal handler to set the default filename to foo.

We declare the prototype of the alrm_handler function before main and assign 

this function to the sa_handler member of the act structure of type sigaction. The 

call to sigaction installs this function for SIGALRM.

The user is prompted for a filename, and the alarm timer sets off immediately 

thereafter. The filename is displayed if it is entered in the timeout period. But if the 

timeout occurs, SIGALRM is generated, which leads to the execution of alrm_handler. 

We invoke the program with and without a filename:

$ ./a.out
Enter filename: signal.log
Filename: signal.log
$ ./a.out
Enter filename: Nothing entered in 5 seconds

Signal 14 received, default filename: foo
$ kill -l | grep 14 What is signal 14?

13) SIGPIPE     14) SIGALRM     15) SIGTERM     16) SIGUSR1

This approach works most of the time, but there’s a finite probability of it leading 

to a race condition. In this situation, two or more events act on the same resource, 

and the sequence in which they are serviced determines the eventual outcome of 

the race. Here, if a second signal of the same type arrives after the disposition is 

reset to the default and before the handler is reinstalled, the default action will be 

taken. If the default action is to terminate the process, the handler won’t be given 

a chance to reinstall itself.

All signals handled by the signal system call are unreliable for other reasons 

also; a signal can get lost and can’t be blocked. The POSIX signal-handling system 

is reliable and takes care of the limitations inherent in signal.

das76205_Ch18_570-606.indd   594das76205_Ch18_570-606.indd   594 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 595

 18.10.2 Catching Terminal-Generated Signals
Let’s now develop another program, signal2.c (Fig. 18.12), that uses two signal handlers 

for SIGINT and SIGTSTP. Unlike SIGALRM, these signals are sent from the keyboard. 

We’ll also ignore the SIGQUIT signal.

Using three sigaction calls we set the disposition of three different signals. Note 

the use of SIG_IGN in one assignment of sa_handler that sets the disposition to ignore 

for SIGQUIT. [Ctrl-z] generates SIGTSTP, but we catch it to display a message without 

/* Program: signal.c -- Waits for 5 seconds for user input and then
 generates SIGALRM that has a handler specified */
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#define BUFSIZE 100
#include "quit.h"
  
void alrm_handler(int signo); /* Prototype declaration */
    
char buf[BUFSIZE] = “foo\0”; /* Global variable */
int main (void) {
    int n;
    struct sigaction act;
    act.sa_handler = alrm_handler; /* Specify handler */
    if (sigaction(SIGALRM, &act, NULL) == -1) /* Install handler */
        quit(“sigalrm”, 1);
  
    fprintf(stderr, “Enter filename: “);
    alarm(5); /* Set alarm clock; will deliver */
    n = read(STDIN_FILENO, buf, BUFSIZE); /* SIGALRM in 5 seconds */
    if (n > 1) /* Will come here if user inputs */
        fprintf(stderr, “Filename: %s\n”, buf); /* string within 5 seconds */
    exit(0);
}
  
void alrm_handler(int signo) {
    fprintf(stderr, “\nSignal %d received, default filename: %s\n”, signo, buf);
    exit(1);
}

F I G U R E  1 8 . 1 1  signal.c

das76205_Ch18_570-606.indd   595das76205_Ch18_570-606.indd   595 12/13/11   10:50 AM12/13/11   10:50 AM



596 Your UNIX/Linux: The Ultimate Guide

stopping the process. We also catch [Ctrl-c] (SIGINT), but to terminate the process only 

when the key is pressed twice.

The for loop makes the pause system call run in a loop. pause simply suspends 

execution until it receives any signal, in which case it returns with the EINTR error. Let’s 

now run this program by pressing all three key sequences in turn:

/* Program: signal2.c -- Handles SIGINT and SIGTSTP generated from terminal
 Requires two [Ctrl-c]s to terminate */
#include <stdio.h>
#include <signal.h>
#include "quit.h"
  
void tstp_handler(int signo); /* Handler for [Ctrl-z] */
void int_handler(int signo); /* Handler for [Ctrl-c] */
int count = 0;
  
int main (void) {
    struct sigaction act1, act2, act3;
    act1.sa_handler = tstp_handler; /* Disposition for these two signals */
    act2.sa_handler = int_handler; /* set to enter respective handlers */
    act3.sa_handler = SIG_IGN; /* Disposition set to ignore */
    sigaction(SIGTSTP, &act1, NULL);
    sigaction(SIGINT, &act2, NULL);
    sigaction(SIGQUIT, &act3, NULL);
  
    fprintf(stderr, “Press [Ctrl-z] first, then [Ctrl-c]\n”);
    for (;;)
       pause();  /* Will return on receipt of signal */
    exit(0);
}
  
void tstp_handler(int signo) {
    fprintf(stderr, “Can’t stop this program\n”);
}
void int_handler(int signo) {  /* Will terminate program */
    if (++count == 1)
        fprintf(stderr, “Press again\n”);
    else
        quit(“Quitting”, 1);
}

F I G U R E  1 8 . 1 2  signal2.c

das76205_Ch18_570-606.indd   596das76205_Ch18_570-606.indd   596 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 597

$ ./a.out
Press [Ctrl-z] first, then [Ctrl-c]
[Ctrl-\] Signal ignored

[Ctrl-z]
Can’t stop this program From tstp_handler

[Ctrl-c]
Press again From int_handler

[Ctrl-c]
Quitting: Interrupted system call From int_handler

All three signal handlers can be seen at work here. So far, we have handled specific 

signals, mostly generated from the keyboard; in Section 18.11, we’ll use kill to gener-

ate any signal.

When a process is executed in the background with &, the disposition of SIGINT is set to 
SIG_IGN, which is why [Ctrl-c] can’t terminate a background process. When a process is run 
with nohup, the disposition of SIGHUP is also set to SIG_IGN; the process won’t terminate when 
the connection is broken.

 18.11 killprocess.c: Using fork-exec-wait and SIGCHLD

Before we take up the next program, we have a new system call to discuss—kill. Like 

its command counterpart, the kill system call sends a signal to one or more processes:

int kill(pid_t pid, int sig);

Generally, we obtain the PID of the child using pid = fork(), and then use, say, 

kill(pid, SIGTERM) to kill the child with SIGTERM.

It’s time for consolidation, so let’s demonstrate the combined use of the fork-exec-

wait and signal-handling mechanisms. The program, killprocess.c (Fig. 18.13), runs 

a command that is input by the user and prints the exit status if the command completes 

in five seconds. If it doesn’t, then the parent uses kill to send SIGTERM to kill the child.

This time we use a single signal-handling function to handle both SIGCHLD and 

SIGALRM. The parent forks a child, which then uses execvp to run a user-specified program 

supplied as one or more command-line arguments. Note that this time the parent doesn’t wait 

for the child’s death after the fork. It starts a timer with alarm(5), which on termination 

issues the SIGALRM signal. The parent issues pause, which returns on receipt of any signal.

One of two signals can wake up the parent here—either SIGCHLD or SIGALRM. 

The signal-handling function takes into account that the child may or may not complete 

execution in five seconds. If it does, SIGCHLD is issued and death_handler invokes 

waitpid to pick up the exit status of the child. Otherwise, death_handler waits for 

SIGALRM and then kills the process with SIGTERM.

We’ll run the program twice—once with a program that completes in five seconds 

and then with one that doesn’t:

$ ./a.out date
Thu Apr  3 14:49:57 IST 2003

Note

das76205_Ch18_570-606.indd   597das76205_Ch18_570-606.indd   597 12/13/11   10:50 AM12/13/11   10:50 AM



598 Your UNIX/Linux: The Ultimate Guide

/* Program: killprocess.c -- Uses fork and exec to run a user-defined program

 and kills it if it doesn’t complete in 5 seconds.*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <signal.h>

#include <stdlib.h>

  

pid_t pid;

int main (int argc, char **argv) {

    int i, status;

    void death_handler(int signo); /* A common signal handler this time */

  

    struct sigaction act;

    act.sa_handler = death_handler;

    sigaction(SIGCHLD, &act, NULL); /* Disposition for these two signals */

    sigaction(SIGALRM, &act, NULL); /* set to enter a single handler */

  

    switch (pid = fork()) {

        case -1: fprintf(stderr, “Fork error\n”);

        case  0: execvp(argv[1], &argv[1]); /* Execute command */

                  perror(“exec”);

                  break;

        default: alarm(5); /* Will send SIGALRM after 5 seconds */

                  pause(); /* Will return when SIGCHLD signal is received */

                  fprintf(stderr, “Parent dies\n”);

    }

    exit(0);

}

void death_handler(int signo) { /* This common handler picks up the */

    int status;  /* exit status for normal termination */

  /* but sends the SIGTERM signal if */

    switch (signo) {  /* command doesn’t complete in 5 seconds */

        case SIGCHLD: waitpid(-1, &status, 0);    /* Same as wait(&status); */

                        fprintf(stderr, “Child dies; exit status: %d\n”,

                                              WEXITSTATUS(status));

                        break;

        case SIGALRM: if (kill(pid, SIGTERM) == 0)

                          fprintf(stderr, “5 seconds over, child killed\n”);

    }

}

F I G U R E  1 8 . 1 3  killprocess.c

das76205_Ch18_570-606.indd   598das76205_Ch18_570-606.indd   598 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 599

Child dies; exit status: 0
Parent dies
$ ./a.out find /home -name a.out -print
/home/sumit/personal/project8/a.out
/home/sumit/personal/books_code/glass_ables/12/a.out
/home/sumit/personal/books_code/stevens_c/ch08/a.out
   ... after 5 seconds ...
5 seconds over, child killed
Parent dies

kill can be used to send a signal to the current process also. You need to use getpid 

to specify the PID here, but the raise library function does this work for us. In fact, 

raise(SIGTERM) is equivalent to kill(getpid(), SIGTERM).

 18.12 IPC with Unnamed Pipes

UNIX has very elaborate schemes for two processes to communicate with each other. 

In this section, we discuss the piping mechanism available in the shell.

To understand how a pipe enables one process to send its standard output to the 

standard input of another process, imagine doing a similar thing using a disk file instead. 

One process could write to the file, and the other could read from it. This means that 

the size of the file grows as data flows from writer to reader. Further, this system just 

won’t work because if the reader is faster than the writer, it will often catch up with the 

writer and read EOF. There’s no flow control mechanism that would make one process 

block until the other has completed its job. Operating system theorists have a name for 

this—the producer-consumer problem.

The pipe solves both of these problems. It is a half-duplex communication channel, 
which means that data flows in only one direction. It is a type of file that can be used 

with read and write, but it’s created with the pipe system call:

int pipe(int fildes[2]);

pipe takes an array of two integers as its only argument, which it populates with two file 

descriptors. Whatever is written to fildes[1] can be read from fildes[0]; the significance 

of 0 and 1 have been retained in the pipe as well. A call to write on fildes[1] populates 

a fixed-sized buffer (about 4–8KB), while a call to read on fildes[0] drains the buffer 

so the next write can fill it up again.

If the buffer is found empty during a read, the operation will block until the buffer 

is written. Similarly, a write to a buffer that has not yet been read will block too. The 

data is read on a first-in-first-out basis (FIFO), and as you would expect, the pipe’s file 

type is FIFO, which can be checked with the S_ISFIFO macro.

Although a pipe is most commonly shared by two processes, a simple example 

shows its use in a single process:

int n, fd[2];
char buf[10];

das76205_Ch18_570-606.indd   599das76205_Ch18_570-606.indd   599 12/13/11   10:50 AM12/13/11   10:50 AM



600 Your UNIX/Linux: The Ultimate Guide

pipe(fd); Fills up fd[2] with two descriptors

write(fd[1], “abcdefgh”, 8 ); Writing to one file descriptor 

n = read(fd[0], buf, 8); and reading it back from another 

write(STDOUT_FILENO, buf, n); Printing what was read from pipe 

pipe here generates two file descriptors, fd[0] and fd[1]. We simply write the string 

abcdefgh to fd[1] and read it back from fd[0], and then write the same string to the 

standard output. There’s not much to learn from this except that numerous possibilities 

open up when a pipe is used by two processes. This is taken up next.

 18.12.1 Using pipe with fork
To make pipe work in tandem with fork, the usual procedure is to create the pipe before 

forking a process. Because fork duplicates all open descriptors, the pipe-fork sequence 

connects two descriptors to each end of the pipe.

To use the pipe, we don’t need all four descriptors, but only one on each end. Data 

here can flow in either direction, but assuming that the parent writes to the pipe and the 

child reads it, then we must close the pipe’s read end in the parent and the write end in 

the child. This is what the program pipe.c (Fig. 18.14) does.

The pipe call returns two descriptors, fd[0] and fd[1], which should have the 

values 3 and 4 in this program. This example assumes data flowing from parent to child, 

so the parent doesn’t need the read end (fd[0]), while the child doesn’t need the write 

end (fd[1]), the reason why these descriptors have been closed. The program outputs 

the string that’s written to the pipe:

$ ./a.out
Writing to pipe

This is the string that write wrote to fd[1] and read gathered from fd[0]. In real life 

though, you use separate programs on either side of the shell’s pipe symbol, |. So you’ll 

naturally expect to do a similar thing with pipe. This means that you have to connect the 

standard output of one program to fd[1] and the standard input of the other to fd[0]. 

How does one do that?

 18.12.2 pipe2.c: Running UNIX Commands in a Pipe
The next program, pipe2.c (Fig. 18.15), addresses this issue. Apart from closing the 

unneeded file descriptors associated with the pipe, the program also uses dup2 to rep-

licate the other descriptors—both in the parent and in the child. We reverse the data 

flow here—from child to parent—just to prove that the direction of flow is irrelevant.

To understand how the program works, let’s first examine the sequence of state-

ments that are executed in the child process. We first close fd[0], the read end, since the 

child writes (not reads) to the pipe. Next, we replicate fd[1] with dup2 to give us the 

descriptor used by standard output. At this stage, the file descriptor for standard output 

points to the write end of the pipe. This means we don’t need the original descriptor 

(fd[1]) that was connected to the same end of the pipe.

Having now closed both the original read and write ends of the pipe, we are left with 

only the descriptor for standard output, which is now connected to the pipe’s write end. 

das76205_Ch18_570-606.indd   600das76205_Ch18_570-606.indd   600 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 601

Invoking execvp to run the cat command ensures that cat’s output is connected to the 

pipe’s write end.

If we apply a similar line of reasoning to the statements in the parent, we’ll end 

up in a situation where the standard input of tr is connected to the read end of the pipe. 

We have been able to establish a pipeline between cat and tr. On running the program, 

you should see the entries in /etc/hosts.equiv, but after conversion to uppercase:

$ ./a.out
SATURN
EARTH
MERCURY
JUPITER

Compare this output with that obtained from the program reverse_read.c (Fig. 17.3), 

which displayed the contents of /etc/hosts.equiv in reverse order.

/* Program: pipe.c -- Shares a pipe between two processes.
 We want the data to flow from the parent to the child */
#include <stdio.h>
#include <unistd.h>
#include "quit.h"
  
int main(void) {
   int n, fd[2]; /* fd[2] to be filled up by pipe() */
   char buf[100]; /* Buffer to be used by read() */
  
   if (pipe(fd) < 0) /* fd[0] is read end */
      quit(“pipe”, 1); /* fd[1] is write end */
  
   switch (fork()) { /* Pipe has four descriptors now */
       case -1: quit(“Fork error”, 2);
        case 0: close(fd[1]); /* CHILD-Close write end of pipe */
                 n = read(fd[0], buf, 100); /* and read from its read end */
                 write(STDOUT_FILENO, buf, n);
                 break;
       default: close(fd[0]); /* PARENT-Close read end of pipe */
                 write(fd[1], “Writing to pipe\n”, 16); /* write to write end */
   }
   
   exit(0);
}

F I G U R E  1 8 . 1 4  pipe.c

das76205_Ch18_570-606.indd   601das76205_Ch18_570-606.indd   601 12/13/11   10:50 AM12/13/11   10:50 AM



602 Your UNIX/Linux: The Ultimate Guide

Two processes can use a pipe for communication only if they share a common 

ancestor. But UNIX also supports named pipes and sockets for two unrelated processes 

to communicate with each other. Besides, SVR4 offers semaphores, shared memory, 

and message queues as advanced forms of IPC. Space constraints prevent our inclusion 

of these topics, but you have a lot to explore on your own.

S U M M A R Y

A process runs in its own virtual address space comprising the text, data, and stack. Part 

of the process address space is also reserved for the kernel. 

/* Program: pipe2.c -- Runs two programs in a pipeline
 Child runs cat, parent runs tr */
#include <unistd.h>
#include <stdio.h>
#include "quit.h"
  
int main(void) {
   int fd[2]; /* To be filled up by pipe() */
  
   if (pipe(fd) < 0) /* Now have four descriptors for pipe */
      quit(“pipe”, 1);
   
   switch (fork()) {
      case -1: quit(“fork”, 2);
  
       case 0: close(fd[0]); /* CHILD - Close read end first */
                dup2(fd[1], STDOUT_FILENO); /* Connect stdout to  write end */
                close(fd[1]); /* and close original descriptor */
                execlp(“cat”, “cat”, “/etc/hosts.equiv”, (char *) 0);
                quit(“cat”, 3);
  
      default: close(fd[1]); /* PARENT - Close write end first */
                dup2(fd[0], STDIN_FILENO); /* Connect stdin to read end */
                close(fd[0]); /* and close original descriptor */
                execlp(“tr”, “tr”, “‘[a-z]’”,”’[A-Z]’”, (char *) 0);
                quit(“tr”, 4);
   }
}

F I G U R E  1 8 . 1 5  pipe2.c

das76205_Ch18_570-606.indd   602das76205_Ch18_570-606.indd   602 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 603

The process table contains all control information related to a process. The table 

contains both the pending signals mask and the signal disposition for every signal that 

the process may receive.

The environment variables are available in the variable environ[]. A variable can 

be set with setenv or putenv and retrieved with getenv.

The fork system call creates a process by replicating the existing address space. 

fork returns twice—zero in the child and its own PID in the parent. The exec family 

replaces the complete address space of the current process with that of a new program. 

Shell and perl scripts can be run by execlp and execvp. A successful exec doesn’t return.

A process exits by invoking exit with an argument that represents the exit status. 

This number is retrieved by the parent with wait or waitpid. Unlike wait, waitpid can 

wait for a specific child to die and also need not block until the child dies.

If the parent dies before the child, the child turns into an orphan, which is im-

mediately adopted by init. If the parent is alive but doesn’t invoke wait, the child is 

transformed into a zombie. A zombie is a dead process whose address space has been 

freed but not its entry in the process table.

The kernel maintains three tables in memory when a file is opened. The file de-
scriptor table stores all open descriptors. The file table stores the opening mode, status 

flags, and file offset. The vnode table contains the inode information. A table is not freed 

until its reference count drops to zero. A forked child process inherits the descriptors 

but shares the file table.

dup replicates a file descriptor and returns the lowest unallocated value. dup2 

allows us to choose the descriptor we want by closing it if it is already open. In either 

case, original and copy both share the same file table. POSIX recommends the use of 

fcntl rather than these two calls.

A signal makes a process aware of the occurrence of an event. The process may 

allow the default disposition to occur, ignore the signal, or invoke a signal handler. A 

handler is installed with sigaction. The signals SIGKILL and SIGSTOP can’t be caught.

pipe creates a buffered object that returns two file descriptors. Data written to 

one descriptor is read back from the other. To create a pipeline of two commands, you 

need to create a pipe before invoking fork.

S E L F - T E S T

18.1 Why do we say that the address space of a process is virtual? Which segment of 

the address space do you think is loaded from the program file?

18.2 When and why does a process voluntarily relinquish control of the CPU?

18.3 What is the value returned by fork? Why was it designed to behave that way?

18.4 Name the system calls discussed in this chapter that return one or more file 

descriptors.

18.5 Write a program that forks twice. Display the PIDs and PPIDs of all three 

processes.

18.6 Write a program that executes the command wc -l -c /etc/passwd using 

(i) execl, (ii) execv. What changes do you need to make if you use execlp and 

execvp instead?

das76205_Ch18_570-606.indd   603das76205_Ch18_570-606.indd   603 12/13/11   10:50 AM12/13/11   10:50 AM



604 Your UNIX/Linux: The Ultimate Guide

18.7 Is it necessary for the parent to wait for the death of the child? What happens if 

it doesn’t?

18.8 Write a program that accepts two small numbers (< 50) as arguments and then 

sums the two in a child process. The sum should be returned by the child to the 

parent as its exit status, and the parent should print the sum.

18.9 Write a shell script containing only one statement: exit 123456. Run the script 

and then invoke echo $? from the shell. Explain why the value provided in the 

script is different from the output.

18.10 A file may have more than one vnode table in memory. True or false?

18.11 Write a program that uses write to output the message hello dolly to the 

standard error. Manipulate the file descriptors so that this message can be saved 

by using a.out > foo rather than a.out 2>foo.

18.12 Why can’t a background process be terminated with the interrupt key?

18.13 Use the kill command to find the number of signals available on your system 

and then write a program that ignores all of them. Is it possible to do so?

18.14 Explain why a pipe can connect two related processes only.

E X E R C I S E S

18.1 What is the significance of the stack and heap segments in the address space of 

a process?

18.2 View the man page of size, and then run the command on any executable like 

/bin/cat. Explain the significance of the output columns.

18.3 What is the role of the Memory Management Unit in process switching? Why 

can’t one process corrupt the address space of another?

18.4 Write a program that displays all environment variables.

18.5 Write a program that sets an int variable x to 100 before forking a child. Next 

perform the following in the child and parent:

 Child:

 (i) Display the value of x, reset it to 200, and display it again.

 (ii) Display the value of PATH, reset it to only ., and display it again.

 (iii)  Change the current directory to /etc and display the absolute pathname 

of the changed directory.

 Parent:

 (i) Sleep for 2 seconds.

 (ii) Display the value of x, PATH, and the pathname of the current directory.

 Explain your observations. Why was the parent made to sleep for two seconds?

18.6 Redirect the output of fork.c (Fig. 18.3) to a file and explain the change in 

behavior.

18.7 Create a shell script that prints the values of HOME, PATH, MAIL, and TERM. Next, 

write a program that uses exec to run this script so that it prints null values for 

MAIL and TERM.

18.8 Explain which of these process attributes change with a fork and exec: (i) PID, 

(ii) PPID, (iii) file descriptors, (iv) standard I/O buffers.

das76205_Ch18_570-606.indd   604das76205_Ch18_570-606.indd   604 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 18: Systems Programming II—Process Control 605

18.9 The completion of process execution doesn’t mean that the process is dead. True 

or false?

18.10 Write a program where the parent dies after creating a child. Display the value 

of the PPID in the child. Explain your observations.

18.11 Why are the attributes of an open file held in two tables rather than one?

18.12 Does each entry in the file descriptor table have a separate file table associated 

with it?

18.13 What are the structural changes that take place in memory when (i) a file is opened 

twice, (ii) its descriptor is replicated? In how many ways can you replicate the 

descriptor?

18.14 Modify the program in 18.8 (Self-Test) so that process A creates B and B creates 

C. The summation should be performed in C and the result returned to B as the 

exit status. B should double the summed value and return the product to A as 

the exit status. Will the program work with large numbers?

18.15 Name two advantages waitpid has over wait. How do you use waitpid to 

emulate the behavior of wait?

18.16 Explain how the kernel treats zombies and orphans.

18.17 Write a program that repeatedly prints the Shell> prompt to accept a UNIX 

command as argument. The command line, which can’t contain shell metacharac-

ters, will be executed by an exec function. The program will terminate when the 

user enters exit. Also try running the program with some of the shell’s internal 

commands (like umask), and explain your observations.

18.18 Look up the man page for any shell and understand the significance of the -c 

option. Next, write a program that prompts for a command, which is executed 

with exec and sh -c. Try using the program with both external and internal 

(shell) commands. Does this program behave properly, even when using wild 

cards and pipes?

18.19 In what ways can a process behave when it receives a signal? What is special 

about the SIGSTOP and SIGKILL signals?

18.20 Invoke the command vi foo &, and explain why you can’t input text to the 

editor.

das76205_Ch18_570-606.indd   605das76205_Ch18_570-606.indd   605 12/13/11   10:50 AM12/13/11   10:50 AM



das76205_Ch18_570-606.indd   606das76205_Ch18_570-606.indd   606 12/13/11   10:50 AM12/13/11   10:50 AM



P A R T  III
System Administration

das76205_Ch19_607-642.indd   607das76205_Ch19_607-642.indd   607 12/13/11   10:50 AM12/13/11   10:50 AM



das76205_Ch19_607-642.indd   608das76205_Ch19_607-642.indd   608 12/13/11   10:50 AM12/13/11   10:50 AM



609

19 
C H A P T E R  19

System Administration

Every UNIX system needs to be administered. This task is usually entrusted to a 

single person—the system administrator, also known as the superuser or root 
user. The administrator’s job involves the management of the entire system—ranging from 

maintaining user accounts, security, and managing disk space to performing backups. 

Services must be started and stopped by manipulating their configuration files, and shell 

scripts must be devised to automate routine operations. To be effective, the administrator 

must have in-depth knowledge of the different components of the system.

Although UNIX administration is a specialized job, today all UNIX users must 

understand the essential concepts related to it. The burden is not overwhelming, however, 

because UNIX is better documented than many other systems. Still, UNIX gets greatly 

fragmented in this area, which is why POSIX doesn’t address administrative issues. 

Every system has its own set of administrative tools, so we’ll confine our discussion 

mainly to the common ones and their underlying concepts.

  Objectives
 • Log in to root and become a superuser with su.

 • Know the administrator’s powers in changing the attributes of any file and in killing 

any process.

 • Create, modify, and delete user accounts with useradd, usermod, and userdel.

 • Restrict a user’s activities with the restricted shell.
 • Learn how the administrator uses three special file permissions bits—SUID, SGID, 

and sticky bit—to enforce security.

 • Understand the concept of run levels and their role in startup and shutdown operations.

 • Learn how init uses /etc/inittab and rc scripts to start and stop the system’s daemons.

 • Understand the significance of the attributes of device files.

 • Understand the file system and its four components.

 • Mount and unmount file systems with mount and umount.

 • Check and repair file systems with fsck.

 • Use df and du to report on both free and used disk space.

 • Format and copy diskettes with format, fdformat, and dd.

 • Handle DOS files on diskettes with a set of “dos” commands.

 • Use tar as a backup tool.

 • Learn to install RPM packages with rpm.

das76205_Ch19_607-642.indd   609das76205_Ch19_607-642.indd   609 12/13/11   10:50 AM12/13/11   10:50 AM



610 Your UNIX/Linux: The Ultimate Guide

 19.1 root: The System Administrator’s Login

The administrator mainly uses the root user-id for performing her duties. This account 

and its password are automatically created at the time of installation of the operating 

system. The prompt (PS1) for root is generally the #, and the home directory is /:

login: root
password: *******[Enter]
# pwd
/ The root directory 

# _ # is the prompt

Unlike the case for nonprivileged users, the passwd command behaves in a more lenient 

manner when the root user changes its own password. It doesn’t ask for the existing password:

# passwd
Changing password for root
Enter the new password (minimum of 5, maximum of 8 characters)
Please use a combination of upper and lower case letters and numbers.
New password: *********
Re-enter password: ********* To be entered twice

Password changed.

The administrator must closely guard the superuser password. Otherwise, the entire 

UNIX system may have to be reloaded!

What’s special about this user-id that gives the administrator so much power? The 

answer lies in /etc/passwd:

# grep “^root” /etc/passwd
root:x:0:1:Super-User:/:/usr/bin/bash

Only root has 0 as the user-id, and you have seen how any process that runs with 0 as 

the effective UID has the powers of root. We’ll see later why the passwd program needs 

to run as if the process is owned by root.

The root user’s PATH is different from that for nonprivileged users in two respects. 

First, it never includes the current directory, a safety feature that prevents the adminis-

trator from inadvertently executing programs not known to her. Second, the PATH also 

includes either /sbin or /usr/sbin (or both):

$ echo $PATH
/sbin:/usr/sbin:/usr/bin:/usr/local/bin:/usr/X11R6/bin

The sbin directories contain most administrative commands. We’ll be using some of 

these commands in this chapter.

 19.1.1 su: Acquiring Superuser Status
The administrator doesn’t need to use the root user-id for all tasks. Certain tasks 

like monitoring disk space can be performed from a nonprivileged account also. 

das76205_Ch19_607-642.indd   610das76205_Ch19_607-642.indd   610 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 611

When needed, the administrator can switch from this account to the superuser account 

with the su command:

$ su - Nonprivileged account

Password: ******** root’s password

# _ Privileged account

The - argument ensures that the administrator is presented the same environment as if 

she had logged in to root. The - has to be dropped if the user’s current environment is 

to be retained (like the home directory). 

su can be used by nonprivileged users also, but with the user-id as argument, to 

change to any user-id with and without exporting the environment. The superuser isn’t 

prompted for juliet’s password when she uses this command, but nonprivileged users 

need to key it in to gain access:

su juliet
su - juliet

Successful login re-creates juliet’s environment, and any program run by juliet using 

the normal login-password route can often be run in this mode also. su runs a separate 

sub-shell, so this mode is terminated by hitting [Ctrl-d] or using exit.

Most preinstalled scripts, especially the ones related to system startup and shutdown, use the 
Bourne shell for execution. You can use Korn or Bash as your interactive shell, but whether you 
would like to use them for scripting is a decision you have to make. But you must not under 
any circumstances use C shell scripts. Linux uses Bash for normal and system administrative 
activities; there’s no problem there.

 19.2 The Administrator’s Privileges

The superuser has enormous powers, and any command she invokes has a greater chance 

of success than the same command issued by others. The command may also behave 

differently or be reserved for her exclusive use. The superuser’s authority is mainly 

derived from the power to:

 • Change the contents or attributes of any file such as its permissions and ownership. 

She can delete any file even if the directory is write-protected!

 • Initiate or kill any process. The administrator can directly kill all processes except 

the ones essential for running the system.

 • Change any user’s password without knowing the existing one:

passwd henry Existing password not required

 • Use date to set the system clock. The date needs to be kept reasonably accurate, 

otherwise cron jobs could be running at the wrong times. To set the date and time, 

the command must be used with a numeric argument of the form MMDDhhmm, 

optionally followed by a two- or four-digit year string:

# date 01092124
Thu Jan  9 21:24:00 IST 2003

Note

das76205_Ch19_607-642.indd   611das76205_Ch19_607-642.indd   611 12/13/11   10:50 AM12/13/11   10:50 AM



612 Your UNIX/Linux: The Ultimate Guide

 • Address all users concurrently with wall.

 • Limit the maximum size of files that users are permitted to create with ulimit.

 • Control users’ access to the scheduling services like at and cron.

 • Control users’ access to many networking services like FTP, SSH, etc.

The administrator has to use these powers with utmost caution. An apparently innocent 

and unplugged loophole can cause disaster if that knowledge is acquired by a mischievous 

person. Let’s now examine some of the routine duties of the administrator.

 19.3 User Management

The system administrator allocates user accounts, where user-ids are often derived from the 

actual names of the users. Sometimes, user-ids can represent a project or an application as 

well. We’ll first examine /etc/group, the group database, and then /etc/passwd, where 

every user is represented. We’ll create a group for a user and then add that user to the system.

 19.3.1 Understanding /etc/group
A group comprises one or more members having a separate set of privileges. People 

working on a common project are placed in the same group so they are able to read (and 

sometimes write) one another’s files. A user has one primary group and may have one or 

more supplementary groups. The group database is maintained in /etc/group contain-

ing the GID (both the number and the name). A few lines of this file show four fields:

root::0:root root user’s supplementary group

staff::1:
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm
lp::8:root,lp,adm
student::100:

The numeric GID is shown in the third field and the name in the first. The second field 

(a blank or an x) is hardly used today. The last field represents those users for which 
this is their supplementary (not primary) group. This field often causes confusion, so 

to properly understand its significance, let’s examine the second line in tandem with its 

associated line in/etc/passwd:

root:x:0:1:Super-User:/:/usr/bin/bash

The root user has 1 as the GID, which represents the staff group. Since the fourth field 

in the line representing staff is blank, it means no user has staff as their supplementary 

group. Also, note that there is a group named root. But this is the supplementary group 

for the the root user; the primary group for root is staff. The root user also belongs to 

the supplementary groups, bin, sys, and lp.

Adding a Group (groupadd) To create a new group dba, with a GID of 241, you 

need to place an entry in /etc/group:

dba:x:241:

das76205_Ch19_607-642.indd   612das76205_Ch19_607-642.indd   612 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 613

You can also use the groupadd command if it is available on your system:

groupadd -g 241 dba 241 is the GID for dba

Once an entry for the group has been made, you are now ready to add a user with this 

GID to the system.

 19.3.2 Understanding /etc/passwd
All user information except the password encryption is now stored in /etc/passwd. 

This file contained the password once, the reason why it continues to be known by that 

name. /etc/shadow stores the password encryption. The login and passwd programs 

look up both files to authenticate a user.

Let’s examine the line pertaining to user oracle in /etc/passwd as shown in Fig. 19.1. 

We’ll then use useradd to add this entry. There are seven fields in each line of this file:

 • Username—The name you use to log on to a UNIX system (oracle).

 • Password—No longer stores the password encryption but contains an x.

 • UID—The user’s numerical identification (210). No two users should have the 

same UID. ls prints the owner’s name by matching the UID obtained from the 

inode with this field.

 • GID—The user’s numerical group identification (241). This number is also the 

third field in /etc/group.

 • Comment or GCOS—User details, for example, her name, address, and so 

forth (The RDBMS). This name is used at the front of the email address for this 

user. Mail sent from this user account will show the sender as “The RDBMS” 
<oracle@heavens.com>—assuming that the user belongs to the domain shown.

 • Home directory—The directory where the user is placed on logging in 

(/home/oracle). The login program reads this field to set the variable HOME.

oracle:x:210:241:The RDBMS:/home/oracle:bin/ksh

Password Field 
(not used)

Numeric 
GID

Username

Login Shell

Home Directory

GCOS Field

Numeric 
UID

F I G U R E  1 9 . 1  A Line from /etc/passwd

das76205_Ch19_607-642.indd   613das76205_Ch19_607-642.indd   613 12/13/11   10:50 AM12/13/11   10:50 AM



614 Your UNIX/Linux: The Ultimate Guide

 • Login shell—The first program executed after logging in. This is usually the shell 

(/bin/ksh). login sets the variable SHELL by reading this entry, and also fork-

execs the shell process (19.6.1).

For every line in /etc/passwd, there’s a corresponding entry in /etc/shadow. The 

relevant line in this file could look something like this:

oracle:2u6VExtjjXHFk:12285::::::

The password encryption is shown in the second field. It’s impossible to generate the 

password from this encryption. However, an intelligent hacker can mount a brute force 

attack or a dictionary attack to generate a sequence of encrypted patterns. The algorithm 

used to encrypt the password is available to all, so finding a match is not impossible. 

This file is thus unreadable to all but the superuser.

The last field in /etc/passwd is actually the command that has to be executed when a user logs 
in. This is usually the shell, but the administrator may choose a different program to restrict 
the user’s actions.

 19.3.3 Adding and Modifying a User Profile
Adding a User (useradd) The useradd command adds a user to the system. Each 

option used by the command represents a field in /etc/passwd. This is how you add 

the entry shown in Fig. 19.1:

# useradd -u 210 -g dba -c “THE RDBMS” -d /home/oracle -s /bin/ksh -m oracle
# _

The -m option ensures that the home directory is created if it doesn’t already exist and 

copies a sample .profile and .kshrc to the user’s home directory. useradd also creates 

the user’s mailbox and sets the MAIL variable to point to that location (in /var/mail or 

/var/spool/mail).

After the account is created, you have to set the new user’s password with 

passwd oracle and make the account ready for use. It’s now the job of the user to 

generate a public-private key pair with ssh-keygen if she needs to use SSH.

Modifying and Removing Users (usermod and userdel) usermod is used for modi-

fying some of the parameters set with useradd. Users sometimes need to change their 

login shell, and the following command line sets Bash as the login shell for the user oracle:

usermod -s /usr/bin/bash oracle

Note

How useradd Works
In the early days of UNIX, there was no command-line tool to add a user; the 

administrator had to perform the task manually. This meant editing /etc/passwd 

and /etc/group to add the necessary entries. With reference to the user parameters 

shown in Fig. 19.1, this is what the administrator has to do:

das76205_Ch19_607-642.indd   614das76205_Ch19_607-642.indd   614 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 615

Users are removed from the system with userdel:

userdel oracle Doesn’t delete user’s files

This removes all entries pertaining to oracle from /etc/passwd, /etc/group, and 

/etc/shadow. The user’s home directory doesn’t get deleted in the process and has to 

be removed separately if required.

 19.4 Maintaining Security

Because security in a computer system eventually involves files, a faulty file permission 

can easily be exploited by a malicious user in a destructive manner. As administrator, 

you have to ensure that the system directories (/bin, /usr/bin, /etc, /sbin, etc.) 

and the files in them are not writable by others. We’ll first discuss the restricted shell 

and then two important security-related features that involve the manipulation of a 

file’s permission bits.

 19.4.1 Restricted Shell
If you need to restrict the activities of a user, set up the user account with a special 

restricted shell. This shell once had the name rsh, but today rsh represents the com-

mand with which you remotely run a program. The better shells today have restricted 

versions—rbash and rksh. Either of them has to be specified in the last field of 

/etc/passwd. A user with a restricted shell can’t do any of the following things:

 • Use the cd command, which means that she can’t change directories.

 • Redefine the PATH, which makes it impossible to access commands placed in other 

directories.

1. Create the home directory for the user (mkdir /home/oracle).

2. Change the ownership of the home directory to that of the user 

(chown oracle:dba /home/oracle).

3. Change the permissions of /home/oracle to 755 (a desirable setting for a 

directory).

4. Create a zero-byte file named oracle in /var/mail (touch /var/mail/oracle).

5. Change the ownership of the file in the same manner as mentioned in 2. 

However, the permissions need to be set to 600 so that others cannot view 

oracle’s mail.

6. Copy a profile and an rc file of an existing user (or from /etc/skel) and 

ensure that the mail setting there is either MAIL=/var/mail/$USERNAME or 

MAIL=/var/mail/oracle.

The administrator then uses passwd oracle and makes the account available to 

the user.

das76205_Ch19_607-642.indd   615das76205_Ch19_607-642.indd   615 12/13/11   10:50 AM12/13/11   10:50 AM



616 Your UNIX/Linux: The Ultimate Guide

 • Redefine the SHELL so the user can’t change to a nonrestricted shell.

 • Use a pathname containing a /, which means a command can’t be executed with 

either a relative or an absolute pathname.

 • Use the > and >> operators to create or append to files.

In this environment, a user can only execute programs in the directories specified in a 

new unchangeable PATH. This generally is set to point to only the current directory. If 

the user needs to run some of the system commands in /bin and /usr/bin, place links 

of those commands in the user’s restricted directory.

Some commands have shell escapes (like vi and mailx), and some versions of 

UNIX let you use these escapes to execute any UNIX command by using the absolute 

pathname. Make sure these commands don’t behave in that manner on your system. If 

they do, disallow their use.

If you don’t have a separate restricted shell on your system, use the standard shells with the -r 
option to enforce that behavior (sh -r, bash -r, or ksh -r). Since you can’t put these entries 
in /etc/passwd, run a normal shell there and use exec to execute them from the startup file. 
Make sure to set the PATH to point to only the current directory.

 19.4.2 Set-User-Id (SUID): Power for a Moment
Recall the discussions on process attributes (7.6—“When Real UID Differs from Effective 
UID”) where we mentioned that sometimes the effective UID may not be the same as the 

real UID. This is a security feature that is exploited by some important UNIX programs. 

These programs have a special permissions mode that lets users update sensitive system 

files—like /etc/shadow—something they can’t do directly with an editor. This is true 

of the passwd program:

-rwsr-xr-x   1 root     shadow      34808 Nov 30 17:55 /usr/bin/passwd

The letter s in the user category of the permissions field represents a special mode known 

as the set-user-id (SUID). This mode lets a process have the privileges of the owner of 

the file during the instance of the program. Thus, when a nonprivileged user executes 

passwd, the effective UID of the process is not the user’s, but of root’s—the owner of 

the program. This SUID privilege is then used by passwd to edit /etc/shadow.

The superuser can use chmod to set the SUID for any file. The s in the chmod 

expression sets the SUID bit:

# chmod u+s a.out ; ls -l a.out
-rwsr-xr-x   1 root    staff      2113 Mar 24 11:18 a.out

To assign SUID in an absolute manner, simply prefix 4 to whatever octal string you 

would otherwise use (like 4755 instead of 755).

The set-group-id (SGID) is similar to SUID except that a program with its 

SGID bit set allows the group owner of the process to have the same power as the 

group that owns the program. The SGID bit is 2, and some typical examples could be 

chmod g+s a.out or chmod 2755 a.out.

Note

das76205_Ch19_607-642.indd   616das76205_Ch19_607-642.indd   616 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 617

The SUID mechanism, invented by Dennis Ritchie, is a potential security hazard. 

As administrator, you must keep track of all SUID programs owned by root that a user 

may try to create or copy. The find command easily locates them:

find /home -perm -4000 -print | mailx root

The extra octal digit (4) signifies the SUID mode, but find treats the - before 4000 as 
representing any other permissions. You can use cron to run this program at regular 

intervals and mail the file list to root.

The fourth octal digit in the permissions string is used only when the SUID, SGID, or sticky bit 
needs to be set. It has the value 4 for SUID, 2 for SGID, and 1 for the sticky bit.

 19.4.3 The Sticky Bit
The sticky bit (also called the saved text bit) applies to both regular files and directories. 

When applied to a regular file, it ensures that the text image of a program with the bit 

set is permanently kept in the swap area so that it can be reloaded quickly when the 

program is invoked again. Previously, it made sense to have this bit set for programs 

like vi and emacs. Today, machines with ultra-fast disk drives and lots of cheap memory 

don’t need this bit for ordinary files.

However, the sticky bit becomes a useful security feature when used with a direc-

tory. The UNIX system allows users to create files in /tmp and /var/tmp, but they can’t 

delete files not owned by them in these directories. Strange, isn’t it? That’s possible 

because both directories have their sticky bits set:

# ls -ld /tmp /var/tmp
drwxrwxrwt   5 root     sys          377 Jan  9 13:28 /tmp
drwxrwxrwt   2 root     sys         7168 Jan  9 13:34 /var/tmp

The directories are apparently writable by all, but that extra t (sticky) bit ensures that 

henry can’t remove juliet’s files in these directories. Using chmod, you can set the bit 

on a directory:

# chmod 1775 bar Or chmod +t bar

# ls -l bar
drwxrwxr-t   2 sumit    dialout      1024 Apr 13 08:25 bar

The sticky bit is extremely useful for implementing group projects. To let a group of 

users work on a set of files without infringing on security, you’ll have to:

1. Create a common group for these users in /etc/group.

2. Create separate user accounts for them but specify the same home directory.

3. Make sure the home directory and all subdirectories are not owned by any of the 

users. Use chown to surrender ownership to root.

4. Make the directories group-writable and set their sticky bits with chmod 1775.

In this scenario, every user of the group has write permission on the directory and can cre-

ate files and directories, but can only delete those she owns. A very useful feature indeed!

Note

das76205_Ch19_607-642.indd   617das76205_Ch19_607-642.indd   617 12/13/11   10:50 AM12/13/11   10:50 AM



618 Your UNIX/Linux: The Ultimate Guide

 19.5 Booting and Shutdown

The startup and shutdown procedures are controlled by automated shell scripts that are 

changed quite infrequently. Yet the administrator needs to know the exact sequence of 

steps the system follows during the two events. Things do go wrong, especially during 

startup, and she must be able to fix them. For that, she needs to know the role played 

by the initialization scripts in /etc.

 19.5.1 Booting
After a machine is powered on, the system looks for all peripherals, and then goes 

through a series of steps that ultimately lead to the loading of the kernel into memory. 

The kernel then spawns init (PID 1) which, in turn, spawns further processes. You must 

know the behavioral pattern of init for three vital reasons:

 • init maintains the system at a specific run level (state) and decides which pro-

cesses to run for each run level.

 • init is the parent of all system daemons that keep running all the time. Recall the 

output of the ps -e command (7.4) that showed many of these daemons.

 • It spawns a getty process at every terminal so that users can log in. Eventually, 

init becomes the parent of all shells.

Each run level is normally a single digit (0 to 6), or an s or S. A distinct set of processes 

(mostly daemons) is scheduled to run in each of these states. Normally, the system would 

be in any one of these system-dependent run levels:

 • 0—System shutdown.

 • 1—System administration mode (local file systems mounted).

 • 2—Multiuser mode (NFS not available).

 • 3—Full multiuser mode.

 • 5—The graphical environment mode in Linux.

 • 6—Shutdown and reboot mode.

 • s or S—Single-user mode (file systems mounted).

When the system is booted, init first enters run level 1 or S before moving to the mul-

tiuser mode (2, 3, or 5). When the system is shut down, init moves to the state 0 or 6. The 

administrator also explicitly uses the init command to move the system to any run level:

init 1 Switches to single-user mode

The administrator uses the single-user mode to perform administrative tasks like checking 

the file system or taking an offline backup. Many services are not available in this state.

To know the run level you are in, use the who -r command:

$ who -r
   .       run-level 3  Jan  9 09:39     3      0  S

This machine is at run level 3, a state which supports multiuser and network operations. Linux 
users can also use the runlevel command from the root account.

Tip

das76205_Ch19_607-642.indd   618das76205_Ch19_607-642.indd   618 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 619

Linux

 19.5.2 Shutdown
The administrator uses the shutdown command to shut the machine down at the end 

of the day (if it is ever shut down). The command notifies users with wall about the 

system going down with a directive to log out. After sleeping for a minute, shutdown 

performs the following activities:

 • Sends signals to all running processes so they can terminate normally.

 • Logs users off and kills remaining processes.

 • Unmounts all secondary file systems using the umount command.

 • Invokes sync to write all memory-resident data to disk to preserve the integrity 

of the file system.

 • Notifies users to reboot or switch off, or moves the system to single-user mode.

shutdown supports the -i option that specifies the init run level. The -g option over-

rides the default waiting time of one minute. The command can be used in these ways:

shutdown -g2 Powers down machine after 2 minutes

shutdown -y -g0 Immediate shutdown

shutdown -y -g0 -i6 Shut down and reboot

Some systems like Solaris offer the reboot and halt commands that also shut the system 

down without warning the users. Unless you know what you are doing, you should stick 

to shutdown if you are administering a multiuser system.

Linux uses the -t option to override the default waiting time of one minute. shutdown 

can also be used in these ways:

shutdown 17:30 Shut down at 17:30 hours

shutdown -r now Shut down immediately and reboot

shutdown -h now Shut down immediately and halt

Linux also permits the use of the Windows-styled [Ctrl][Alt][Del] sequence to shut 

down the system.

 19.6 How init Controls the System

init, which takes all instructions from /etc/inittab, completely controls the way 

the system is booted and powered down. Each line of the file contains four fields that 

specify the program to run for each init state. A few sample lines taken from a Solaris 

system are shown in Fig. 19.2.

All the things you see happening on startup owe their ultimate origin to entries 

like these. A typical inittab entry takes this form:

label:run_levels:action:command

Let’s now examine one of the lines of inittab. The line with the label s2 provides this 

directive: “For run levels 2 or 3, run the /sbin/rc2 program and wait for it to complete 

das76205_Ch19_607-642.indd   619das76205_Ch19_607-642.indd   619 12/13/11   10:50 AM12/13/11   10:50 AM



620 Your UNIX/Linux: The Ultimate Guide

before moving on to the other lines of this file.” msglog is a special file that is used for 

logging all messages.

When init is executed with a specific run level as argument, it reads all lines that 

match that run level and executes the commands specified there in sequence. A blank 

run level (here, in the first line) means the command has to run for all run levels. init 

also obtains the default run level by reading the line that shows initdefault as the 

action. Here, the system boots to run level 3.

respawn and wait are two of the actions that init understands. There are others, 

and here are some of the important ones:

 • sysinit—Used for initializing the system. The system may check the “dirtiness” 

of file systems, activate swap partitions, and set the hostname.

 • respawn—Makes sure a process restarts on termination. This is always required 

for the getty process.

 • boot—Executes only when inittab is read the first time. init ignores any run-

level fields placed here.

 • off—Kills a process if it is running.

 • ctrlaltdel—Executes the shutdown command (Linux only).

As administrator, you can also insert or modify statements in /etc/inittab. You can 

change the default run level, or add and modify entries when adding a new terminal or 

modem to the system. Finally, you have to use telinit q to force init to reread its 

configuration file.

 19.6.1 How init Creates the Shell
Every /etc/inittab has at least one line that specifies running a program to produce 

a login prompt on the console and other terminals (if supported). These lines from a 

Linux machine illustrate the relationship between init and the mingetty (the “getty” 

of Linux) program:

1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2

When the system moves to states 2, 3, 4, or 5, init forks and execs a getty (here, 

mingetty) for every active communication port (here, tty1 and tty2). getty prints 

fs::sysinit:/sbin/rcS sysinit >/dev/msglog 2<>/dev/msglog </dev/console
is:3:initdefault:
s0:0:wait:/sbin/rc0 >/dev/msglog 2<>/dev/msglog </dev/console
s1:1:respawn:/sbin/rc1 >/dev/msglog 2<>/dev/msglog </dev/console
s2:23:wait:/sbin/rc2 >/dev/msglog 2<>/dev/msglog </dev/console
s3:3:wait:/sbin/rc3 >/dev/msglog 2<>/dev/msglog </dev/console
s6:6:wait:/sbin/rc6 >/dev/msglog 2<>/dev/msglog </dev/console

F I G U R E  1 9 . 2  An /etc/inittab File

das76205_Ch19_607-642.indd   620das76205_Ch19_607-642.indd   620 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 621

Linux

the prompt for login and goes off to sleep. When a user attempts to log in, getty execs 

the login program to verify the login name and password. On successful login, login 

execs the process representing the login shell. Repeated overlaying ultimately results in 

init becoming the immediate ancestor of the shell as can be seen from this sequence:

init getty login shell

fork-exec exec exec

init goes off to sleep, waiting for the death of its children. When the user logs out, her 

shell is killed, and the death is intimated to init. It then wakes up, and the respawn 

field directs it to spawn another getty for that line to monitor the next login.

Because of /etc/inittab, you can have multiple virtual consoles on your Linux 

machine. Use [Ctrl][Alt] and a function key to bring up a new screen. Using the first 

six function keys, you can have six virtual consoles on a single machine. If you want 

one more, add an entry in inittab.

 19.6.2 The rc Scripts
When the system boots to or changes the run level, init looks up inittab to first kill 

the processes that shouldn’t be running, and then spawns those that should be. Every 

inittab specifies the execution of some rc scripts that have the names rc0, rc1, rc2—

one for each run level:

s0:0:wait:/sbin/rc0         >/dev/msglog 2<>/dev/msglog </dev/console
s2:23:wait:/sbin/rc2            >/dev/msglog 2<>/dev/msglog </dev/console
s3:3:wait:/sbin/rc3         >/dev/msglog 2<>/dev/msglog </dev/console

rc0 runs for run level 0, but rc2 runs in both states 2 and 3. Each rc script contains 

code to execute a series of scripts in the directory /etc/rcn.d, where n signifies the 

run level. This means that for run level 2, init executes rc2, which in turn executes 

the scripts in /etc/rc2.d.

Now, let’s turn our attention to the scripts in the /etc/rcn.d directories. These 

directories have two types of files as shown by this list from /etc/rc2.d:

K07dmi S69inet S74xntpd S90wbem
K07snmpdx S70uucp S75cron S92volmgt
K16apache S71ldap.client S75savecore S93cacheos.finish
S01MOUNTFSYS S72autoinstall S80lp S95ncad
S20sysetup S72slpd S85power S99dtlogin
S21perf S73cachefs.daemon S88sendmail

The scripts here fully initialize the system by mounting file systems, setting up the 

network and activating the other daemons. They are executed in two batches. When the 

system enters run level 2, rc2 executes (in ASCII sequence) all scripts beginning with 

K (the “kill” scripts) with the stop argument. This kills all processes that shouldn’t be 

das76205_Ch19_607-642.indd   621das76205_Ch19_607-642.indd   621 12/13/11   10:50 AM12/13/11   10:50 AM



622 Your UNIX/Linux: The Ultimate Guide

Linux

running at this level. It then executes the scripts beginning with S (the “start” scripts) with 

the start argument. Because a daemon may run in more than one run level, the files that 

you see above are symbolic links pointing to the actual scripts placed in /etc/init.d. 

The rc Files

The initialization files in Linux were originally based on BSD, but now have a 

strong System V flavor. However, the rc files and directories here are all under 

one roof—/etc/rc.d. Moreover, instead of using rcn, Linux uses a single file, 

rc, with different arguments as shown in the following lines from /etc/inittab:

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2

All scripts in the rcn.d directories are executed from /etc/rc.d/rc. The sequence 

for Linux goes like this: For switching to run level n, init executes /etc/rc.d/rc n, 

which executes the scripts in /etc/rc.d/rcn.d.

 19.7 Device Files

Devices are also files, and the same device can often be accessed with several different 

filenames. This has sometimes been done for backward compatibility and sometimes for 

associating a separate device with a specific function. All device files are stored in /dev 

or in its subdirectories. Device names on UNIX systems are system-dependent, but Linux 

is remarkably invariant, so let’s list some devices as they appear on a Linux machine:

# ls -l /dev
lrwxrwxrwx    1 root root  8 Dec 11 2002 cdrom -> /dev/hdb
crw-------    1 sumit root 5, 1 Sep 11 14:08 console
crw-rw----    1 root uucp 5, 64 Aug 31 2002 cua0
brw-rw----    1 sumit floppy 2, 0 Aug 31 2002 fd0
brw-rw----    1 sumit floppy 2, 40 Aug 31 2002 fd0h1440
brw-rw----    1 root disk 3, 0 Aug 31 2002 hda
brw-rw----    1 root disk 3, 1 Aug 31 2002 hda1
brw-rw----    1 root disk 3, 2 Aug 31 2002 hda2
brw-------    1 sumit disk 3, 64 Aug 31 2002 hdb
lrwxrwxrwx    1 root root  5 Dec 11 2002 mouse -> psaux
crw-rw-rw-    1 root root 1, 3 Aug 31 2002 null
crw-------    1 root root 10, 1 Sep 11 14:08 psaux
drwxr-xr-x    2 root root  0 Sep 11 19:37 pts
crw-rw-rw-    1 root root 5, 0 Aug 31 2002 tty
crw--w----    1 root root 4, 0 Aug 31 2002 tty0
crw-------    1 root root 4, 1 Sep 11 14:08 tty1
crw-rw----    1 root uucp 4, 64 May 13 18:43 ttyS0

das76205_Ch19_607-642.indd   622das76205_Ch19_607-642.indd   622 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 623

In real life, the lists are much larger than this and include every possible device on your 

system—including even the main memory of your computer. This listing reveals two 

vital points:

 • Device files can be grouped into two main categories as shown by the first character 

of the permissions field (b or c).

 • The fifth field—normally representing the size for other files—consists of a pair 

of numbers. A device file contains no data.

Device files also have permissions with the same significance. To send output to a ter-

minal, you need to have write permission for the device, and to read a CD-ROM, you 

must have read permission for the device file. The significance of the device attributes 

is taken up next.

 19.7.1 Block and Character Devices
First, a word about disk reading and writing. When you issue an instruction to save a 

file, the write operation takes place in chunks or blocks. Each block represents an inte-

gral number of disk sectors (of 512 bytes each). The data is first transferred to a buffer 
cache (a pool of buffers) which the kernel later writes to disk. When you read from disk, 

the buffer cache is first accessed containing the most recently used data. If the data is 

found there, disk access is avoided. You may decide to ignore this facility and access 

the device directly. Many devices allow this, and the access method is determined by 

the name of the device that is called up.

Note that generally the first character in the permissions field is c or b. The floppy 

drive, CD-ROM, and the hard disk have b prefixed to their permissions. All data are 

read and written to these devices in blocks and use the buffer cache. That’s why they 

are referred to as block special devices. On the other hand, the terminal, tape drive, and 

printer are character special or raw devices, indicated by the letter c. For the latter, the 

read/write operations ignore the buffer cache and access the device directly.

Many block devices have both a raw and a block counterpart. Hard disks, floppy 

drives, and CD-ROMs can be accessed as block devices or as character devices, which 

totally bypasses the file system.

 19.7.2 Major and Minor Numbers
The set of routines needed to operate a specific device is known as the device driver. 

When a particular device is accessed, the kernel calls the right device driver and passes 

some parameters for it to act properly. The kernel must know not only the type of device 

but also certain details about the device—like the density of a floppy or the partition 

number of the disk.

The fifth column of the previous listing doesn’t show the file size in bytes, but rather 

a pair of two numbers separated by a comma. These numbers are called the major and 

minor device numbers, respectively. The major number represents the device driver, 

actually the type of device. All hard disks will have the same major number if they are 

attached to the same controller.

The minor number is indicative of the parameters that the kernel passes to the 

device driver. Often, it indicates the special characteristics of the device. For example, 

das76205_Ch19_607-642.indd   623das76205_Ch19_607-642.indd   623 12/13/11   10:50 AM12/13/11   10:50 AM



624 Your UNIX/Linux: The Ultimate Guide

fd0h1440 and fd1h1440 represent two floppy devices attached to a particular controller. 

So both of them will have the same major number but different minor numbers.

Unlike ordinary and directory files, device files don’t contain any data. They merely point to 
the location of the device driver routines that actually operate the device.

 19.8 File Systems

We now move on to file systems. A file system is organized in the form of a directory 

structure with its own root. It is also accessed by its own device file. Modern UNIX sys-

tems are invariably set up with multiple file systems, each meant for a specific purpose. 

If you have multiple disks, every disk must have at least one file system on it. Dividing 

a disk into multiple file systems has a number of distinct advantages:

 • Separate file systems prevent potential encroachment conflicts that may arise 

between the various data areas.

 • If there’s corruption in one area, other areas are effectively shielded from this evil 

influence.

 • Each file system can be backed up separately onto a single volume of tape.

The operating system usually resides on multiple file systems. At the time of booting, 

these file systems combine (using a technique known as mounting) and appear to the 

user as a single file system. One of these file systems is special: the root file system. It 

contains the bare-bones UNIX—the root directory, the /bin, /etc, /dev, and /lib direc-

tories, that is, all the tools and utilities that are just sufficient to keep the system going.

Most systems also have a swap file system. When the system memory is heavily 

loaded, the kernel moves processes out of memory and to this file system. When these 

swapped processes are ready to run, they are loaded back to memory. Users can’t access 

this file system directly.

Apart from these essential file systems, your computer would in all probability 

have additional ones. System files should be kept separate from data files created by 

users, and hence a separate file system is usually made for them. You might have a 

/home or /export/home file system to house all users. You could also have /usr, /var, 

and /tmp as separate file systems.

 19.8.1 File System Components
Every file system has these four components:

 • The boot block—This block contains a small boot program and the partition table. 

This is often referred to as the Master Boot Record (MBR). The boot program is 

responsible for the eventual loading of the kernel into memory.

 • The superblock—This area contains global information about the file system. This 

information includes a free list of inodes and data blocks. The kernel maintains a 

copy of the superblock in memory and reads and writes this copy when controlling 

allocation of inodes and data blocks. It also periodically updates the disk copy with 

the contents of the memory copy.

Note

das76205_Ch19_607-642.indd   624das76205_Ch19_607-642.indd   624 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 625

 • The inode blocks—This region contains the inode for every file of the file system. 

When a file is created, an inode is allocated here. Apart from file attributes, the 

inode contains an array of disk block addresses that keep track of every disk block 

used by a file. Like with the superblock, the kernel works with the memory copy 

of the inode and periodically writes this copy to disk.

 • The data blocks—All data and programs created by users reside in this area. Even 

though disk blocks are numbered consecutively, you’ll often find a file’s data are 

arranged in noncontiguous blocks. When a file expands, the kernel may not find its 

adjacent blocks free. The remaining data then have to be written to the next free block, 

wherever it may be. This, no doubt, leads to disk fragmentation and consequently 

increases the overheads of read/write operations. However, this fragmentation also 

allows files to be enlarged or reduced at will and helps keep wastage to a minimum.

UNIX refuses to boot if the superblock is corrupt. To overcome this problem, many 

systems (like Solaris and Linux) have multiple superblocks written on different areas of 

the disk. If one superblock is corrupt, the system can be directed to use another.

 19.8.2 The Standard File Systems and Their Types
Initially, there were only two types of file systems—those from AT&T and those from 

Berkeley. Over time, many more file system types have made their entry into the UNIX 

system. Here are some of the file systems that you may need to work with:

 • s5 Before SVR4, this was the only file system used by System V, but today it is 

offered by SVR4 by this name for backward compatibility only. This file system 

uses a logical block size of 512 or 1024 bytes and a single superblock. It can’t 

handle filenames longer than 14 characters.

 • ufs This is how the Berkeley Fast File System is known to SVR4 and adopted by 

most UNIX systems. Because the block size here can go up to 64 KB, performance 

of this file system is considerably better than s5. It uses multiple superblocks with 

each cylinder group storing a superblock. Unlike s5, ufs supports 255-character 

filenames, symbolic links, and disk quotas.

 • ext2 or ext3 This is the standard file system on Linux. It uses a block size of 1024 

bytes and, like ufs, uses multiple superblocks and symbolic links.

 • iso9660 or hsfs This is the standard file system used by CD-ROMs. It features 

DOS-style 8+3 filenames, but since UNIX uses longer filenames, hsfs also provides 

Rock Ridge extensions to accommodate them.

 • msdos or pcfs Most UNIX systems also support DOS files ystems. You can create 

this file system on a floppy diskette and transfer files to it for use on a Windows system. 

Some systems like Linux can also directly access a DOS file system on the hard disk.

 • swap This file system has already been discussed (19.8).
 • bfs The boot file system. This is used by SVR4 to host the boot programs and 

the UNIX kernel. 

 • proc or procfs This can be considered a pseudo-file system maintained in 

memory. It stores data of each running process and appears to contain files, but 

actually contains none. Users can obtain most process information, including their 

PIDs, directly from here.

das76205_Ch19_607-642.indd   625das76205_Ch19_607-642.indd   625 12/13/11   10:50 AM12/13/11   10:50 AM



626 Your UNIX/Linux: The Ultimate Guide

Commands handling file systems (like mkfs and mount) use an option to describe the 

file system, which is why you should know the file system you are using.

 19.9 Mounting and Unmounting File Systems

When a file system is created, the root file system doesn’t even know of its existence. By 

a process known as mounting, all secondary file systems mount (attach) themselves to 

the root file system at different points. The root file system then becomes the main file 

system, and its root directory is also the directory of the unified file system.

The mount and umount commands are used for mounting and unmounting file 

systems. The point at which mounting takes place is called the mount point. This is 

usually an empty directory. After mounting, you see a single file system, and it’s possible 

that a file moved from /oracle to /home may have actually traversed two hard disks, 

possibly at two different locations!

 19.9.1 mount: Mounting File Systems
The mount command is used to mount file systems. When you mount a new file sys-

tem, it takes two arguments—the device name of the file system and the mount point. 

Before a file system is mounted, an empty directory (say, /oracle) must first be made 

available in the main file system. The root directory of the new file system has to be 

mounted on this directory.

mount uses a system-dependent option to specify the type of file system. This is 

how we mount a file system on /oracle on Solaris and Linux systems:

mount -F ufs /dev/dsk/c0t8d0s0 /oracle Solaris

mount -t ext2 /dev/hda3 /oracle Linux

After the device is mounted, the root directory of the file system on this device loses 

its separate identity. It now becomes the directory /oracle and is made to appear as if 

it’s part of the main file system.

mount by default lists all mounted file systems. The following output is seen on 

a Solaris system:

# mount
/ on /dev/dsk/c0t0d0s0 read/write/setuid/intr/largefiles/onerror=panic/dev=80000
0 on Thu Sep 11 08:57:43 2003
/usr on /dev/dsk/c0t0d0s4 read/write/setuid/intr/largefiles/onerror=panic/dev=80
0004 on Thu Sep 11 08:57:44 2003
/proc on /proc read/write/setuid/dev=2e40000 on Thu Sep 11 08:57:43 2003
/var on /dev/dsk/c0t0d0s1 read/write/setuid/intr/largefiles/onerror=panic/dev=80
0001 on Thu Sep 11 08:57:46 2003
/oracle on /dev/dsk/c0t8d0s0 read/write/setuid/intr/largefiles/onerror=panic/dev
=800038 on Thu Sep 11 08:57:48 2003
/tmp on swap read/write/setuid/dev=2 on Thu Sep 11 08:57:48 2003
/export/home on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles/onerror=pani
c/dev=800007 on Thu Sep 11 08:57:48 2003

das76205_Ch19_607-642.indd   626das76205_Ch19_607-642.indd   626 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 627

The first line shows the root file system mounted on /. This file system can’t be un-

mounted. The /oracle file system is also shown. If you can’t access data in /oracle, 

use mount to find out whether the file system is mounted at all.

Even though mount here used the device name and mount point as its arguments, things can 
be set up such that mount can be used with one argument. When all mounting parameters are 
specified in a configuration file, you can use mount with simply one argument:

mount /oracle Both these commands 

mount /dev/hda3 will now work

This configuration file is often /etc/fstab, but Solaris uses /etc/vfstab. When a new file system 
is created, an entry has to be added to this file.

 19.9.2 umount: Unmounting File Systems
Unmounting is achieved with the umount command (note the spelling!), which requires 

either the file system name or mount point as argument. The file system that we just 

created and mounted can be unmounted by using any of these commands:

umount /oracle Specify either mount point or

umount /dev/hda3 device name—here a Linux device

umount /dev/dsk/c0t8d0s0 ... and here a Solaris device 

Unmounting a file system is sometimes not possible if a user is placed in it. Further, just as 

you can’t remove a directory unless you are placed in a directory above it, you can’t unmount 

a file system unless you are placed above it. If you try to do that, this is what you’ll see:

# pwd
/oracle
# umount /dev/c0t8d0s0
umount: /oracle busy

Now move out of the mount point (/oracle) and repeat the umount command; it should 

work now.

When you use mount -a, all file systems listed in mount’s configuration file are mounted. At 
system startup, the same command is executed, so you always find mounted file systems 
available on your machine. The shutdown sequence runs umount -a.

 19.10 fsck: File System Checking

The update daemon calls sync every 30 seconds to write the memory copies of the 

superblock and inodes to disk. This delay leaves scope for file system inconsistency. 

If the power goes off before the superblock is written to disk, the file system loses its 

integrity. Here are some common discrepancies:

 • Two or more inodes claiming the same disk block.

 • A block marked as free, but not listed in the superblock.

Note

Note

das76205_Ch19_607-642.indd   627das76205_Ch19_607-642.indd   627 12/13/11   10:50 AM12/13/11   10:50 AM



628 Your UNIX/Linux: The Ultimate Guide

 • A used block marked as free.

 • Mismatch between the file size specified in the inode and the number of data blocks 

specified in the address array.

 • A file not having at least one directory entry or having an invalid file type speci-

fied in the inode.

The fsck (file system consistency check) command is used to check and repair a dam-

aged file system. The command generally acts as a frontend to the file system–specific 

program (like fsck_ufs or fsck.ext3) that actually does the job. It’s generally run 

when a file system fails to mount.

On many systems, including Solaris, file systems are marked as “dirty” or “clean.” 

fsck then checks only the dirty file systems during the next startup. The command can 

also be used with the name of the file system as argument:

# fsck /dev/rdsk/c0t3d0s5
** /dev/rdsk/c0t3d0s5
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List

fsck conducts a check in five phases, and the preceding output is obtained when the file 

system is consistent. However, when it is corrupt, messages and questions, which you 

have to answer correctly, are seen on the system console. Occasionally, the file system 

is so corrupt that rectification becomes impossible, and reinstallation of the system 

remains the only alternative.

When a file system develops problems, fsck may find the information on disk to be more 
recent than the memory copy. It may then flash the following message:

***** BOOT UNIX (NO SYNC!) *****

This is a warning message: If you allow update to call sync and write the incorrect memory 
information to disk, all the good work done by fsck will be lost. Instead, you should immediately 
press the reset button and reboot the system before update calls sync again.

 19.11 Managing Disk Space

No matter how many disks are added to the system, there will always be a scramble 

for space. Users often forget to remove the files they no longer need. “Core” files (files 

named core) also build up when C programs encounter memory access violations. The 

administrator must regularly scan the disk and locate files that have outlived their utility. 

She needs the df and du commands for this task as well as find. All three commands 

can also be issued by any user. Linux users need to note that all three commands report 

in 1024-byte blocks and not 512.

Caution

das76205_Ch19_607-642.indd   628das76205_Ch19_607-642.indd   628 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 629

 19.11.1 df: Reporting Free Space
The df (disk free) command reports the amount of free space available for each file 

system separately:

# df
/ (/dev/dsk/c0t0d0s0 ): 3487518 blocks 483770 files
/usr (/dev/dsk/c0t0d0s4 ): 2408514 blocks 458429 files
/proc (/proc ): 0 blocks 15890 files
/var (/dev/dsk/c0t0d0s1 ): 3836084 blocks 483861 files
/oracle (/dev/dsk/c0t8d0s0 ): 995890 blocks 1018780 files
/tmp (swap ): 2699184 blocks 109840 files
/export/home (/dev/dsk/c0t0d0s7 ): 2187782 blocks 340677 files

There are several file systems on this Solaris machine. The first column shows the mount 

point. The second column shows the device name of the file system. The last two columns 

show the number of 512-byte blocks available and the number of files that you can create.

The first line in the list refers to the root file system (/), which has 3,487,518 

blocks of disk space free. It also has 483,770 inodes free, which means that up to that 

many additional files can be created on this file system. You can create files in this file 

system until the free blocks or inodes are eaten away, whichever occurs earlier.

The -t (total) option includes the preceding output, as well as the total amount 

of disk space in the file system. We won’t display its output, but we’ll consider the in-

formative -k option that reports in units of KB. This time, let’s obtain the statistics for 

the / and /usr file systems:

$ df -k / /usr Reports on / and /usr file systems

Filesystem kbytes used avail capacity  Mounted on
/dev/dsk/c0t0d0s0 1986439 242680 1684166 13% /
/dev/dsk/c0t0d0s4 2025076 820819 1143505 42% /usr

You probably won’t need to know anything more than what this output offers. It also 

shows the percentage utilization. Once you have identified the file system that needs to 

be investigated thoroughly, you need the du command, which we consider next.

 19.11.2 du: Disk Usage
You’ll often need to find out the consumption of a specific directory tree rather than 

an entire file system. du (disk usage) is the command you need as it reports usage by a 

recursive examination of the directory tree. This is how du lists the usage of each sub-

directory in /var/apache:

$ du /var/apache
6 /var/apache/cgi-bin
12 /var/apache/htdocs
74 /var/apache/icons/small
266 /var/apache/icons

das76205_Ch19_607-642.indd   629das76205_Ch19_607-642.indd   629 12/13/11   10:50 AM12/13/11   10:50 AM



630 Your UNIX/Linux: The Ultimate Guide

2 /var/apache/logs
2 /var/apache/proxy
290 /var/apache A summary at the end

The list can often be quite large, but sometimes you need only a single figure shown in 

the last line. For this, the -s (summary) option is quite convenient:

$ du -s /var/apache
290     /var/apache

Assessing Space Consumed by Users Most of the dynamic space in a system is 

consumed by users’ home directories and data files. You should use du -s to report on 

each user’s home directory. The output is brief and yet quite informative:

$ du -s /export/home/staff/*
122 /export/home/staff/PDSIT
42 /export/home/staff/henry
434586 /export/home/staff/charlie
574324 /export/home/staff/henry
3275442 /export/home/staff/romeo
1126172 /export/home/staff/juliet

You know who the notorious disk hoggers are: romeo and juliet. If they have exceeded 

their quotas, you can use the shell script developed in Section 13.13.3 to send mail to 

the offenders.

 19.11.3 find Revisited: The Administrator’s Tool
The find command (4.11) can test a file for practically every attribute. The administrator 

often uses the -size keyword to locate large files this way:

find /home -size +2048 -print Files above 1 MB

Many files remain unaccessed or unmodified for months—even years. find’s -mtime 

and -atime operators can easily match a file’s modification and access times to select 

them. This is how the administrator scans the /home directory for files that have either 

not been accessed for a year or not been modified in six months:

find /home \( -atime +365 -o -mtime +180 \) -print | mailx root

You need to halve these figures when using Linux as find there uses 1024-byte blocks.

 19.12 Handling Floppy Diskettes

Although the tape is the most common backup device, the floppy diskette represents the 

most convenient means of exchanging small files between machines at work and home. 

For our examples, we’ll be using a 3.5", 1.44 MB diskette.

das76205_Ch19_607-642.indd   630das76205_Ch19_607-642.indd   630 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 631

 19.12.1 format and fdformat: Formatting Diskettes
Before you use a floppy for backup purposes, you need to format it. This is done with 

the format or fdformat commands (whichever is available on your system):

# fdformat On Solaris

Press return to start formatting floppy.
The -d option uses the DOS format.

This command formats and verifies a 1.44 MB floppy. Linux too uses the fdformat 

command for formatting a floppy. Device names in Linux generally don’t vary across 

the different flavors; a floppy usually has the name /dev/fd0 or /dev/fd0h1440, so 

you should use fdformat /dev/fd0 (or the other device name).

 19.12.2 dd: Copying Diskettes
dd (disk dump) is a versatile command that can be used to perform a variety of tasks. 

It is somewhat dated now that some of its filtering functions have been taken over by 

other UNIX tools. It has a strange command line that has a series of options in the form 

option=value.

dd was extensively used in copying file systems, but today its role is mostly re-

stricted to copying media—like floppies and tapes. It is not interactive (in fact, it is a 

filter), and a pair of dd commands is needed to complete the operation.

We’ll now use dd to make a copy of a 1.44 MB floppy diskette. The first step is 

to create the image of the floppy on disk:

# dd if=/dev/fd0 of=$$ bs=147456
10+0 records in
10+0 records out

The keywords are if= (input filename), of= (output filename), and bs= (block size). The 

preceding command copies the raw contents of a 1.44 MB floppy to a temporary file, 

$$, using a block size of 147456—exactly one-tenth the capacity of a 1.44 MB diskette.

Next, take out the source floppy from the drive and insert a formatted target floppy. 

A second reversed dd command copies this temporary file to the diskette:

# dd if=$$ of=/dev/fd0 bs=147456 ; rm $$
10+0 records in
10+0 records out

You should copy your boot floppies in this way. dd uses only raw devices. Linux doesn’t 

have separate device files for the two modes but selects the right mode automatically.

 19.12.3 Handling DOS Diskettes
It is now quite common to see both Windows and UNIX systems on the desktop. UNIX 

today provides a family of commands (Table 19.1) that can read and write DOS floppy 

diskettes. These command names begin with the string dos in SVR4. They are modeled 

after UNIX commands performing similar functions.

das76205_Ch19_607-642.indd   631das76205_Ch19_607-642.indd   631 12/13/11   10:50 AM12/13/11   10:50 AM



632 Your UNIX/Linux: The Ultimate Guide

Linux

The command required most is doscp, which copies files between disk and diskette:

doscp emp.lst /dev/dsk/f0q18dt:/per.lst

There are two components in the target specification—the device name (1.44 MB floppy 

drive) and the filename (/per.lst), with the : used as delimiter. As in cp, multiple file 

copying is also possible:

doscp emp[123].lst /dev/dsk/f0q18dt

doscat performs a simple “cat” of its arguments in the command line. When more than 

one filename is specified, the standard output of each is concatenated:

doscat /dev/dsk/f0q18dt:/CHAP01 /dev/dsk/f0q18dt:/CHAP02 > newchap

These commands make the newline conversions automatically (3.21), but they also work 

with the -r option, in which case the files are copied or concatenated without newline 

conversions.

Table 19.1 shows the use of these commands with varying device names. One of 

them should work on your system. If a: doesn’t work, then use the appropriate file in 

/dev or /dev/dsk.

The Linux “DOS” commands begin with the string m and use the corresponding DOS 

command as the rest of the string. Here are some examples:

mcopy emp.lst a:
mcopy a:* .
mdir a:
mdel a:*.txt

Note that Linux uses the DOS drive name. All of these commands belong to the 

“mtools” collection. For details, use man mtools.

T A B L E  1 9 . 1  The Family of DOS Commands (Linux command name in parentheses)

Command Action

doscp /dev/fd0135ds18:/tags . Copies tags from DOS diskette (mcopy)
doscat a:readme a:setup.txt Concatenates files readme and setup.txt in DOS 

diskette (mtype)
dosdir /dev/dsk/f0q18dt Lists files in DOS diskette in DOS-style (mdir)
dosls /dev/dsk/f0q18dt Lists files in UNIX ls-style
dosmkdir a:bin Creates directory bin on DOS diskette (mmd)
dosrmdir a:bin Removes directory bin on DOS diskette (mrd)
dosrm /dev/dsk/f0q18dt:setup.inf Deletes file setup.inf on DOS diskette (mdel)
dosformat a: Formats diskette for use on DOS systems 

(mformat)

das76205_Ch19_607-642.indd   632das76205_Ch19_607-642.indd   632 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 633

 19.13 tar: Backing Up Files

The importance of performing regular backups isn’t usually appreciated until a crash has 

occurred and a lot of data has been lost. The administrator is partly responsible for the 

safety of the data. She decides which files should be backed up and also determines the 

periodicity of such backups. Backups are effective only if files can be easily restored. 

For reasons of security, backup media of sensitive data are often kept at distant locations.

You have already used tar with its key options (3.22) to handle disk archives. 

We’ll consider tar as a backup tool this time. Because of its recursive nature, tar is 

suitable for backing up entire directory structures. The backup device can be a tape or 

a floppy diskette, and the latter will be used in the examples. The tar options are listed 

in Table 19.2. The common key options are -c (copy), -x (extract), and -t (table of 

contents). The -f option is additionally used for specifying the device name.

 19.13.1 Backing Up Files (-c)
tar accepts directory and filenames directly on the command line. The -c key option 

is used to copy files to the backup device. The verbose option (-v) shows the progress 

of the backup:

# tar -cvf /dev/rdsk/f0q18dt /home/sales/SQL/*.sql
a /home/sales/SQL/invoice_do_all.sql 1 tape blocks
a /home/sales/SQL/load2invoice_do_all.sql 1 tape blocks
a /home/sales/SQL/remove_duplicate.sql 1 tape blocks
a /home/sales/SQL/t_mr_alloc.sql 10 tape blocks

The a before each pathname indicates that the file is appended. The command backs up all 

SQL scripts with their absolute pathnames, so they can only be restored in the same direc-

tory. However, if you choose to keep the option open of installing the files in a different 

directory, you should first “cd” to /home/sales/SQL and then use a relative pathname:

cd /home/sales/SQL
tar -cvf /dev/rdsk/f0q18dt ./*.sql Using the ./

tar can copy an entire directory tree. The current directory can be backed up with or 

without the hidden files:

tar -cvfb /dev/rdsk/f0q18dt 18 * Doesn’t back up hidden files

tar -cvfb /dev/fd0 18 . Backs up hidden files also

The files here are backed up with their relative pathnames, assuming they all fit on one 

diskette. If they don’t, tar in System V may accommodate them as much as possible 

and then quit the program without warning.

Incremental Backups tar is often used with find for performing incremental backups. 

First, you have to stamp a zero-byte file with the present system date and time whenever 

you go in for a backup. Subsequent backups will only select those files newer than this 

file. The following lines show a simple implementation:

das76205_Ch19_607-642.indd   633das76205_Ch19_607-642.indd   633 12/13/11   10:50 AM12/13/11   10:50 AM



634 Your UNIX/Linux: The Ultimate Guide

tar -cvf /dev/rct0 `find /home -newer .last_time -print`
touch .last_time

The touch command (not discussed in this edition) stamps a file with the current date 

and time when used without an expression. Here, it ensures that the time of last backup 

is available as the last modification time of .last_time. 

 19.13.2 Restoring Files (-x)
Files are restored with the -x (extract) key option. When no file or directory name is 

specified, tar restores all files from the backup device. The following command restores 

the files just backed up:

# tar -xvfb /dev/rdsk/f0q18dt 18
x /home/sales/SQL/invoice_do_all.sql, 169 bytes, 1 tape blocks
x /home/sales/SQL/load2invoice_do_all.sql, 456 bytes, 1 tape blocks
x /home/sales/SQL/remove_duplicate.sql, 237 bytes, 1 tape blocks
x /home/sales/SQL/t_mr_alloc.sql, 4855 bytes, 10 tape blocks

T A B L E  1 9 . 2  tar Options

Key Options (only one to be used)

Option Significance

-c Creates a new archive
-x Extracts files from archive
-t Lists contents of archive
-r Appends files at end of archive
-u Like r, but only if files are newer than those in archive

Nonkey Options

Option Significance

-f dev Uses pathname dev as name of device instead of the default
-v Verbose option—lists files in long format
-w Confirms from user about action to be taken

-b n Uses blocking factor n, where n is restricted to 20
-m Changes modification time of file to time of extraction

-I file Takes filenames from file (Solaris only)

-T file Takes filenames from file (Linux only)

-X file Excludes filenames in file (Solaris and Linux only)

-k num Multivolume backup—sets size of volume to num kilobytes 

(Solaris only)
-M Multivolume backup (Linux only)
-z Compresses/uncompresses with gzip (Linux only)
--bzip2 Compresses/uncompresses with bzip2 (Linux only)

das76205_Ch19_607-642.indd   634das76205_Ch19_607-642.indd   634 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 635

Selective extraction is also possible by providing one or more directory or filenames:

tar -xvf /dev/rdsk/f0q18dt /home/sales/SQL/t_mr_alloc.sql

Note that when files are extracted, the modification times of the files also remain un-

changed. This can be overridden by the -m option to reflect the system time at the time 

of extraction.

Some versions of tar (as in Solaris) don’t read wild-card patterns. If you use tar -xvf /dev/fd0 *.pl, 
it’s the shell that tries to expand the pattern, which means that the files have to reside in the 
current directory. However, some versions of tar (as in Linux) do permit the use of the wild 
cards; it doesn’t matter whether the files exist at all on disk.

A file is restored in that directory which matches its pathname. That is to say, if a file has been 
backed up with the absolute pathname (e.g., /home/romeo/unit13), it will be restored in the 
same directory (/home/romeo). However, you can use the -C option to restore files in another 
directory. Alternatively, you can use relative pathnames when backing up. If tar’s arguments 
are generated by find, then make sure that you use find with a dot as its path list.

 19.13.3 Displaying the Archive (-t)
The -t key option displays the contents of the device in a long format similar to the listing:

# tar -tvf /dev/rdsk/f0q18dt
rwxr-xr-x  203/50     472 Jun  4 09:35 1991 ./dentry1.sh
rwxr-xr-x  203/50     554 Jun  4 09:52 1991 ./dentry2.sh
rwxr-xr-x  203/50    2299 Jun  4 13:59 1991 ./func.sh

The files here have been backed up with relative pathnames. Each filename here is 

preceded by ./. If you don’t remember this but want to extract the file func.sh from 

the diskette, you’ll probably first try this:

# tar -xvf /dev/rdsk/f0q18dt func.sh 
tar: func.sh: Not found in archive

tar failed to find the file because it existed there as ./func.sh and not func.sh. Put 

the ./ before the filename, and you are sure to get it this time. Remember this whenever 

you encounter extraction errors as above.

 19.13.4 Other Options
There are a number of other options of tar that are worth considering:

 • The -r key option is used to append a file to an archive. This implies that an archive 

can contain several versions of the same file!

 • The -u key option also adds a file to an archive but only if the file is not already 

there or is being replaced with a newer version.

 • The -w option permits interactive copying and restoration. It prints the name of the 

file and prompts for the action to be taken (y or n).

Note

Tip

das76205_Ch19_607-642.indd   635das76205_Ch19_607-642.indd   635 12/13/11   10:50 AM12/13/11   10:50 AM



636 Your UNIX/Linux: The Ultimate Guide

Linux

 • Some versions of tar use a special option to pick up filenames from a file. You 

might want to use this facility when you have a list of over a hundred files, which 

is impractical (and sometimes, impossible) to enter in the command line. Unfortu-

nately, this option is not standard; Solaris uses -I and Linux uses -T.

The GNU tar command is more powerful than its System V counterpart and supports 

a host of exclusive options. Unfortunately, there is sometimes a mismatch with the 

options used by System V. The -M option is used for a multivolume backup (e.g., 

tar -cvf /dev/fd0H1440 -M *). There are two options (-z and -Z) related to 

compression that we have already discussed (3.23—Linux).

 19.14 Installing Programs with rpm

UNIX is quite fragmented in the area of package management. There is no standard 

tool to install and remove packages; most vendors have their own tools (like pkgadd in 

Solaris). Linux has done better with the Red Hat Package Manager (RPM), which has 

been adopted by many, including Fedora and SuSE. Currently, a lot of Linux software 

is available on the Internet in RPM format. This package suite comprises the rpm and 

rpmbuild commands, and in the ensuing paragraphs we’ll discuss rpm.

An RPM package is a collection of files bundled into an archive. The filename, 

which has the .rpm extension, usually includes the version number. For instance, the 

RPM vim-6.4.6-19.12.rpm contains the executable, configuration and documentation 

files for version 6.4.6 of vim. RPM maintains a database that keeps track of every pack-

age installed, its location and dependencies on other packages. If package p1 depends on 

p2, then you must install p2 before you install p1. Sometimes, a chain of dependencies 

build up (along with frustration) because p2 depends on p3, and so on.

The rpm command can install, update, remove, and query packages. The depen-

dencies just noted are used by rpm both for installing and removing packages. These 

actions are handled by four key options, and we’ll examine them in the following sec-

tions. Except for querying, all other actions require root permission.

The rpm commands that install and upgrade packages use the RPM filename (with .rpm). For 
removing and querying packages, you must use the package name with the version number 
(without .rpm).

 19.14.1 Installing and Upgrading Packages
The -i (or --install) key option is used to install a package. The following command 

installs the dos2unix utility from its RPM file:

# rpm -i dos2unix-3.1-302.x86_64.rpm
# _

rpm returns silently if it encounters no problems. For verbose behavior and for viewing 

the progress of installation, add the -v and -h options:

Note

das76205_Ch19_607-642.indd   636das76205_Ch19_607-642.indd   636 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 637

# rpm -ivh ipod-sharp-0.5.15-17.2.i586.rpm
Preparing...                ########################################### [100%]
   1:ipod-sharp             ########################################### [100%]

The -h option is responsible for the # marks that progressively build up. The preceding 

installation created no problems, but a conflict can occur when the package is already 

installed. The following output shows a version conflict:

package dos2unix-3.1-317.2 (which is newer than dos2unix-3.1-302) is already 
installed
file /usr/bin/dos2unix from install of dos2unix-3.1-302 conflicts with file 
from package dos2unix-3.1-317.2

More often than not, one package depends on another, which in turn depends on another, 

and so on. An attempt to install the GNU Java compiler on this machine resulted in the 

following output:

# rpm -ivh gcc-java-4.1.0-28.4.i586.rpm
error: Failed dependencies:
        gcc = 4.1.0-28.4 is needed by gcc-java-4.1.0-28.4.i586
        libgcj = 4.1.0-28.4 is needed by gcc-java-4.1.0-28.4.i586
        libgcj-devel = 4.1.0-28.4 is needed by gcc-java-4.1.0-28.4.i586

You have to install the libgcj* packages before repeating the rpm command. rpm doesn’t 

tell you whether these packages too have dependencies; you’ll know that only when 

you install them. For software with a lot of dependencies, installation can thus take a 

lot of time. This is where GUI frontend tools (like SuSE’s YAST) are more convenient 

as they take care of all dependencies and automatically install the required packages.

Upgrading a package requires the use of the -U (or --upgrade) option. rpm -U 

also removes the existing version, but it behaves like rpm -i if the package doesn’t 

exist on the system.

 19.14.2 Removing Packages
Packages are removed with the -e (or --erase) option. For uninstalling, however, you 

need to specify only the package name and version number. For instance, if you have 

installed Skype using

rpm -i skype-linux-suse.i586.rpm

you must uninstall it in this way:

rpm -e skype-1.2.0.18

The suffix used with the word skype denotes the version number. If this is the only ver-

sion of Skype available on your machine, then rpm -e skype would also work. But if 

there are multiple versions, you need to specify the version number. But then how does 

one know the version number? Querying packages is taken up next.

das76205_Ch19_607-642.indd   637das76205_Ch19_607-642.indd   637 12/13/11   10:50 AM12/13/11   10:50 AM



638 Your UNIX/Linux: The Ultimate Guide

Dependencies can also affect removal operations. rpm refuses to remove a package if it is used 
by other packages.

 19.14.3 Querying Packages
RPM is a very informative system; you can know practically everything about a 

package—its version, location, constituent files, dependencies, and so on. rpm uses the 

-q (or --query) option with the package name to query a package. Because this com-

mand doesn’t modify the system configuration, you can run it from a nonprivileged 

user account:

$ rpm -q skype
skype-1.2.0.18-suse

rpm outputs the package filename (without .rpm), which you need to use when uninstall-

ing the package. Adding the -l option lists the files in the package, as the following 

trimmed output reveals:

$ rpm -lq skype
/usr/bin/skype
/usr/share/applications/skype.desktop
/usr/share/doc/skype-1.2.0.18
/usr/share/doc/skype-1.2.0.18/README
/usr/share/icons/skype.png
/usr/share/skype/sound/call_in.wav
/usr/share/skype/sound/call_out.wav
     ........

This shows the installed locations of the executable, media files, and documentation. 

Apart from this list, you can also obtain detailed information of the package using 

rpm -q -i package_name. (Note that -i also signifies a key option elsewhere, so 

you must not reverse the options.)

You can list all RPM packages installed on your machine by using the -a nonkey 

option:

rpm -qa

The list would be long, so we often use this command with grep in a pipeline to con-

firm the existence of a group of packages. Let’s find out the installed packages that are 

associated with GCC:

$ rpm -qa | grep gcc
gcc-java-4.1.2_20070115-0.21
gcc-4.1.2_20070115-0.21
gcc-c++-4.1.2_20070115-0.21
libgcc-4.1.2_20070115-0.21
gcc-info-4.1.2_20070115-0.21

Note

das76205_Ch19_607-642.indd   638das76205_Ch19_607-642.indd   638 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 639

We can now use the -f nonkey option to find out which package the gcc command is 

associated with:

$ rpm -qf /usr/bin/gcc
gcc-4.1.2_20070115-0.21

Finally, you’ll also find the --whatrequires option useful to determine dependencies. 

The following output reveals that the GCC compilers for C++ and Java need the GCC 

package used by C:

$ rpm -q --whatrequires gcc
gcc-c++-4.1.2_20070115-0.21
gcc-java-4.1.2_20070115-0.21

As a developer, you may also like to be familiar with rpmbuild, the command that 

builds an RPM package. rpm is a very useful tool, but because it can’t automatically 

install all dependencies, many people prefer to use GUI frontend tools that use rpm 

beneath the hood.

S U M M A R Y

The system administrator or superuser uses the root user account, though any user can 

also invoke su to acquire superuser powers. The superuser can change the attributes of 

any file, kill any process, and change any user’s password. The current directory doesn’t 

feature in PATH.

A user is identified by the UID and GID, and root has 0 as the UID. A user can be 

added (useradd), modified (usermod), and removed from the system (userdel). User 

details are maintained in /etc/passwd and /etc/group. The password is stored in an 

encrypted manner in /etc/shadow.

For enforcing security, the administrator may assign a restricted shell so the user 

can execute only a fixed set of commands. The set-user-id (SUID) bit of a program 

makes its process run with the powers of the program’s owner. The sticky bit set on a 

directory allows users to create and remove files owned by them in that directory, but 

not remove or edit files belonging to others.

During system startup, the init process reads /etc/inittab to run getty at 

all terminals and the system’s rc scripts. These scripts mount file systems and start the 

system’s daemons. init also becomes the parent of all login shells. shutdown uses init 

to kill all processes, unmount file systems, and write file system information to disk.

Devices can be block special (which use the buffer cache) or character special 
(which don’t). A device file is also represented by a major number that represents the 

device driver, and a minor number that signifies the parameters passed to the device 

driver. The same device can often be accessed with different filenames.

A UNIX file system comprises the boot block, superblock, inode, and data blocks. 

The superblock contains global information on the file system, including details of free 

inodes and data blocks. The memory copies of the superblock and inodes are regularly 

written to disk by the update daemon, which calls sync.

das76205_Ch19_607-642.indd   639das76205_Ch19_607-642.indd   639 12/13/11   10:50 AM12/13/11   10:50 AM



640 Your UNIX/Linux: The Ultimate Guide

Most systems today use the ufs file system, which permits multiple superblocks, 

symbolic links, and disk quotas. Linux uses the ext2 and ext3 file systems. There are 

different file system types for CD-ROMs (hsfs or iso9660), DOS disks (pcfs, vfat, or 

msdos), and a pseudo-file system for processes (proc or procfs).

A file system is unknown to the root file system until it is mounted (mount). 

umount unmounts file systems but only from above the mount point. fsck checks the 

integrity of file systems.

The administrator has to monitor the disk usage and ensure that adequate 

free space is available. df displays the free disk space for each file system. du lists 

the detailed usage of each file or directory. The administrator also uses find to locate 

large files (-size).

Floppy diskettes have to be formatted (format or fdformat) before they can be 

used. dd uses a character device to copy diskettes and tapes. UNIX provides an entire 

group of commands to handle DOS diskettes. Their names begin with the string dos 

(SVR4) or m (Linux).

tar is suitable for backing up a directory tree. It uses key options for copying to 

the media (-c), restoring from it (-x), and displaying the archive (-t). GNU tar adds 

compression to the archiving activity.

The rpm command is available on many Linux distributions for installing, remov-

ing, and querying packages. rpm refuses to install or remove a package if it fails in the 

dependency test.

S E L F - T E S T

19.1 Where are the administrator’s commands primarily located? Which directory 

is not found in the administrator’s PATH even though nonprivileged users often 

have it in theirs?

19.2 How does the behavior of the passwd command change when invoked by the 

superuser?

19.3 Two shell variables are assigned by login after reading /etc/passwd. What are 

they?

19.4 Specify the command line that changes romeo’s shell from /bin/csh to /bin/bash.

19.5 Why was the password encryption moved from /etc/passwd to /etc/shadow?

19.6 A user after logging in is unable to change directories or create files in her home 

directory. How can this happen?

19.7 The letters s and t were seen in the permissions field of a listing. What do they 

indicate?

19.8 Explain the mechanism used by ls to display the name of the owner and group 

owner in the listing.

19.9 How will you use find to locate all SUID programs in /bin and /usr/bin?

19.10 What is meant by run level? How do you display the run level for your system?

19.11 Which file does init take its instructions from? How are the changes made to 

that file activated?

19.12 Name some services that are not available when the machine is in single-user 

mode.

das76205_Ch19_607-642.indd   640das76205_Ch19_607-642.indd   640 12/13/11   10:50 AM12/13/11   10:50 AM



Chapter 19: System Administration 641

19.13 How will you use shutdown to bring down the system immediately? What shortcut 

does Linux offer?

19.14 Mention the significance of the boot and swap file systems.

19.15 Which file system can’t be unmounted and why?

19.16 What is the fsck command used for?

19.17 What is the difference between the find options -perm 1000 and -perm -1000?

19.18 How can the system administrator arrange to monitor the free disk space every 

hour on a working day between 9 a.m. and 10 p.m.?

19.19 How will you find out the total disk usage of the current directory tree?

19.20 How do you copy all HTML files to a DOS floppy in (i) SVR4, (ii) Linux?

19.21 The command tar xvf /dev/fd0 *.c displays an error message even though 

the diskette contains a number of .c files. Explain the two situations that can 

lead to this message.

19.22 The rpm command can only be used from the root user account. True or false?

19.23 rpm refuses to uninstall a package even though you have correctly specified the 

package name. What could be the possible reason?

E X E R C I S E S

19.1 Why is the su command terminated with exit? What is the difference between 

su and su - romeo?

19.2 Name five administrative functions that can’t be performed by a nonprivileged 

user.

19.3 Look up the man page of passwd to find out how the command can be used to 

change the password every four weeks.

19.4 How can you create another user with the same powers as root?

19.5 Specify the command lines needed to create a user john with UID 212 and 

GID dialout (a new group). ohn will use Bash as his shell and be placed in the 

/home directory. How can you later change john’s shell to Korn without editing 

/etc/passwd?

19.6 A user romeo belongs to the student group and yet /etc/group doesn’t show 

his name beside the group name. What does that indicate?

19.7 Name five features of the restricted shell.

19.8 How can a user update /etc/shadow with passwd even though the file doesn’t 

have write permission?

19.9 How will you arrange for a group of users to write to the same directory and yet 

not be able to remove one another’s files?

19.10 What are the two important functions of init? Explain how the shell process is 

created.

19.11 How do you determine the default run level? What is the difference between run 

levels 0 and 6?

19.12 What is the significance of the start and kill scripts? How are they organized on 

(i) an SVR4 system, (ii) Linux?

19.13 Write a shell script that shows whether the printer daemon is running irrespective 

of whether the system is using SVR4 or Linux.

das76205_Ch19_607-642.indd   641das76205_Ch19_607-642.indd   641 12/13/11   10:50 AM12/13/11   10:50 AM



642 Your UNIX/Linux: The Ultimate Guide

19.14 Explain what these commands do: 

 (i) find / -perm -4000 -print
 (ii) find / -type d -perm -1000 -exec ls -ld {} \; 

 (iii) find / -type f -size +2048 -mtime +365 -print

19.15 Why do we install the UNIX system on multiple partitions?

19.16 What is meant by mounting? When is unmounting of a file system not possible?

19.17 How do UNIX systems counter superblock corruption?

19.18 Discuss the role of the sync command in maintaining the system in a consistent 

state. When must you not use sync?

19.19 Name the important features of the ufs file system. What is the significance of 

the proc file system?

19.20 Write a shell script to copy a floppy diskette.

19.21 Specify the tar command line that (i) prevents files from being overwrit-

ten during restoration, (ii) renames each file interactively during restoration, 

(iii) appends to an existing archive during copying.

19.22 You need to back up all files that you have worked with today. How do you plan 

the backup activity using tar?

19.23 How do you determine the number of RPM packages installed on your machine?

19.24 How do you find out the directory where an RPM package has been installed?

das76205_Ch19_607-642.indd   642das76205_Ch19_607-642.indd   642 12/13/11   10:50 AM12/13/11   10:50 AM



643

A 
A P P E N D I X

 A
The C Shell—Programming 

Constructs

This appendix presents the programming constructs of the C shell that was 

 developed at University of California, Berkeley by Bill Joy, the architect of vi. 

In form, these constructs differ—often greatly—from similar constructs of the Bourne 

family. Though most people use the Bourne shell (or its derivatives) for scripting, C shell 

scripting remains important for some. Linux offers a superior C shell as Tcsh.

  Specifying the Interpreter

There are two ways of running a C shell script. Either use the csh command with the 

script name:

csh script_name

or invoke it by name but only after after having provided the she-bang line at the top 

of the script:

#!/bin/csh

If a script is invoked by name and it doesn’t have the she-bang line, the Bourne shell 

(Bash in Linux) is used to run the script (and generate errors). Every C shell script also 

executes the rc file, ~/.cshrc.

  Interactive and Noninteractive Scripts

You’ll recall from Chapters 6 and 8 that the C shell uses the set and setenv statements 

for assigning variables. To make a script pause to read standard input, this shell uses set 

to assign the special parameter, $<, to a variable. Input, which can comprise multiple 

words, is read in as a quoted string:

#!/bin/csh
echo “Enter filename: \c”
set flname = $< Can use setenv also

echo “File: $flname”

A C shell script can also be run noninteractively by passing command-line arguments. 

They are saved in a list or array named argv. The arguments are individually accessed 

C
 S

H
E

L
L

das76205_AppA_643-649.indd   643das76205_AppA_643-649.indd   643 12/13/11   10:53 AM12/13/11   10:53 AM



644 Your UNIX/Linux: The Ultimate Guide

as $argv[1], $argv[2], and so on. Further, $#argv is set to the number of arguments. 

To maintain compatibility with the Bourne shell family, the C shell also allows the use 

of $1, $2, and so forth. Tcsh even allows the use of $#.

  Computation

Although it is not the case in the Bourne shell, integer computing is built into the C 

shell. The arithmetic operators are standard (+, -, *, /, and %). While you can use set 

to assign variables meant for computing, you need to use the special operator, @, for 

performing computation:

% set x=5
% @ y = 10 A space after @

% @ sum=$x + $y
% echo $sum
15
% @ product = $x * $y  No escaping of * needed

% @ quotient = $y/$x
@: Badly formed number Space around / required

Incrementing numbers is done in these ways:

@ x = $x + 1
@ x++

The @ must be followed by whitespace even if the = need not have any around it. The 

arithmetic operators must also be surrounded by whitespace.

  Arrays and Lists

By default, set displays all local variables, but note that one variable (path) is set and 

evaluated differently:

% set path = (/bin /usr/bin /usr/local/bin /usr/dt/bin .)
% echo $path
/bin /usr/bin /usr/local/bin /usr/dt/bin .

Like argv, path is an array or list of five elements. The first element is accessed by 

$path[1], the second by $path[2], and so on. The number of elements in the list is 

indicated by $#path:

% echo $path
/bin /usr/bin /usr/local/bin /usr/dt/bin .
% echo $path[3]
/usr/local/bin
% echo $#path
5

das76205_AppA_643-649.indd   644das76205_AppA_643-649.indd   644 12/13/11   10:53 AM12/13/11   10:53 AM



Appendix A: The C Shell—Programming Constructs 645

The set statement populates an array also; the values must be surrounded by a pair of 

parentheses. The shift statement also works with arrays:

% set numb = ( 9876 2345 6213 )
% echo $numb[1]
9876
% echo $#numb Entire list stored in $numb[*]

3
% shift numb                               Array name required

% echo $numb[1]
2345

  The Comparison and Logical Operators

Numeric comparison is identical to awk, which uses the operators <, >, ==, !=, >=, and so 

on. The complete list is shown in Table 12.3. String comparison also uses the == and != 

operators, but the C shell is clearly superior to the Bourne shell here because it supports 

two more operators for matching wild-card expressions:

=~ Matches a wild-card expression

!~ Doesn’t match a wild-card expression

The same operators are used by perl with identical meaning except that perl uses them 

to match regular expressions. You can also use the && and || operators in the same way 

you used them with the Bourne shell.

  The if Statement

As in the Bourne shell, the if conditional takes three forms as shown in Chapter 13. 

However, there are three differences:

 • The keyword then must be in the same line as if.

 • The construct is terminated with endif and not fi.

 • The control command is enclosed within parentheses (unless it is a UNIX command).

Let’s examine these three forms but use only examples. The first form also shows the 

use of numeric comparison, but note the second form, which matches $response with 

any string that begins with y or Y:

    if ( $#argv != 2 ) then if ( $response =~ [yY]* ) then
        echo Two parameters required  echo You answered yes
    endif else
  echo You answered no
 endif

                  Form 1       Form 2

The third form uses the if–else clause (multiple times, if required) but only a single 

endif. Here’s the meat of the script, emp3a.sh (Chapter 13), modified here to run in 

the C shell:

das76205_AppA_643-649.indd   645das76205_AppA_643-649.indd   645 12/13/11   10:53 AM12/13/11   10:53 AM



646 Your UNIX/Linux: The Ultimate Guide

 if ( $# == 0 ) then
  echo “Usage: $0 pattern file” >/dev/tty
 else if ( $# == 2 ) then
  grep “$1” $2 || echo “$1 not found in $2” >/dev/tty
 else
  echo “You didn’t enter two arguments” >/dev/tty
 endif

                                        Form 3

As a variant of Form 1, you can have single-line conditionals when there is no else 

clause. The then and endif keywords are not used:

if ( $#argv == 2 ) @ size = $1 * 512 ; echo Size of $2 is $size bytes

When you execute a UNIX command as the control command, the command itself should 

be surrounded by a matched pair of curly braces and not parentheses:

if { grep “director” emp.lst } then

Note that either the () or {} enclosures must be provided with the control command 

used with if.

  Testing File Attributes

Even though the C shell doesn’t have a test statement, you can still test file attributes. 

This shell supports a limited set of operators, and most of them are used in the Bourne 

shell as well:

-f file  True if file is an ordinary file.

-d file  True if file is a directory.

-r file  True if file is readable.

-w file  True if file is writable.

-x file  True if file is executable.

-e file  True if file exists.

-z file  True if file exists and has a size of zero.

The following code shows the use of some of these operators:

if ( -f $1 ) then
    if ( ! -r $1 ) then
         echo “File exists but is not readable”
    else
         echo “File is readable”
    endif
else
    echo “File doesn’t exist”
endif

das76205_AppA_643-649.indd   646das76205_AppA_643-649.indd   646 12/13/11   10:53 AM12/13/11   10:53 AM



Appendix A: The C Shell—Programming Constructs 647

  The switch Statement

The switch statement is based on its namesake in the C language. Like case, the con-

struct matches an expression for more than one alternative. The keywords used are endsw, 

case, default, and breaksw. The code of menu.sh that was developed in Chapter 13 

is here modified to use switch instead of case:

cat << END                        A here document

       MENU
   1. List of files
   2. Processes of user
   3. Exit
   Enter your option:
END
set choice = $<
switch ($choice)
    case 1: Note the :

        ls -l ; breaksw
    case 2:
        ps -f ; breaksw
    case 3:
        exit
 default:                       Used when previous matches fail

        echo “Invalid option”
endsw

The breaksw keyword moves control out of the construct after a successful match is found. 

If this word is not provided, then “fall through” behavior will result in the execution of 

all remaining case options. The default keyword is generally used as the last option.

  The while and foreach Loops

There are two loops—while and foreach (instead of for). Both loops have three major 

differences from their counterparts in Bourne:

 • The control command or list used by foreach is enclosed within parentheses.

 • The do keyword is not used.

 • The loop is terminated with end instead of done.

Let’s consider the while loop first. This simple sequence entered at the prompt runs the 

ps command four times:

% set x = 1
% while ( $x < 5 ) Can also use  while { true }

?   ps -f PS2 for C shell is ?

?   sleep 5
?   @ x++
? end

das76205_AppA_643-649.indd   647das76205_AppA_643-649.indd   647 12/13/11   10:53 AM12/13/11   10:53 AM



648 Your UNIX/Linux: The Ultimate Guide

The foreach loop also has differences from for, its Bourne rival. The keyword foreach 

replaces for, and the in keyword is not required. The example used in Chapter 13 to 

illustrate the for loop can be reframed like this:

% foreach file (chap20 chap21 chap22 chap23)
?     cp $file ${file}.bak
?     echo $file copied to $file.bak
? end

Here, each component of the four-item list is assigned to the variable file until the list 

is exhausted. There are other ways of using a list:

foreach item ( ̀ cat clist` )
foreach fname ( *.c ) All C programs in current directory

foreach fname ( $* ) Script arguments

Note that the C shell doesn’t recognize “$@”, so command-line arguments must be 

represented by $*.

  The goto Statement

Though this construct is hardly used by programmers today, if used with caution, the 

goto statement often provides a convenient mechanism to exit a section of code. The 

statement specifies a label to branch to. The following code snippet uses goto to termi-

nate a script after branching to the label named endblock:

if ( $#argv == 0 ) then                       No arguments entered

     goto endblock
else
    grep $1 emp.lst
    exit Required to stop intrusion into endblock

endif

endblock:
echo “You have not keyed in an argument”

The exit statement here has the same significance as the break statement used with 

switch. It ensures that control doesn’t fall through after grep completes execution. 

If the statement is not provided, the echo statement will be unconditionally executed.

  The repeat Statement

If a single command has to be repeated a finite number of times, you can use the repeat 

statement:

% repeat 3 date
Sat Apr 26 10:46:25 EST 2003
Sat Apr 26 10:46:25 EST 2003
Sat Apr 26 10:46:25 EST 2003

The Bourne family doesn’t have a matching feature.

das76205_AppA_643-649.indd   648das76205_AppA_643-649.indd   648 12/13/11   10:53 AM12/13/11   10:53 AM



Appendix A: The C Shell—Programming Constructs 649

  The onintr Statement

The onintr statement (trap in Bourne) specifies the commands to be executed when an 

interrupt signal is sent to the script. It is normally placed at the beginning of a shell script:

#!/bin/csh
onintr cleanup
cut -c1-10 index > $$
cut -c21- index > $$.1
paste $$ $$.1 > pastelist
rm $$ $$.1
exit Required to stop intrusion into  cleanup

  
cleanup:
rm $$ $$.1
echo “Program interrupted”

Like the goto statement, onintr is also followed by a label. Execution branches to that 

label when the interrupt key is pressed. You may want to ignore the signal and continue 

processing. In that case, you should make the program immune to such signals by using 

onintr with a -:

onintr -

The C shell has been completely superseded in power and versatility by the Korn shell 

and Bash, both of which offer more convenient as well as more powerful programming 

constructs. Even Bourne is a better scripting language. If you are looking for an improved 

C shell, then use the Tcsh shell.

das76205_AppA_643-649.indd   649das76205_AppA_643-649.indd   649 12/13/11   10:53 AM12/13/11   10:53 AM



650

B 
A P P E N D I X  B

The Korn and Bash 
Shells—Exclusive 

Programming Constructs

This appendix features some of the useful programming constructs of the Korn 

 and Bash shells. The usage in Bash sometimes differs from Korn, and these 

differences have been noted. Even though the POSIX specifi cation was based on the Korn 

shell, Bash is a more POSIX-compliant shell today. Korn Shell ’93 offers many more 

features that are also available in Bash, but we don’t discuss them in this appendix. Some 

of the features discussed here have made it to the standard; others could do so in future.

  Enhanced Use of read

The read statement has been enhanced—more so in Bash. You may use it with a vari-

able name but you don’t have to, in which case the input is stored in the variable REPLY:

$ read ”but you don’t have to”
Korn Shell[Enter]
$ echo $REPLY
Korn Shell

Instead of using separate statements to display a prompt string (with echo) and read 

input (with read), you can use read to handle both functions. In Korn, the following 

statement treats all characters after a ? as the prompt string:

$ read fl name?”Enter fi lename: “
Enter fi lename: foo.c
$ echo $fl name
foo.c

Bash uses the -p option instead of ?. It also allows read to time out (-t). The -n chs option 

makes read return after chs characters have been input:

$ read -p “Enter fi lename: “ -t10
Enter fi lename:
....  After 10 seconds ....
$ _  read returns 

das76205_AppB_650-656.indd   650das76205_AppB_650-656.indd   650 12/13/11   10:54 AM12/13/11   10:54 AM



Appendix B: The Korn and Bash Shells—Exclusive Programming Constructs   651

$ read -p “Enter y or n: “ -n1
Enter y or n: y No [Enter] pressed

$ _ read returns without [Enter]

The Korn shell uses read in a coprocess to accept standard input from the parent process. 

(read in Bash doesn’t have this feature.) Korn Shell ’93 also supports the timeout feature.

  Accessing All Positional Parameters

With the Bourne shell, you can’t access the 10th positional parameter as $10; you have 

to use shift and then access $9. With Korn and Bash, you can access any positional 

parameter by simply enclosing it with curly braces:

echo ${15}

This prints the 15th argument supplied to a script. However, we don’t usually design 

scripts that handle so many arguments, but if we use set to assign positional parameters, 

then we can put this feature to good use:

$ ls -lids /etc/passwd
289906 4 -rw-r--r-- 1 root root 639 Oct 2 23:09 /etc/passwd
$ set -- $(ls -lids /etc/passwd)
$ echo “The fi le ${11} has the inode number $1”
The fi le /etc/passwd has the inode number 289906

Recall that we can use the form $(command) to perform command substitution in 

these shells.

  The select Statement

The select statement presents a menu, reads the selected option, and makes it available 

for use. This unusual construct has a syntax similar to the for loop:

select var in stg1 stg2 ...
do
     action
done

The strings, stg1, stg2, and so forth are displayed as numbered menu options. select 

pauses to display a prompt evaluated from PS3 (Default—#?). The number you input is 

stored in the variable REPLY, and the string representing the number is saved in var. The 

body of select must contain code that determines the action to take for each value of 

REPLY. The menu is repeatedly displayed after action is performed or when the user simply 

presses [Enter]. To terminate the loop a break statement has to be used in the body.

A previous shell script that used the case statement in Chapter 13 can be redone 

using select:

K
O

R
N

 &
 B

A
SH

 
SH

ELLS

das76205_AppB_650-656.indd   651das76205_AppB_650-656.indd   651 12/13/11   10:54 AM12/13/11   10:54 AM



652 Your UNIX/Linux: The Ultimate Guide

#!/usr/bin/ksh
#
PS3=”Choice: “
select task in “List of fi les” “Processes of user” \
 “Today’s Date” “Users of system” “Quit”
do
    case “$REPLY” in
 1) ls -l ;;
 2) ps -f ;;
 3) date  ;;
 4) who   ;;
 5) break ;; 
 *) echo “Invalid option” ;;
    esac
done

We fi rst set PS3 to a meaningful string. The script presents a fi ve-option menu that is 

repeatedly displayed every time an option between 1 and 4 is input. Option 5 terminates 

the loop because of the break statement:

1) List of fi les 3) Today’s Date 5) Quit
2) Processes of user 4) Users of system
Choice: 3 Prompt as set by PS3

Tue Jun 29 11:29:09 EST 2004
Choice: 6
Invalid option

As in the for loop, the list can be passed to select as command-line arguments. So, 

select task would be equivalent to select task in “$@”.

  The [[ ]] Construct

For condition testing with the if and while statements, Korn and Bash support two 

additional constructs—[[ ]] and (( )). The [[ is actually a built-in command that 

needs the ]] as terminator. This built-in is a superset of the test statement; you can 

use it to perform both numeric and string comparison and also to test fi le attributes:

if [[ $answer = y ]] Bourne shell features

if [[ $# -ne 2 ]]
if [[ -f $fi le ]]

Let’s now learn why we should use the [[ construct. You can use the && and || 

operators inside a single [[ ]] enclosure:

if [[ $answer = y || $answer = Y ]]

Unlike test (or [ ]), which matches only strings, [[ allows the use of the shell’s wild 

cards (like case). Consider the following examples, where the fi rst one is equivalent to 

das76205_AppB_650-656.indd   652das76205_AppB_650-656.indd   652 12/13/11   10:54 AM12/13/11   10:54 AM



Appendix B: The Korn and Bash Shells—Exclusive Programming Constructs   653

the previous example. The second example matches a string that is at least four characters 

long. The third example matches a C or Java program fi lename:

if [[ $answer = [yY] ]]
if [[ $answer = ????* ]]
if [[ $fi lename = *.c  || $fi lename = *.java ]]

Note that even though the patterns are not quoted, the shell doesn’t try to match them 

with fi lenames in the current directory. Since wild cards in Korn and Bash support a few 

additional characters (Chapter 6—Going Further), we can shorten the command shown 

in the third example above:

if [[ $file = @(*.c|*.java) ]]

If you are using Bash with characters like @, (, and |used in wild-card expressions, 

don’t forget to use the statement shopt -s extglob at the beginning of the script. To 

negate the preceding test, use ! instead of @ in both shells.

The facility to use the complete set of wild cards for pattern matching is indeed a 

great convenience. As if that were not enough, the designers went further and included 

some regular expression characters as well. The syntax gets confusing here, and for 

further details, you may look up Learning the Korn Shell by Bill Rosenblatt (O’Reilly).

  The (( )) Construct

Even though the [[ ]] construct can be used to perform numeric comparison (with 

-gt, -le, -eq, etc.), the (( )) construct has been designed mostly to handle integer 

computation. You can assign integers to variables; the $ prefi x is not necessary inside 

the enclosure:

$ x=5 ; y=10
$ ((z=$x+y)) Can also drop the $ prefi x

$ echo $z
15
$ (( z = z + 1 )) Whitespace not important

$ echo $z
16

For variable assignment, the (( )) has a synonym—the let statement. Quoting is 

necessary when whitespace is provided:

let sum=25+12 No whitespace after variable

let sum=’25 + 12’  Can use single quotes here ...

let sum=”$x + y” ... but only double quotes here

Note that both (( )) and let permit you to drop the $ prefi x on the right side of an 

assignment. Since this computational feature is built in, scripts using this construct run 

much faster than when used with expr.

das76205_AppB_650-656.indd   653das76205_AppB_650-656.indd   653 12/13/11   10:54 AM12/13/11   10:54 AM



654 Your UNIX/Linux: The Ultimate Guide

The (( )) construct actually returns an exit status, but it uses the same set of 

relational operators used by C, awk, and perl (like >, <, !=, etc.). Consider this example, 

which tests the exit status returned by a comparison of two integers:

$ let x=5 y=6
$ (( $x > $y ))
$ echo $?
1
$ (($x <$y)) ; echo $?
0

This means that for numeric comparison with the if and while constructs, you should 

use these forms:

if (($# > 0)) ; then
while ((x <= 5)) ; do

The third use of (( )) is to evaluate an expression, but this requires a $ prefi x. The 

following two examples show how you can both display the result of an expression and 

assign it to a variable:

$ echo $((25*25))
625
$ x=10
$ x=$((x-1))
$ echo $x
9

POSIX includes the (( )) construct, but it doesn’t mention let. POSIX also mentions 

[[ ]] but leaves its behavior as “unspecifi ed.” Hopefully, this will change in the future.

  String Handling

The (( )) construct replaces expr for integer computing, but Korn and Bash don’t need 

expr for string handling, either. A variable is evaluated differently when its name is 

followed by an operator and a pattern using this generalized syntax:

${variable  operator  pattern}

Note the curly braces, which are required as part of the syntax. Here, operator specifi es 

what and how to extract from $variable by matching pattern. This can be done in four 

ways as follows:

  Form Evaluates to segment remaining after deleting ...

 ${var#pat} shortest segment that matches pat at beginning of $var

 ${var##pat} longest segment that matches pat at beginning of $var

 ${var%pat} shortest segment that matches pat at end of $var

 ${var%%pat} longest segment that matches pat at end of $var

das76205_AppB_650-656.indd   654das76205_AppB_650-656.indd   654 12/13/11   10:54 AM12/13/11   10:54 AM



Appendix B: The Korn and Bash Shells—Exclusive Programming Constructs   655

As in the [[ ]] construct, strings are matched with wild-card expressions. You can 

extract a substring using two characters—# and %—as the operator. The # matches 

pattern at the beginning and % at the end. This is how we can remove the extension 

from a fi lename without using basename:

$ fi lename=quotation.txt
$ echo ${fi lename%txt}
quotation txt stripped off

The % operator deletes the shortest string that matches pattern at the end. The %% operator 

deletes the longest one, a feature that can be used to extract the hostname from an FQDN:

$ fqdn=java.sun.com
$ echo ${fqdn%%.*}
java

We can also extract the base fi lename from a pathname without using basename. This 

requires deletion of the longest pattern that matches */ at the beginning:

$ fi lename=”/var/mail/henry”
$ echo ${fi lename##*/}
henry

There are other string-handling features available. The length of a string is found by 

preceding the variable name with a #:

$ name=”vinton cerf”
$ echo ${#name}
11

Bash also offers simple techniques to extract a substring in ways any high-level language 

handles them. Here’s how you can implement the substr() function used in awk and perl:

$ echo ${name:3:3}  First position is zero

ton
$ echo ${name:7} Extracts rest of string

cerf

This feature is also available in Korn Shell ’93. 

  Arrays

Korn and Bash support one-dimensional arrays where the fi rst element has the index 0. 

While Korn arrays can hold up to 1024 elements, Bash supports very, very large arrays. 

This is how you assign and evaluate an element of an array named month:

$ month[1]=31
$ echo ${month[1]}
31

das76205_AppB_650-656.indd   655das76205_AppB_650-656.indd   655 12/13/11   10:54 AM12/13/11   10:54 AM



656 Your UNIX/Linux: The Ultimate Guide

Note the use of curly braces when evaluating an element. Even though month[1] appears 

to be treated like a variable, it can coexist with a variable named month. To populate a 

group of elements, use either of these two forms:

set -A month 0 31 28 31 30 31 30 31 31 30 31 30 31 Korn only

month=(0 31 28 31 30 31 30 31 31 30 31 30 31) Bash only

This array, month, stores the number of days available in each of the 12 months. The 

fi rst element was set to zero because month[0] otherwise has no signifi cance. You can 

display all defi ned elements by using the @ or * as subscript. If you add a # prefi x, then 

only a count is displayed:

$  echo ${month[@]}
0  31 28 31 30 31 30 31 31 30 31 30 31
$  echo ${#month[@]}
13 Number of assigned elements ...

What happens when you selectively assign individual elements? For instance, if you set 

x[0] and x[100] only, memory is allocated only for these two elements and x[1] through 

x[99] evaluate to null:

$  x[0]=1 ; x[100]=10
$  echo ${x[@]}
1  10
$  echo ${#x[@]}
2 ... and not the size of the array

Many of the features discussed in this appendix have not been included in POSIX, so 

the big question is whether one should use them at all. Today, Bash is increasingly being 

shipped with UNIX systems (including Solaris), but every system today supports the 

Korn shell. So, even if your application is not POSIX-compliant, you can achieve a fair 

degree of portability if you use the features that are at least available in versions of the 

Korn shell prior to 1993. In any case, the next revision of POSIX is some time away.

das76205_AppB_650-656.indd   656das76205_AppB_650-656.indd   656 12/13/11   10:54 AM12/13/11   10:54 AM



657

C 
A P P E N D I X

 C
The GNU emacs Editor 

Apart from vi, many UNIX systems also offer the emacs full-screen editor. 

It was created by Richard Stallman (the founder of GNU, now the Free 

Software Foundation). As you might expect, emacs is offered by all Linux flavors. It owes 

its origin to a set of macros, but emacs today is more than an editor. It presents a com-

plete operating environment from which you can handle mail and browse the Web using 

suitable addons. In this appendix, we’ll confine ourselves to the editing functions only.

  An emacs Session

Unlike vi, emacs may not be automatically installed on your system. Make sure that 

you have emacs installed, and then invoke it with a filename:

emacs emfile

In this full-screen mode (Fig. C.1), the top line features a menu in reverse video. The 

mode line near the bottom also appears in reverse video. This line shows the filename 

(emfile) and the current line of the cursor; L7 is line number 7. Note the two asterisks 

to the left of F1; this signifies a modified buffer. Initially, you should see three hyphens 

at this position.

The last line, known as the minibuffer, shows an emacs-generated message. 

This line is used by users to enter emacs commands and by emacs to display system 

messages. With three lines taken away by emacs for its own use, just 22 lines are 

available for editing.

You can now enter text right away, using [Enter] to separate lines. To erase text, 

use the [Backspace] key instead of [Ctrl-h]. This is the key emacs uses to call up its help 

facility. You can also use [Ctrl-d] or [Delete] to delete the character under the cursor. 

We’ll use this shaded box  to represent the cursor.

After you have keyed in text, the cursor is positioned on the last line of text. You 

can now move horizontally along the current line. Press [Ctrl-b] to move the cursor back 

and [Ctrl-f] to move it forward. You can also move to the previous line using [Ctrl-p] 

and the next line using [Ctrl-n]. In addition, there are faster means of navigation avail-

able; they are discussed later.

G
N

U
 

emacs

das76205_AppC_657-685.indd   657das76205_AppC_657-685.indd   657 12/13/11   1:47 PM12/13/11   1:47 PM



658 Your UNIX/Linux: The Ultimate Guide

The entered text hasn’t been saved on disk yet but exists in a buffer. To save this 

buffer, enter this sequence:

[Ctrl-x][Ctrl-c]  This is C-x C-c

emacs produces this message:

Save file /home/romeo/project7/emfile? (y, n, !, ., q, C-r or C-h)

A y saves the buffer to its disk file, and emacs returns the shell prompt. To modify this 

file, you’ll have to invoke emacs emfile again.

  The Control and Meta Keys

Like most word processors and unlike vi, emacs is a “mode-less” editor; any key pressed 

is always entered as text. So to perform navigation and text editing, you need to use the 

control and meta keys. When you look up the emacs documentation, you’ll find key 

sequences described like these:

C-e    This is [Ctrl-e].

C-x C-b    This is [Ctrl-x][Ctrl-b].

C-x b [Ctrl-x] b; this is different from [Ctrl-x][Ctrl-b].

M-e    This is [Meta-e].

You need to understand the difference between the second and third sequences. C-x C-b 

is actually [Ctrl-x][Ctrl-b], where you need to do this:

1. Keep [Ctrl] pressed.

2. Press x and b in sequence and release them.

3. Release [Ctrl].

File Edit Options Buffers Tools Help

Any key pressed shows up as input.[Enter]

Unless you use the control and meta keys.[Enter]

These keys are used for navigation and text editing.[Enter]

Also try using [Ctrl-n] and [Ctrl-p] for moving up and down.[Enter]

We’ll refer to them as C-n and C-p.[Enter]

Note that your text is still in the buffer and not on disk.[Enter]

Finally, use C-x C-c to save the buffer to disk and quit emacs.

.....blank lines ......

--1-:**-F1  emfile            (Text Fill)--L7--C56--All-------------------------

Save file /home/sumit/personal/project7/emfile? (y, n, !, ., q, C-r or C-h)

F I G U R E  C . 1  Inserting Some Text 

das76205_AppC_657-685.indd   658das76205_AppC_657-685.indd   658 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 659

The previous command lists all buffers. However, C-x b, the command used to switch 

to a buffer, is represented by a different key sequence:

1. Enter [Ctrl-x] in the normal way.

2. Release both keys.

3. Singly press b.

Note that the generalized sequence C-x C-y is different from C-x y, where x and y 

are two printable characters. You need to keep the [Ctrl] key pressed in the first while 

hitting y, but not in the second.

Let’s now turn to the meta key. M-e represents [Meta-e] for those keyboards that 

support a key named meta. For other systems, including PCs, the [Alt] key often be-

haves like meta. On the Sun workstation, you’ll probably have to use the keys with the 

diamond symbol on them. Some sequences require the use of both the control and meta 

keys. In case neither [Meta] nor [Alt] works, you have another choice—the [Esc] key. 

This key is never kept pressed. To invoke M-e, press [Esc], release it, and then press e.

We’ll be using the standard emacs notation to represent control and meta key 

sequences. For example, we’ll represent [Ctrl-x] as C-x and [Meta-y] as M-y. There 

will be very few exceptions.

  Entering Commands Directly (M-x)

When you press a valid key, emacs executes a command associated with the key. For 

instance, there is a key binding available between C-n and the next-line command 

which is executed by emacs when [Ctrl-n] is pressed. This is more of an exception than 

a rule. emacs has over a thousand built-in commands, and obviously only a few of them 

have key bindings. If a command doesn’t have a key binding, then you need to key in 

the command.

All emacs commands are invoked first by pressing M-x (which could be [Alt-x]) 

and then the command string. This is how you invoke the next-line command:

M-x next-line[Enter] M-x could be [Alt-x] 

When you enter the key represented by M-x, you’ll see the string M-x in the minibuffer. 

Key in the string next-line and hit [Enter]. The cursor moves down one line. If your 

[Alt] key doesn’t work, then use [Esc] x next-line. Make sure you release [Esc] before 

you hit x.

These commands are generally hyphenated, meaningful strings which can often 

be very long (like nonincremental-repeat-search-forward). Keying in every letter 

of a command can be tedious and self-defeating. Fortunately, you never need to enter 

the complete string because emacs supports a completion feature that does part of the 

work for you.

emacs also supports a history facility, which lets you recall previous commands 

that were explicitly invoked using M-x. This history is maintained for the duration of 

the session. To display the last command in the minibuffer, press M-x and then the Up 

key. You can access the entire history list by repeated use of the Up and Down keys.

das76205_AppC_657-685.indd   659das76205_AppC_657-685.indd   659 12/13/11   1:47 PM12/13/11   1:47 PM



660 Your UNIX/Linux: The Ultimate Guide

  A Few Tips First

 Make use of the digit argument or universal argument. Like more and vi, emacs 

also supports the use of a digit argument as a command prefix to repeat the 

command as many times as the prefix. So if C-p moves the cursor up one line, 

then M-5 C-p moves it up five lines. Use it wherever you can to speed up 

operations. 

  Apart from the digit argument, you can sometimes find the universal argument 
more convenient to use. The key associated with this is C-u, which can be repeated 

multiple times. When you use C-u C-f, the cursor moves forward by 4 characters. 

Every additional C-u multiplies the number of repeats by a factor of four. This 

means C-u C-u C-f moves the cursor 16 characters forward, and C-u C-u C-u 
C-b moves the cursor back by 64 characters. To move 70 characters from the 

current position, use a mix of the universal argument (for 64) and digit argument 

(for 6).

 Use the command completion feature. When invoking an emacs command 

directly with M-x, remember that you don’t need to enter the entire command 

string. Enter as much as you need to make the string unique and use [Tab] to let 

emacs complete it to the extent it can. For a taste of this feature, hit M-x, key in 

ov, and hit [Tab]. emacs expands ov to overwrite-mode, the command used to 

determine whether text input overwrites existing text or not.

 Cancel a sequence with C-g. emacs often takes input from you in the minibuffer. 

It may ask you for a filename or a search string. Pressing a wrong key, say, 

C-x when M-x is expected, can often leave you stranded. In situations like this, 

simply cancel the current command with C-g. If it doesn’t do what you expect, 

use it twice.

 Undo whenever you make a mistake. If you have made a mistake in editing, 

say by incorrectly deleting text, then press C-x u or C-- (Control and hyphen) to 

undo the last action. The key behaves in a circular manner, undoing as long as it 

can before it starts redoing all over again. This feature is discussed later.

 Use the text completion feature. If the string printf is available in the file, you 

never need to enter the entire string. Just key in as much as is necessary to make 

the string unique (say, up to pr), and then press

       M-/ emacs attempts to complete string

 emacs expands pr to printf if this is the only word beginning with pr. In case 

there are other words, repeated pressing of the key shows all matching words 

in turn.

 Use C-x 1 to close a window. emacs sometimes switches to the multiwindow 

mode, especially when you view its documentation. To remove the other window, 

use this key sequence. 

 Use C-l to clear the screen. If the screen gets garbled, enter this control sequence.

das76205_AppC_657-685.indd   660das76205_AppC_657-685.indd   660 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 661

  Inserting and Replacing Text

Most word processors and editors offer two modes of text input—the insert mode and 

overwrite mode. By default, emacs works in the insert mode, where text input shifts 

existing text to the right. emacs can also work in the overwrite mode, which replaces all 

characters the cursor moves over. You can switch to this mode in two ways:

 • By pressing the [Insert] key, which acts as a toggle switch. The first invocation 

takes you to overwrite mode; the next one returns you to insert mode.

 • By issuing the overwrite-mode command with M-x. When the string M-x shows 

up in the minibuffer, enter overwrite-mode:

M-x overwrite-mode[Enter]

This also has a toggling effect, so let’s repeat the command twice, each time using a 

different technique:

 • Use the command completion feature. Enter M-x, the string ov and then [Tab]; 

you’ll see the string overwrite-mode in the minibuffer.

 • Use the history facility. Press M-x and then the Up key; the previous command 

shows up in the minibuffer.

Before you start editing, look at the mode line. If it shows the word Ovwrt, then you are 

in the overwrite mode. Switch to this mode only when you specifically need it; otherwise 

use the default insert mode.

  Entering Control Characters
If you write shell scripts to send some escape sequences to your printer or terminal, then 

you need to enter control characters. However, emacs uses the control keys for everything, 

the reason why it traps them as emacs commands when you try to enter them. To place 

a control character, say C-m, in a file, you have to precede it with C-q:

C-q C-m Shows ̂ M

This shows up on the screen as ^M (Fig. C.2), but there’s only a single character out 

there. You can position the cursor only on the ^ and not on the M.

The same technique can be adopted for entering the [Esc] character. Press C-q 

[Esc], and you’ll see the [Esc] character looking like this:

^[ Just one character here

This too is a single character. 

........................................................................................................................................................

F I G U R E  C . 2  Inserting a Control Character

Original Text emacs Commands Transformed Text 

sed ‘s/$//’ C-q C-m sed ‘s/^M$//’

echo “Time up” C-q C-g echo “Time up^G”

das76205_AppC_657-685.indd   661das76205_AppC_657-685.indd   661 12/13/11   1:47 PM12/13/11   1:47 PM



662 Your UNIX/Linux: The Ultimate Guide

  Saving Text and Quitting

Whether you are using vi or emacs, it’s only a buffer (a temporary storage containing 

a copy of the file) that you edit and not the file directly. These are the three operations 

that we commonly perform with the buffer:

 • Save and continue editing.

 • Save and exit.

 • Abandon all changes and quit.

Unlike vi, emacs supports an autosave feature that periodically saves the buffer to a 

different disk file. However, you should regularly save the buffer yourself, but in the 

same file to keep it current (or, as we say, in sync). The essential save and exit commands 

are shown in Table C.1.

You know how to save the buffer and exit the editor. For extended sessions with 

emacs, you must be able to save the buffer and remain in the editor. Run emacs emfile, 

make some changes, and enter this sequence:

C-x C-s Saves in same file

This saves the buffer to emfile. Often, you would like to have a copy by providing a 

different filename. In that case, use C-x C-w and enter the filename at the prompt:

Write file: ~/project7/emfile.txt Saves in different file

C-x C-s Saves fi le and remains in editing mode

C-x C-w   Writes to a different fi le (Like Save As . . . in Microsoft Windows)

C-x C-c Quits editing mode with or without saving

C-u C-x C-c Saves and exits without prompting

C-x C-z Suspends current session and escapes to UNIX shell (Use fg to

 return to emacs)

C-z As above

M-x shell  Escapes to UNIX shell in current window (Use C-x b[Enter] to 

 return to emacs)

M-! cmd Runs cmd command and returns to editor (Requires [Shift])

M-x revert-buffer Loads last saved edition of current fi le (Like Revert in 

 Microsoft Windows)

M-x recover-file Loads last autosaved version of current fi le  

T A B L E  C . 1  Save and Exit Commands

Command Function

das76205_AppC_657-685.indd   662das76205_AppC_657-685.indd   662 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 663

The new filename now appears on the mode line, which means that this is the 
current file also. In fact, the window is now associated with the buffer for emfile.txt 

(Buffer for emfile still exists.) When writing to a different file, emacs’ behavior stands 

in sharp contrast to vi’s; vi doesn’t make the new file the current one (5.4.1).

  Loading Last Saved Version
You may sometimes need to ignore all unsaved changes you made. You can reload the 

last saved version with the revert-buffer command:

M-x revert-buffer Use revert[Tab] to complete

This updates the buffer with the disk file. You’ll soon encounter a similar command—

recover-file—which loads the autosaved version of the file.

  Quitting the Editor
As mentioned earlier, you can save your buffer or abort the changes before you quit the 

editor. emacs offers a single command that handles these two issues:

C-x C-c

If no changes have been made to the buffer since it was last saved by you, you are 

immediately returned the prompt. But if you have made changes, then emacs needs to 

know whether you would like to save them:

Save file /home/romeo/project7/emfile? (y, n, !, ., q, C-r or C-h)

There are seven options here, but you only need to remember that a y saves the file and 

quits the editor. Sometimes, you won’t want to answer these questions, but save and exit 

as quickly as possible. There’s a special sequence for doing this:

C-u C-x C-c Keep [Ctrl] pressed and hit u, x, and c

  Aborting the Session
To abandon all changes made to the buffer, simply respond with an n at the prompt 

shown previously. emacs responds with yet another message:

Modified buffers exist; exit anyway? (yes or no)

The safety mechanism makes sure that you know what you are doing. This time, you 

have to enter either yes to abort the editing session or no to continue with editing 

(y or n won’t do).

das76205_AppC_657-685.indd   663das76205_AppC_657-685.indd   663 12/13/11   1:47 PM12/13/11   1:47 PM



664 Your UNIX/Linux: The Ultimate Guide

  Escape to the Shell
How do you edit and compile your C program repeatedly? You need to make a temporary 

escape to the shell to run the cc command. There are two ways; the first method is to 

use the shell command with M-x:

M-x shell Use she[Tab] to complete

This returns you a shell prompt but in a new buffer named shell. Execute cc or any 

UNIX command here, and all command output and keystrokes are stored in this buf-

fer. You can even save this buffer in the usual manner (with C-x C-s) or return to the 

previous buffer with C-x b[Enter]. Note that exit at the prompt will kill the shell but 

not the window. Table C.1 shows how you can run a single command using M-! and 

return to the current buffer.

The second method will work if your shell supports job control (which most shells 

do). You can then suspend the current emacs session. Just press C-z or C-x C-z, and 

you’ll be returned a shell prompt. Run your commands and then use the fg command 

to return to the editor. Job control has been discussed in Section 7.11.

  Recovering from a Crash

Unlike vi, emacs has an autosave feature that automatically saves a copy of the buffer 

every 300 keystrokes (or 30 seconds if the user is idle). However, emacs doesn’t auto-

save to the same file, but to one that uses a # on either side of the original filename. For 

instance, the file emfile is autosaved as #emfile# in the current directory.

Because of autosaving, you can lose at most 300 keystrokes of work in case of a 

system crash. You can then replace your current buffer with the last autosaved file using 

the recover-file command:

M-x recover-file Try completion

After you have entered the filename (with a # on both sides), emacs displays the listing 

of both files (Fig. C.3). Here, the autosaved version is eight minutes newer than the 

last saved version. If you need the newer version, enter yes at the prompt. emacs also 

makes sure of reminding you at startup whenever it finds the autosaved version to be 

of more recent origin.

-rw-r--r--    1 romeo    dialout   2658   Sep 19 09:14  /home/romeo/p5/#notel#

-rw-r--r--    1 romeo    dialout   2677   Sep 19 09:06  /home/romeo/p5/notel

....

--1-:%%--F1   *Directory*          (Help View)--L1--All------------------------------

Recover auto save file /home/romeo/p5/#note1#? (yes or no) yes

F I G U R E  C . 3  Recovering a File with recover-file

das76205_AppC_657-685.indd   664das76205_AppC_657-685.indd   664 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 665

  Navigation 

Navigation can be both relative and absolute, and most navigation functions are listed 

in Table C.2. emacs uses the control keys to perform relative movement in the four 

directions. These keys are quite intuitive—b (back), f (forward), p (previous line), and 

n (next line). Keeping these in mind, the keys to move left and right become:

C-b  Moves cursor back

C-f  Moves cursor forward

and the keys to move up and down are:

C-p  Moves cursor to previous line

C-n  Moves cursor to next line

T A B L E  C . 2  Navigation and Scrolling Commands

Command  Function

Relative Motion

C-f Moves forward

C-b Moves back

C-n Moves to next line

C-p Moves to previous line

M-6 C-n Moves 6 lines down

C-u C-f Moves 4 characters forward

C-u C-u C-b Moves 16 characters back

Scrolling

C-v Scrolls full page forward

M-v Scrolls full page back

C-l Redraws screen and positions cursor at center

Word Navigation

M-f Moves forward by one word

M-b Moves back to beginning of word

M-5 M-b Moves back by 5 words

C-u M-f Moves forward by 4 words

Line and File Extremes

C-a Moves to beginning of line

C-e Moves to end of line

M-< Moves to beginning of fi le

M-> Moves to end of fi le

Absolute Movement

M-x goto-line[Enter]40 Moves to line 40 (interactive)

C-u 40 M-x goto-line Moves to line 40 (noninteractive)

M-x line-number-mode Toggles line number display mode on mode line

das76205_AppC_657-685.indd   665das76205_AppC_657-685.indd   665 12/13/11   1:47 PM12/13/11   1:47 PM



666 Your UNIX/Linux: The Ultimate Guide

The digit argument applies here; M-4 C-b moves the cursor four places back. You can 

also use a universal argument; C-u C-u C-p moves the cursor up 16 lines. The relative 

navigation commands are shown in Fig. C.4.

For scrolling up and down, the key to remember is v. It’s used with either the 

[Ctrl] or meta key depending on whether you are scrolling forward or back. To scroll 

forward, use

C-v

and to scroll back, use

M-v Meta this time

The digit argument applies here too, so you can scroll several screens at a time.

  Word Navigation
Moving by one character is not always enough; you’ll often need to move faster along a 

line. Like vi, emacs recognizes a word as a navigation unit. If your cursor is a number 

of words away from your desired position, you can use the word-navigation commands 

to go there directly. To move to the beginning of a word, use

M-f C-f would move one character forward

and to move back by one word, use

M-b C-b would move one character back

A digit argument speeds up cursor movement along a line. For example, M-5 M-f takes 

the cursor five words forward, while M-3 M-b moves three words back. However, to 

F I G U R E  C . 4  Relative Navigation

f means forward and b means back

M-3 C-f

C-n

M-13 C-b

M-2 C-p p means previous line

n means next line

das76205_AppC_657-685.indd   666das76205_AppC_657-685.indd   666 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 667

move four words forward, the universal argument would be better; simply use C-u M-f. 

The use of these two word-navigation commands is shown in Fig. C.5.

  Moving to Line Extremes
You can move swiftly to the beginning or end of a line by using the keys C-a and C-e. 

To move to the beginning of a line, use

C-a

and to move to the end of the line, use

C-e

Do the digit arguments work here? Check that out for yourself. The use of these two 

commands is shown in Fig. C.5.

  Absolute Movement
By default, emacs shows the current line number on the mode line with an L prefix. The 

goto-line command lets you navigate to a specific line number. When you use this 

command, emacs prompts for the line number:

Goto line: 40 Cursor moves to line 40

Unfortunately, emacs doesn’t have a key binding for the goto-line command, but you’ll 

later learn to create one. If emacs doesn’t show you the line number on the mode line, 

use the line-number-mode command for the L to appear with the current line number. 

This command has no key binding and is also a toggle switch; run it again to reverse 

the current setting.

F I G U R E  C . 5  Navigation Along a Line

C-a

C-e

M-b

M-4 M-f M-f

You can move to beginning or end of line and also in units of words

das76205_AppC_657-685.indd   667das76205_AppC_657-685.indd   667 12/13/11   1:47 PM12/13/11   1:47 PM



668 Your UNIX/Linux: The Ultimate Guide

  Working with Regions

emacs lets you mark the two ends of a block of text and define it as a region. Deletion, 

case changing, and copying functions work on a region. To define a region, take your 

cursor to the point where you want your region to begin and press either of these key 

sequences:

C-[Spacebar] Sets invisible mark

C-@

Now use the navigation keys to move the cursor to the point that signifies the end of 

the region. This may or may not highlight the text (modern emacs versions do), but a 

region is defined automatically. To toggle between the two ends, use

C-x C-x

You’ll see the cursor jumping back and forth, confirming that a region has been defined. 

You can now run some commands on this region.

The current position of the cursor (at the end of the region) is known to emacs 

as point. There’s virtually no difference between cursor and point, except that point is 

located just before the cursor. We’ll ignore this subtle difference.

  Deleting, Moving, and Copying Text

emacs has separate commands to delete characters, words, and lines. It can also delete 

text defined as a region. On the other hand, you can copy text only as a region. We’ll first 

discuss the commands that don’t require regions and then the ones that do. Table C.3 

lists the editing commands that are discussed in the forthcoming sections.

  Deleting Text
emacs uses three different key sequences for deleting characters, words, and lines:

C-d Deletes characters

M-d Deletes words

C-k Deletes lines in part or full

A digit argument works with all of them. For instance, M-5 C-d deletes five characters 

and shifts text on the right of the cursor to the left to fill up the space (Fig. C.6).

Original Text emacs Commands Transformed Text 

$x=5 C-d  x=5

#! /usr/bin/sh   C-d #!/usr/bin/sh

#!/usr/bin/sh M-4 C-d            #!/bin/sh

F I G U R E  C . 6  Deleting Text with C-d

.........................................................................................................................................................

.........................................................................................................................................................

das76205_AppC_657-685.indd   668das76205_AppC_657-685.indd   668 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 669

T A B L E  C . 3  The Editing Functions

Command  Function

C-@ Defi nes beginning of region

C-[Spacebar] As above

Deleting Text

C-d or [Delete] Deletes character

M-6 C-d Deletes 6 characters

M-d Deletes word

C-k C-k Deletes (kills) current line

M-6 C-k Deletes 6 lines

C-x C-o Deletes all following blank lines

C-w Deletes text in region

Copying and Moving Text

M-w Copies text in region

C-y  Puts deleted or copied text on right of cursor

Transposing and Joining Text

C-t  Transposes (interchanges) character with previous one

C-x C-t  Transposes current line with previous one

M-^ Joins current line with previous line (requires [Shift] ) 

Changing Case

M-u Converts word to uppercase

M-4 M-u Converts 4 words to uppercase

M-l Converts word to lowercase

M-c   Capitalizes word; converts fi rst character to uppercase

M-5 M-c Converts fi rst character of 5 words to uppercase

C-x C-u  Converts entire text in region to upper

C-x C-l Converts entire text in region to lower

Undoing and Redoing

C-x u Undoes last editing action

C-- As above (control and hyphen)

C-_ As above (control and underscore; requires [Shift] )

  Killing Words
emacs uses the meta key for deleting a larger group of characters—usually words. M-d 

deletes a word, but you need a digit argument to delete multiple words:

M-5 M-d Deletes five words 

This kills five words and stores the deleted text in memory. A word is simply a string of 

alphanumeric characters. We’ll soon understand what “killing” actually means.

das76205_AppC_657-685.indd   669das76205_AppC_657-685.indd   669 12/13/11   1:47 PM12/13/11   1:47 PM



670 Your UNIX/Linux: The Ultimate Guide

  Killing Lines
Partial or complete lines are removed with C-k. By default, the command deletes all 

text from the current position to the end of line. To kill text to the beginning of line, 

you need to use M-0 as well:

M-0 C-k Deletes text till line beginning

Strange as it may seem, there’s no simple command to kill an entire line. C-k is the 

main key here, but you need to position the cursor at the beginning of the line (with 

C-a) before using the command. The unusual feature of this command is that you need 

two C-k invocations to kill a single line but only one for multiple lines:

C-k C-k Kills entire line

M-6 C-k Kills six lines

In the first case, the initial C-k kills text until the last visible character in the line. The 

second C-k removes the newline character that remains after the first invocation. Killing 

of words and lines is shown in Fig. C.7.

  The Kill Ring
We used the words “delete” and “kill” freely as if the two are interchangeable, but, strictly 

speaking, they are not. C-k is termed a kill operation because the removed text is sent 

to a storage area called the kill ring. By default, this ring stores the last 30 deletions 

(kills, actually), and they can all be recovered.

emacs stores a group of consecutive deletions up to the next nonkill opera-

tion as a single group in the kill ring. For instance, you can delete four words with 

M-4 M-d, eight lines with M-8 C-k, and then restore them together with C-y, the 

key you’ll be using for moving and copying text. If you move the cursor a little 

between two kill operations, then the kill ring will store two groups which have to 

be restored separately.

F I G U R E  C . 7  Killing Words and Lines

Original Text emacs Commands Transformed Text 
echo “Enter the filename\c” M-d echo “Enter filename\c”

echo “Enter the filename\c” M-2 M-d echo “ filename\c”

case $#in     #Check arguments C-k case $# in   

close(fd1); C-k C-k close(fd2);
close(fd2);

if (access(“foo”, R_OK) == -1 ) M-2 C-k if (access(“foo”, F_OK) == -1)
   printf(“Not readable  “);      quit(“File not found”, 1);
if (access(“foo”, F_OK) == -1)
   quit(“File not found”, 1);

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

................................................................................................................................................................................................

das76205_AppC_657-685.indd   670das76205_AppC_657-685.indd   670 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 671

Commands that delete a single character and whitespace fall into the “delete” 

category. The text erased by these commands is not saved in the kill ring. However, 

when you kill one or more words or lines of text, the deleted text is saved in the kill ring. 

Except for C-d, practically all delete operations are actually kill operations. Henceforth, 

we’ll be using the word delete in kill situations too, so take care not to interpret this 

word in its strictest sense.

The kill ring doesn’t just receive text from deleted text; even copied text is sent 

to the kill ring. We’ll discover that when we learn to copy text.

  Deleting Text in a Region
For deleting arbitrary sections of text, create a region as described previously. Just to make 

sure that mark and point are properly set, use C-x C-x a couple of times and then use

C-w Deletes text in a region

The text in the region is deleted, and text after point moves up to fill the vacuum. To 

delete the contents of the entire buffer, define the region using C-x h and then use C-w. 

Text deletion in a region is shown in Fig. C.8.

  Moving and Copying Text
Text is moved by restoring it from the kill ring, and C-y is universally used in this 

process. For instance, if you kill a line with C-k C-k, you can restore it at the new 

location by using

C-y Universal key for putting back text

if [ “$ext” = “j” ] ; then
 file=`ls-t * java | head -1`
elif [ “$ext” = “c” ] ; then
 file=`ls-t * c | head -1`
else
 echo “Invalid file type”
fi

                       C-w

if [ “$ext” = “j” ] ; then
      file=`ls-t * .java | head -1`
else     
      echo “Invalid file type”
fi

F I G U R E  C . 8  Killing Text in a Region

region

das76205_AppC_657-685.indd   671das76205_AppC_657-685.indd   671 12/13/11   1:47 PM12/13/11   1:47 PM



672 Your UNIX/Linux: The Ultimate Guide

The deleted text is then put to the right of the cursor at the new location. You have just moved 

some text. You can delete three words with M-3 M-d and then use C-y to restore them too.

For copying text, you must work with a region. While C-w deletes text in a region, 

the command to copy text is

M-w Define a region first

This copies the text to the kill ring. The copied text is also restored with C-y in the same 

way killed text is.

  Copying and Moving Text from One File to Another
You can perform cut-and-paste and copy-and-paste operations between two files using 

a modified form of the preceding techniques. To do this, you need to be familiar with 

these additional features:

 • emacs uses the command C-x C-f foo to switch to another file.

 • You can toggle between the current and previous files using C-x b.

To move a block of text from one file to another, just follow these steps:

1. Define a region and kill the selected text using C-w.

2. Open a new file using C-x C-f foo.

3. Navigate to the desired location and then press C-y to paste the killed text.

4. You can go back to the previous file using C-x b and then press [Enter] at the 

default selection.

You can now copy and move text freely across a file, and even from one file to another. 

But remember that you must not leave the editor at any time.

  Transposing Text
You can interchange two adjacent characters or lines quite easily. The key sequence to 

remember is C-t. If you have made a mistake of spelling computer as compuetr, then 

move the cursor to the t and press

C-t et becomes te

You can transpose two lines too. Just move the cursor to the lower line and use

C-x C-t

Transposing text is shown in Fig. C.9.

F I G U R E  C . 9  Transposing Text

Original Text emacs Command Transformed Text 
sdtio.h C-t stdio.h
export PATH C-x C-t PATH=.
PATH=.  export PATH

.........................................................................................................................................................

das76205_AppC_657-685.indd   672das76205_AppC_657-685.indd   672 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 673

  Changing Case of Text

emacs has comprehensive features for changing the case of text. They can be used on 

a single character, one or more words, or a region. To convert a single character to 

uppercase, use

M-c First character converted to uppercase

This moves the cursor to the beginning of the next word, so if you keep the key pressed, 

it will capitalize the remaining words of the text. If you have 10 words to capitalize, use 

a digit argument: M-10 M-c.

To convert an entire word to uppercase, move to the beginning of the word and 

then press

M-u Entire word converted to uppercase

In a similar manner, you have to use M-l (el) for converting a word to lowercase. All three 

commands move the cursor to the next word and also use a digit argument. Changing 

case of characters and words is shown in Fig. C.10.

For transforming case in large blocks of text, use a region. The commands to 

convert text in a region are:

C-x C-u Converts entire text in region to upper

C-x C-l Converts entire text in region to lower

F I G U R E  C . 1 0  Changing Case

with the wap PROTOCOL internet access becomes easier

With the wap PROTOCOL internet access becomes easier

M-c

With The wap PROTOCOL internet access becomes easier

With The WAP PROTOCOL internet access becomes easier

With The WAP protocol internet access becomes easier

With The WAP protocol INTERNET ACCESS BECOMES easier

M-c

M-u

M-l

M-3 M-u

das76205_AppC_657-685.indd   673das76205_AppC_657-685.indd   673 12/13/11   1:47 PM12/13/11   1:47 PM



674 Your UNIX/Linux: The Ultimate Guide

You may find the feature of case conversion of a region disabled on your system. 

emacs then prompts you to enable the feature permanently. This is controlled by the 

upcase-region and downcase-region commands. If you answer y at the final prompt 

when converting a region to uppercase, then emacs makes this setting in .emacs, the 

file it reads on startup:

(put ‘upcase-region ‘disabled nil)

We’ll learn to customize emacs at the end of this appendix.

  Undoing and Redoing Editing

emacs supports an undo-redo feature that can both reverse and restore previous edit-

ing actions. According to the emacs documentation, the feature is useful and “worthy 

enough” to have two key sequences assigned to it:

C-x u
C-- With hyphen—convenient to use

As advised before, if you inadvertently make a change to the buffer, just press either of 

these key combinations. Undoing and redoing are handled by the same key. Initially, 

every invocation of the undo key reverses the most recent change made to the buffer. 

If you continue to hit the key, you’ll eventually undo every single change made to the 

buffer. The two asterisks on the mode line will disappear, and finally the system could 

tell you this:

No further undo information All changes undone

This was the state of the buffer when you opened this file. What happens if you continue 

to press the undo key? Surprise, surprise: the round-robin feature starts redoing everything 

that you had undone, and in no time you could be back to square one. 

There’s a limit to the number of editing instructions that can be undone (or redone). 

The number is controlled by the emacs variable undo-limit, which is set to 20,000 

bytes by default. When the undo information exceeds this limit, garbage collection takes 

place in FIFO-style, and the oldest commands are discarded.

  Searching for a Pattern

emacs supports a number of pattern-matching schemes. The search can be made both 

for a simple string and for a regular expression. In this section, we’ll consider string 

searches and use two search techniques—incremental and nonincremental search.

  Incremental Search
When using incremental search, emacs begins the search the moment you start key-

ing in the search string. For instance, as you key in the four letters of chop (the search 

string), emacs first checks for c, then ch, and so forth. Thus this search is faster than 

conventional searches.

das76205_AppC_657-685.indd   674das76205_AppC_657-685.indd   674 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 675

Incremental search is invoked with C-s followed by the search string. To look 

for the string chop, press C-s and then initially enter c, the first character of the string:

I-search: c Search starts!

The search starts immediately, and the cursor moves to the first instance of c (if there 

is one). As you key in the entire string, you’ll find the cursor constantly moving across 

the text. Finally, if the string chop is there in the file, the cursor moves there. You must 
press [Enter] now to mark the termination of your search string.

To search backward, use C-r instead of C-s; everything else remains the same. 

But don’t forget to press [Enter] after you have located the string. Incremental search 

is shown in Fig. C.11.

The same commands—C-s and C-r—repeat the search, but are used without the 

string. Note that you’ll have to press this key twice for the first repeat. In case you are 

at the end or beginning of a file, emacs first issues this message:

Failing I-search: chop Searching for chop

Like vi, emacs supports a wraparound feature that ensures that the entire file is scanned 

no matter where the search was launched from. Next time you press C-s, the search 

wraps around the end to resume from the beginning of the file.

F I G U R E  C . 1 1  Incremental Search for String chop

# - check the password

system ("tput clear") ;        # Executes the UNIX command

$username = &take_input ("Oracle user-id: ") ;

$password = &take_input ("Oracle password: ", "noecho") ;

print ("$prompt") ;

chop ($name = <STDIN>) ;

C-s c

h

o

p

das76205_AppC_657-685.indd   675das76205_AppC_657-685.indd   675 12/13/11   1:47 PM12/13/11   1:47 PM



676 Your UNIX/Linux: The Ultimate Guide

You must press [Esc] or [Enter] to cancel a search. Even if you backspace to 

completely erase the search string (which also makes the cursor retrace its path), you’ll 

still be in search mode. Any text you key in now will be added to the search string and 

not to the file buffer. emacs will beep and continue to flash the error message shown 

above. Press [Esc] or [Enter] to return you to the normal mode.

  Nonincremental Search
You can also opt for a simple “vanilla” or nonincremental search in the way used in 

other editors. You require the same keys initially (C-s or C-r), but when the search pat-

tern is asked for, simply press [Enter] and input the string at the next prompt:

I-search: [Enter]
Search: chop[Enter]

You can repeat this search in the same way you repeat an incremental search. The 

search and repeat commands are summarized in Table C.4, and nonincremental search 

is illustrated in Fig. C.12.

F I G U R E  C . 1 2  Nonincremental Search for String copies

file=$1 ; copies=1

while true ; do

if [ ! -f $2/$file.$copies ] ; then

else

C-s [Enter] copies [Enter] C-s C-s

C-s

C-s

C-s

C-r

C-r

cp $1 $2/$1.$copies ;  break

copies=`expr $copies + 1`

das76205_AppC_657-685.indd   676das76205_AppC_657-685.indd   676 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 677

T A B L E  C . 4  Search and Replace Commands

Command  Function

C-s pat Incremental search forward for pattern pat

C-r pat Incremental search back for pattern pat

C-s [Enter] pat Nonincremental search forward for pattern pat

C-r [Enter] pat Nonincremental search back for pattern pat

C-s Repeats search in forward direction (incremental and

 nonincremental)

C-r Repeats search in reverse direction (incremental and

 nonincremental)

[Esc] or [Enter] Cancels search

M-x replace-string Replaces string noninteractively

M-% Replaces string interactively (requires [Shift])

M-x query-replace As above

  Substitution—Search and Replace

emacs offers yet another powerful feature, that of substitution, which lets you replace 

a pattern with something else. Replacement can be either interactive or noninteractive. 

  Noninteractive Substitution
There’s no key binding available for noninteractive substitution, so you have to run the 

replace-string command (with M-x). emacs prompts twice for the two strings:

M-x replace-string[Enter]
Replace string: float[Enter]
Replace string float with: double[Enter]

The string float is replaced with double throughout the buffer. If you feel that this 

hasn’t done quite what you expected, then undo the operation with C-x u or C--.

  Interactive Substitution
Interactive replacement is performed with the query-replace command, which fortu-

nately is bound to M-% (requires [Shift]). emacs prompts for both strings:

Query replace: float[Enter]
Query replace float with: double[Enter]

The cursor moves to the first instance of float, and emacs poses this question:

Query replacing float with double: (? for help)

das76205_AppC_657-685.indd   677das76205_AppC_657-685.indd   677 12/13/11   1:47 PM12/13/11   1:47 PM



678 Your UNIX/Linux: The Ultimate Guide

Pressing a ? will list 10 options, but in most cases, you’ll need only these:

y or spacebar Replaces current occurrence and moves to next

n  Doesn’t replace and skips to next

q or [Enter] Exits without replacing

.  Replaces this instance only and quits

!  Replaces all remaining occurrences without asking

emacs offers similar options when you try to quit without saving the buffer. They, how-

ever, have different meanings here. Use q to abort the replace operation when you have 

performed all replacements that you needed to make. On the other hand, you may have 

made a number of replacements already, and now feel that no further confirmation is 

needed for the rest. In that case, use ! to let emacs complete the remaining replacements.

  Using Multiple Windows and Buffers

emacs often switches to the multiwindow mode, and you can’t revert to the original 

single-window state unless you know how to handle windows. As discussed previously, 

every file opened by emacs is associated with a buffer, which you view in one or more 

windows. However, there’s no relationship as such between the buffer and the window. 

When you close the window, the buffer remains open. You can also kill a buffer without 

closing the window. The following sections should help in making the subtle distinction 

between the two.

  Handling Windows
emacs windows can contain anything; they may be either empty or contain the same or 

different files. We’ll limit our discussions to two windows since most of us feel com-

fortable with just two.

To view the same file in two separate windows, use

C-x 2 Splits into two windows

You’ll see the screen split in two, which in Fig. C.13 shows slightly different segments 

of the same file. To move to the other window, use

C-x o To the other window

The letter o is a mnemonic for “other”; it takes you to the other window. Every time you 

issue this command, the cursor alternates between the two windows. If you had three 

windows, you would be moving to each of these windows in turn.

You can now independently scroll text in both windows (with C-v and M-v). Editing 

changes made in one window are also reflected in the other window since both windows 

are associated with the same file and buffer.

To make the current window the only window on the screen and close all other 

windows, use

C-x 1 Kills all other windows

das76205_AppC_657-685.indd   678das76205_AppC_657-685.indd   678 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 679

In a converse manner, you can also kill the current window and move to the other win-

dow by using:

C-x 0 (zero) Kills this window

Once again, killing a window doesn’t kill the buffer that was being viewed in that win-

dow; it remains in the buffer list.

  Changing Window Size
If one window requires a larger screen, you can increase its vertical size:

C-x ̂  Increases window’s size

Decreasing the size of a window is a bit awkward. It’s easier to move to the other window 

with C-x o and then increase the size of that window.

  Opening a File
You may want to open a different file in one window. You probably know this command 

already:

C-x C-f Opens a new file

F I G U R E  C . 1 3  A Split Window

Buffers Files Tools Edit Search Mule Insert Help
option=-e
while echo $option "Designation code: \c" 

do
read desig

case "$desig" in
[0-9][0-9]) if grep "^$desig" desig.lst >/dev/null # If code exists

then echo "Code exists" 

--1-:--F1  dentry1.sh        (Shell-script Abbrev)--L1--Top--------------------
case "$desig" in 

[0-9][0-9]) if grep "^$desig" desig.lst >/dev/null # If code exists 
then echo "Code exists"  

continue                # Go to loop beginning

fi ;;
*) echo "Invalid code" ; continue ;; 
esac

--1-:--F1  dentry1.sh        (Shell-script Abbrev)--L1--Top--------------------

das76205_AppC_657-685.indd   679das76205_AppC_657-685.indd   679 12/13/11   1:47 PM12/13/11   1:47 PM



680 Your UNIX/Linux: The Ultimate Guide

After you have entered a different filename, you’ll have two different files (and buffers) 

in two windows. Now, if C-x C-f opens a wrong file, will you use this command again? 

No, you must kill the current buffer and load another one using

C-x C-v Replaces current buffer

Both commands, C-x C-f and C-x C-v, are used to open a second file, even when you 

are working in a single window (the normal emacs mode).

  Handling Buffers
emacs offers a number of commands that show you the buffer list, select a buffer from 

the list, and open files. You can switch to any buffer with this command:

C-x b Calls up another buffer

emacs offers the previous buffer name that was edited in that window as the default. In 

case you want to return to the last edited file, simply press [Enter]. When you are edit-

ing two files alternately, you can toggle between the current file and the immediately 

preceding file in this way.

When the buffer you want to edit is not the default one shown by C-x b, you can 

enter the name yourself or view the list and select one from there. Enter C-x b, and when 

the prompt appears, hit [Tab] and then use the completion feature to select a filename 

from the list. A typical buffer list is shown in Fig. C.14.

The buffer list in the figure shows a *scratch* buffer that emacs always makes 

available to you for making notes. You can position yourself in the buffer list by using 

C-x o—twice, if required. You can then select any buffer by moving the cursor and 

pressing [Enter]. You can close this window by using C-x 0 or cancel the entire action 

altogether with C-g.

F I G U R E  C . 1 4  Displaying the Buffer List with C-x b

In this buffer, type RET to select the completion near point.

Possible completions are:
*Messages*                         *scratch*
convert.sh                         dentry1.sh

--1-:--F1  *Completions*      (Completion List Abbrev)--L1--All----------------
Switch to buffer: (default *scratch*)

das76205_AppC_657-685.indd   680das76205_AppC_657-685.indd   680 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 681

There’s a separate command for displaying the buffer list. It’s a little different 

from the one that switches you to another buffer:

C-x C-b Displays buffer list

You have two windows now, and the lower one shows the pathnames of all active buf-

fers, their types and sizes (Fig. C.15). You can move to this window using C-x o and 

then select a file to open in the lower window. The commands used to handle windows 

and buffers are shown in Table C.5.

Window Handling
C-x 2 Splits current window into 2 windows

C-x o Moves to other window

C-x 1 Kills all other windows and makes this window the only window

C-x 0 Kills this window only

C-x ^ Increases vertical size of current window (Requires [Shift])

C-M-v Scrolls text forward in other window (no scrolling back facility available)

Buffer and File Handling
C-x b Edits another buffer in current window

C-x C-b Displays buffer list; edits buffer in separate window

C-x k Kills current buffer

C-x C-f Stops editing current fi le and edits another fi le

C-x C-v Replaces current buffer with another fi le

T A B L E  C . 5  Handling Windows and Buffers

Command   Function

F I G U R E  C . 1 5  The Buffer List Displayed by C-x C-b

MR Buffer           Size  Mode         File
-- ------           ----  ----         ----
   dentry1.sh        733  Shell-script /home/romeo/project5/dentry1.sh 

convert.sh        520  Shell-script /home/romeo/project5/convert.sh
*Completions*     172  Completion List
conv2pm6.sh       322  Shell-script /home/romeo/project5/conv2pm6.sh
*scratch*           0  Lisp Interaction

*  *Messages*        240  Fundamental
*% *Buffer List*     431  Buffer Menu

--1-:%*-F1  *Buffer List*      (Buffer Menu Abbrev)--L3--All--------------------

.

das76205_AppC_657-685.indd   681das76205_AppC_657-685.indd   681 12/13/11   1:47 PM12/13/11   1:47 PM



682 Your UNIX/Linux: The Ultimate Guide

  Using the Help Facility

emacs has an elaborate help facility that provides you with detailed information about 

its commands, keys, modes, and variables. You can call up the tutorial or the multilevel 

info documentation as well. The help facility is organized in a number of modules, and 

they are all invoked with C-h (Table C.6).

Beginners generally face two problems: they are unable to remember either the 

function of a key sequence or what a command does. The first problem is handled by 

C-h k (key). On pressing it, emacs asks you to enter a key sequence:

Describe key: [Ctrl-y] Seeking help for C-y

This is the command we use to paste copied or deleted text. emacs responds with a 

description of the key sequence in a separate window:

C-y runs the command yank
   which is an interactive compiled Lisp function.
(yank &optional ARG)
Reinsert the last stretch of killed text.
More precisely, reinsert the stretch of killed text most recently
killed OR yanked. Put point at end, and set mark at beginning.
   .......

This explanation is quite detailed and should be quite useful. Since your cursor is still 

in the previous window, you can close the help window with C-x 1.

emacs supports over a thousand commands, and only a few of them have key 

bindings. C-h f and C-h w are two key sequences that you’ll need to use to know more 

about these commands. To know what a command does, use C-h f (function) and enter 

the command name:

Describe function (default *): recover-file

T A B L E  C . 6  The Help Facility

Command   Deals with

C-h k Function performed by keystroke (detailed)

C-h c Function performed by keystroke (one-line)

C-h f Function performed by command

C-h w   Whereis; key binding available for command

C-h v Function of variable and its current setting

C-h a Commands that use a concept

C-h t Runs tutorial

C-h i Runs info reader

das76205_AppC_657-685.indd   682das76205_AppC_657-685.indd   682 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 683

As before, a separate window displays the description of the recover-file command:

recover-file is an interactive compiled Lisp function.
(recover-file FILE)
Visit file FILE, but get contents from its last auto-save file.

This description was short enough to fit in the window, but sometimes you’ll need 

to scroll the other window (with C-M-v) to see the rest of the text. Note that you can’t 

scroll back; to do that, you’ll have to visit that window first (with C-x o).

Sometimes, you’ll remember the command name but not its key binding. For 

instance, you’ll probably remember that interactive substitution is performed with 

query-replace, but can you recall its key binding? Use C-h w (where-is):

Where is command (default *): query-replace

emacs displays a single-line message in the minibuffer:

query-replace is on M-%, menu-bar search query-replace

This shows M-%  as the shortcut, but it also guides you to the menu option 

search>query-replace that is available at the top of the screen. You’ll be able to take 

advantage of this menu facility when you use emacs in the X Window system.

  Viewing the Tutorial and info Documentation
You can invoke the emacs tutorial with C-h t (tutorial). This is an excellent introduc-

tion to the editor and serves as good reading material for beginners. Use C-x b to quit 

to the previous buffer.

More detailed than the tutorial is the info documentation that is invoked with 

C-h i (info). This takes you to the top of the “info tree.” Linux systems offer a lot of 

info documentation for many commands, and this tree shows them all. Scroll down to 

position the cursor on the line showing Emacs: (emacs) and press [Enter] to view the 

emacs documentation menu.

You’ll recall that info documentation is organized in multiple nodes (levels). The 

nodes are indicated by asterisks at the beginning of the line. You can take your cursor 

to any of these nodes and press [Enter] to obtain detailed information on that topic. 

To return to the previous level, use u. To quit the info mode, use q. For refreshing your 

knowledge of the info commands, look up Section 2.5.2—Linux.

  Customizing emacs

As you get comfortable with emacs, you’ll feel the need to customize it. emacs reads 

$HOME/.emacs (same as ~/.emacs in most shells) on startup. If ls -a doesn’t show 

this file in your home directory, then you can create or copy one. The entries in .emacs 

are written in LISP—the language originally used to write emacs.

das76205_AppC_657-685.indd   683das76205_AppC_657-685.indd   683 12/13/11   1:47 PM12/13/11   1:47 PM



684 Your UNIX/Linux: The Ultimate Guide

Many emacs commands can be placed in this file so that they are available in 

every session. You can create abbreviations, redefine your keys to behave differently, 

and make variable settings. Your .emacs will progressively develop into an exclusive 

“library” containing all shortcuts and settings that you use regularly. It could be your 

most prized possession, so always keep a backup of this file.

Your login directory may already have .emacs containing entries that change 

the defaults assumed in this appendix. This could make some of the commands either 

work differently or not at all. Until you learn how to use this file, just rename it (using 

mv .emacs .emacs.bak) or invoke emacs with the -q option. This option ignores 

.emacs at startup.

emacs can be tailored by redefining keys or abbreviating frequently used strings, but 

in this section we examine its variables. emacs uses three commands to set its variables:

 • set-variable This command assigns values to variables from within the editor.

 • setq and setq-default These commands are used in ~/.emacs to make the 

settings permanent.

Variables may take on numeric, string, or boolean values. Boolean values may be t or 

nil. Let’s now examine some of the variables.

  auto-save-timeout
This is set to a numeric value signifying the number of seconds of inactivity that results 

in an automatic saving operation. To know its default value, use the describe-variable 

command or C-h v, and key in the variable name:

Describe variable: auto-save-timeout Use completion feature

emacs now shows you the current setting in a separate window along with a few lines 

of related documentation:

auto-save-timeout’s value is 30
Documentation:
*Number of seconds idle time before auto-save.
Zero or nil means disable auto-saving due to idleness.
  .......

After you have finished viewing the documentation, kill this window with C-x 1. You 

can now change the value of this variable to, say, 60 seconds with the set-variable 

command (using M-x):

Set variable: auto-save-timeout
Set auto-save-timeout to value: 60

This setting remains valid for the rest of the session when using this buffer. To make it 

permanent, you have to use either setq or setq-default in .emacs:

(setq auto-save-timeout 60) Note the enclosing parentheses

das76205_AppC_657-685.indd   684das76205_AppC_657-685.indd   684 12/13/11   1:47 PM12/13/11   1:47 PM



Appendix C: The GNU emacs Editor 685

  auto-save-interval
You can also set the number of keystrokes that result in an autosave operation. This is 

controlled by the variable auto-save-interval. By default, it is set to 300, but you 

can change it in .emacs:

(setq auto-save-interval 200)

  Other Variables
Let’s discuss briefly the significance of some of the other important variables. Here are 

some settings that you may want to have in your .emacs file:

(setq-default case-fold-search nil) Searches are case-sensitive

(setq tab-width 4) Number of spaces a tab expands to

(setq line-number-mode t) Shows line number on mode line

(setq blink-matching-paren t) Explained below

(setq kill-ring-max 50) Capacity of kill ring

(setq abbrev-mode t) Abbreviation mode on

The annotations provide adequate explanation except for blink-matching-paren. It 

enables the programmer to see momentarily the matching bracket to a ) or }. Here, it is 

set to t, so when a ) or } is entered, the cursor moves back to its matching counterpart 

and stays there for a fraction of a second before returning to its current location.

  Local and Global Variables
emacs makes a distinction between local and global variables. A local variable applies 

only to the buffer in which it is defined and overrides any global values that may be 

defined for the variable. setq sets a local variable, and setq-default sets a variable to 

its default (global) value. We’ll not go into further details except to suggest that if the 

setq command doesn’t work, use the setq-default command instead.

After you have used emacs to edit ~/.emacs, you don’t need to quit and restart the 

editor for the changes to take effect. Just run the load-file command to make emacs 

reread .emacs. This facility is not available in vi.

das76205_AppC_657-685.indd   685das76205_AppC_657-685.indd   685 12/13/11   1:47 PM12/13/11   1:47 PM



686

D 
A P P E N D I X

 D
vi/vim Command Reference

For convenience, commands and their customization parameters are grouped 

together. Most of these commands have been discussed in Chapter 5. The fol-

lowing points must be noted before you use this reference:

 • Many commands can be used with a repeat factor (vi). 

 • vim (but not vi) supports a region as a contiguous text block that can be manipu-

lated with commands. A region is defined with v in vim followed by a navigation 

command.

  Navigation

vi Command  Function            

h (or [Backspace])  Move cursor left     

l (or [Spacebar])  Move cursor right      

k (or [Ctrl-p])  Move cursor up     

j (or [Ctrl-n])  Move cursor down     

[Ctrl-f]   Scroll full page forward    

[Ctrl-b]   Scroll full page backward    

[Ctrl-d]   Scroll half page forward    

[Ctrl-u]   Scroll half page backward    

1G   Move to beginning of file    

40G   Move to line 40     

G   Move to end of file     

[Ctrl-g]   Display current line number and percentage of file 

:set number    Show all lines numbered    

das76205_AppD_686-692.indd   686das76205_AppD_686-692.indd   686 12/13/11   10:54 AM12/13/11   10:54 AM



Appendix D: vi/vim Command Reference 687

  Navigation Along a Line

The B, E, and W commands perform the same functions as their lowercase counterparts 

except that they ignore punctation. 

vi Command   Function             
b     Move back to beginning of word   

e     Move forward to end of word    

w     Move forward to beginning of word  

0 or |     Move to beginning of line    

30|     Move to column 30    

^     Move to first character of first word in line 

$     Move to end of line     

  Inserting Text

For text input or replacement, vi must be in the Input Mode. Insertion of a control character 

is shown here for [Ctrl-b].

vi Command   Function     
i     Insert text to left of cursor   

20i-[Esc]    Insert 20 hyphens    

I     Insert text at beginning of line   

[Ctrl-v][Ctrl-b]    Insert [Ctrl-b]    

[Ctrl-v][Esc]    Insert [Esc]    

a     Append text to right of cursor   

A     Append text at end of line   

o     Open line below    

O     Open line above    

:set showmode    Display message when vi is in input mode 

:set sm    Show momentarily match to a ) and }  

:set ts=n    Set tab stops to n (default: 8)    

:set ai    Next line starts at previous indented level 

  Deleting and Moving Text

All of the following editing actions can be undone. 

vi Command   Function     
x     Delete character under cursor   

6x     Delete character under cursor and five characters on right 

X     Delete previous character   

dd     Delete current line    

4dd     Delete four lines    

64dd     Delete 64 lines         

vi/vim
C

O
M

M
A

N
D

S

das76205_AppD_686-692.indd   687das76205_AppD_686-692.indd   687 12/13/11   10:54 AM12/13/11   10:54 AM



688 Your UNIX/Linux: The Ultimate Guide

vi Command   Function     
dw     Delete word    

d0 (d and zero)    Delete to beginning of line       

d$     Delete to end of line   

d     Delete region (vim only)    

p     Put deleted text on right   

P     Put deleted text above or left  

“add     Delete current line to buffer a  

“ap     Restore contents from buffer a  

ddp     Interchange current line with next 

kddp     Interchange current line with previous 

J     Join current line with next line   

kJ     Join current line with previous line  

xp     Transpose two characters   

  Changing Text

vi Command   Function     
rch    Replace single character under cursor with ch 

R    Replace text from cursor to right        

s    Replace single character under cursor with any 

    number of characters

S    Replace entire line     

cw    Change word    

c    Change text of region (vim only)  

~    Reverse case of scanned text or region  

!tr ‘[a-z]’ ‘[A-Z]’  Convert region to uppercase (vim only)  

!tr ‘[A-Z]’ ‘[a-z]’  Convert region to lowercase (vim only)  

  Copying Text

vi Command   Function      

yy     Copy current line      

6yy     Copy six lines     

yw     Copy word   

y     Copy region (vim only)  

p     Put copied text on right   

P     Put copied text on left or above  

“ayy     Copy current line to buffer a  

“ap     Restore contents from buffer a  

das76205_AppD_686-692.indd   688das76205_AppD_686-692.indd   688 12/13/11   10:54 AM12/13/11   10:54 AM



Appendix D: vi/vim Command Reference 689

  Starting the Editor

vi Command   Function     
vi +100 foo    Open file at line 200    

vi +/pat foo    Open file at first occurrence of pattern pat 

vi + foo    Open file at end    

vi -R foo    Open file in read-only mode  

  Saving and Quitting

vi Command   Function     
:w     Save file and remain in editing mode  

:w bar     Like Save As ..... in Microsoft Windows  

:w! bar    As above, but overwrite existing file bar  

:n1,n2w foo    Write lines n1 to n2 to file foo  

:n1,n2w >> foo    Append lines n1 to n2 to file foo      

:.w foo    Write current line to file foo  

:$w foo    Write last line to file foo   

:x     Save file and quit editing mode  

:wq     As above     

:q     Quit editing mode when no changes are made to file

:q!     Quit editing mode but after abandoning changes  

  Editing Multiple Files

You can’t use :e, :n, and :rew unless the current file is saved (and autowrite is not 

set). The ! placed after the command overrides the safety feature. 

vi Command   Function     
:e foo     Stop editing current file and edit file foo  

:e! foo    As above, but after abandoning changes   

    made to current file 

:e!     Load last saved edition of current file  

[Ctrl-^]     Return to most recently edited file  

:n     Edit next file (when invoked multiple filenames)  

:set autowrite (aw)   Write current file automatically whenever  

    switching files (with :n)                                                     

:rew     Rewind file list to start editing first file  

    (when vi is invoked with multiple filenames) 

:r foo    Read file foo below current line

das76205_AppD_686-692.indd   689das76205_AppD_686-692.indd   689 12/13/11   10:54 AM12/13/11   10:54 AM



690 Your UNIX/Linux: The Ultimate Guide

  Multiple Windows (vim)

vim Command  Function     
:sp    Split current window in two   

:new    Open a new blank window   

[Ctrl-w][Ctrl-w]  Toggle between windows   

:on    Make current window the only window  

:q    Quit current window    

:qa    Quit all windows    

:xa    Save and quit all windows     

[Ctrl-w] +   Increase window size    

[Ctrl-w] -   Decrease window size 

  Search and Repeat

vi uses the same search and repeat techniques for strings and regular expressions. It also 

uses separate key sequences for searching for a character in a line.

vi Command  Function      

/pat    Nonincremental search forward for string pat  

/pat    As above, but pat is a regular expression   

?pat    Nonincremental search backward for string pat   

?pat    As above, but pat is a regular expression   

n    Repeat string search in same/forward direction  

N    Repeat string search in opposite/backward direction 

n    Repeat regular expression search in same/forward direction 

N    Repeat regular expression search in opposite/backward direction

:set wrapscan (ws)  Continue pattern search by moving to other end of file 

:set ignorecase (ic) Ignore case when searching   

:set magic   Retain meanings of regular expression characters 

fc    Search forward for character c   

Fc    Search backward for character c   

;    Repeat last forward search for character  

,    Repeat last reverse search for character  

  Substitution

vi Command  Function     
:1,$s/s1/s2/g  Replace string s1 with s2 globally     

:1,$s/s1/s2/g  As above, but s1 is a regular expression    

:1,$s/s1/s2/gc   Interactive replacement      

:1,$s/s1/s2/gc   As above, but s1 is a regular expression    

:s   Repeat last substitution on current line (vim only) 

das76205_AppD_686-692.indd   690das76205_AppD_686-692.indd   690 12/13/11   10:54 AM12/13/11   10:54 AM



Appendix D: vi/vim Command Reference 691

  Marks and Bookmarks

vi Command Function     
ma   Set mark a      

‘a   Move to mark a      

‘’   Toggle between current and previous positions  

  Redoing and Undoing

vi Command Function       

. (dot)  Repeat last command    

u   Undo last editing command     

[Ctrl-r]   Redo last undo (vim only)     

U   Undo all changes made to current line    

“4p  Restore fourth recent deletion of complete lines from buffer

  Abbreviating Text

vi Command Function      

:ab stg name  Abbreviate name to stg (Can also be placed in ~/.exrc)  

:ab   List all abbreviations      

:unab stg  Kill abbreviation stg   

  Macros and Key Mapping

vi Command    Function    
Enter a command sequence, then “myy  Define a macro named m    

@m     Run last defined macro named m   

:map key commands    Map key to commands     

     (Can also be placed in ~/.exrc) 

:map! key commands    Map key to commands in input mode   

     (Can also be placed in ~/.exrc) 

:map      Display all Command Mode maps 

:map!      Display all Input Mode maps  

:unmap key     Kill Command Mode map key    

:unmap! key     Kill Input Mode map key    

das76205_AppD_686-692.indd   691das76205_AppD_686-692.indd   691 12/13/11   10:54 AM12/13/11   10:54 AM



692 Your UNIX/Linux: The Ultimate Guide

  Interface To UNIX

The editor can be suspended with [Ctrl-z] only for those shells that enable job control. 

vi Command  Function      

:!cmd    Run UNIX command cmd    

:!%    Execute current file as a shell or perl script  

:r !cmd  Read in output of command cmd  

:r !head -n 3 foo Read first three lines of foo below current line  

:sh    Escape to UNIX shell   

[Ctrl-z]    Suspend editor    

:!cc %   Compile currently edited C program   

:!javac %  Compile currently edited Java program  

  Miscellaneous

vi Command  Function      

:set all   Show all set options    

[Ctrl-l]   Redraw the screen     

v   Define start of region (vim only)    

:set ro   Change to read-only mode  

das76205_AppD_686-692.indd   692das76205_AppD_686-692.indd   692 12/13/11   10:54 AM12/13/11   10:54 AM



693

E 
A P P E N D I X

 E
The Regular 

Expression Superset

Regular expressions are used by the editors vi/vim and emacs and the filters 

 grep, egrep, sed, awk, and perl. Unfortunately, these commands use differ-

ent subsets of this collection, and many people are not quite sure of the metacharacters 

that a command recognizes and the ones it doesn’t. Examples have often been provided 

to ease understanding.

  Basic Regular Expressions    

                  Linux
Symbols vi emacs grep sed egrep awk perl vim grep sed gawk Matches
* • • • • • • • • • • • Zero or more occurrences

            of previous character

g* • • • • • • • • • • • Nothing or g, gg, ggg, etc.

gg* • • • • • • • • • • • g, gg, ggg etc.

. • • • • • • • • • • • A single character

.* • • • • • • • • • • • Nothing or any number 

            of characters

[abc] • • • • • • • • • • • a or b or c

[1-3] • • • • • • • • • • • A digit between 1 and 3

[^Z] • • • • • • • • • • • Any character except Z

[^a-zA-Z] • • • • • • • • • • • A nonalphabetic character

^DM • • • • • • • • • • • DM at beginning of line

bash$ • • • • • • • • • • • bash at end of line

R
E

G
U

L
A

R
 

E
X

P
R

E
S

S
IO

N
S

das76205_AppE_693-695.indd   693das76205_AppE_693-695.indd   693 12/13/11   10:55 AM12/13/11   10:55 AM



694 Your UNIX/Linux: The Ultimate Guide

  Extended Regular Expressions

                Linux                
Symbols vi emacs grep sed egrep awk perl vim grep sed gawk Matches

+  •   • • •    • One or more occurrences

            of previous character

g+  •   • • •    • At least one g

g\+        • • •  As above

?  •   • • •    • Zero or one occurrence

            of previous character

g?  •   • • •    • Nothing or one g

g\?         • •  As above

GIF|JPEG     • • •    • GIF or JPEG

GIF\|JPEG  •      • • •  As above

wood(cock|house)     • • •    • woodcock or woodhouse

wood\(cock\|house\)  •      • • •  As above

<pat • •      • • • • Pattern pat at beginning

            of word

pat\> • •      • • • • Pattern pat at end of word

  Interval and Tagged Regular Expressions

These are advanced regular expressions not used by egrep and awk. gawk and perl also 

accept the Interval Regular Expression, but drop the \ in front of the curly brace. gawk 

additionally requires the use of the --posix or -W re-interval option. perl drops the 

\ in front of the ( and ) as well.

                Linux                
Symbols vi emacs grep sed egrep awk perl vim grep sed gawk Matches

\{m\} •  • •    • • •  m occurrences of the  
            previous character

{m}       •    • As above

^.\{9\}nobody •  • •    • • •  nobody after skipping nine 
            characters from line beginning

^.{9}nobody       •    • As above

\{m,\} •  • •    • • •  At least m occurrences 
            of the previous character

{m,}        •    • As above

\{m,n\} •  • •    • • •  Between m and n occurrences

            of the previous character

{m,n}        •    • As above

\(exp\) • • • •    • • •  exp and attaches tag  
            \1, \2, etc. to exp

(exp)       •     As above, but also uses

            $1, $2, etc.

das76205_AppE_693-695.indd   694das76205_AppE_693-695.indd   694 12/13/11   10:55 AM12/13/11   10:55 AM



Appendix E: The Regular Expression Superset  695

  Escape Sequences

                Linux
Symbols vi emacs grep sed egrep awk perl vim grep sed gawk Matches

\b  •     •  • •  On word boundary

wood\b  •     •  • •  wood but not woodcock

\B  •     •  • • • On nonword boundary

wood\B  •     •  • • • woodcock but not wood

\w  •     • • • • • A word character (same as 

            [a-zA-Z0-9_])

\W  •     • • • • • A nonword character

            (same as [^a-zA-Z0-9_])

\d       • •    A digit (same as [0-9])

\D       • •    A nondigit (same as [^0-9])

\s       • •    A whitespace character

            (same as [    ]])

\S       • •    A non-whitespace character 

            (same as [^     ])

\t  •     • •   • A tab (same as   )

\n       •    • A newline ([Ctrl-j])

\r       •    • A carriage return ([Ctrl-m])

\f       •    • A formfeed ([Ctrl-l])

\0nnn       •    • ASCII octal value nnn 

\014       •    • ASCII octal value 14

\xnn       •    • ASCII hex value nn

  POSIX Character Classes

                Linux
Symbols vi emacs grep sed egrep awk perl vim grep sed gawk Matches

[[:alpha:]]        • • • • An alphabetic character

[[:lower:]]        • • • • A lowercase alphabetic

            character

[[:upper:]]        • • • • An uppercase alphabetic

            character

[[:digit:]]        • • • • A numeric character

[[:alnum:]]        • • • • An alphanumeric character

[[:space:]]        • • • • A whitespace character

            including formfeed

[[:cntrl:]]         • • • A control character

[[:blank:]]        • • • • A space or tab

[[:print:]]        • • • • A printable character 

[[:punct:]]        • • • • A punctuation character

            (not a space, letter, digit,

            or control character)

[[:xdigit:]]        • • • • A hexadecimal digit

das76205_AppE_693-695.indd   695das76205_AppE_693-695.indd   695 12/13/11   10:55 AM12/13/11   10:55 AM



696

F 
A P P E N D I X

 F
The HOWTO

How to Do or Display Command

abbreviate a command sequence alias  

add a user account (superuser only) useradd 

add a user group (superuser only) groupadd 

address all users (superuser only) wall 

arithmetic computation noninteractively expr, bc, awk

arithmetic computation using the shell (( )) or let 

assign values to positional parameters set 

back up fi les specifi ed in command line tar 

beginning of fi le head 

calendar of month or year cal   

cancel print job cancel, lprm 

change case of text tr  

change current directory to dirname cd dirname 

change current directory to home directory cd or cd $HOME

change fi lename extension basename, expr

change fi le’s group ownership chgrp 

change fi le’s last modifi cation or access time touch

change fi le’s ownership chown  

change fi le’s permissions chmod 

change login shell without involving administrator chsh 

change own password passwd  

change password of any user (superuser only) passwd username 

check current directory pwd

check fi le system integrity (superuser only) fsck 

check in SCCS/RCS fi le delta, ci

check out SCCS/RCS fi le get, co 

clear screen tput clear  

command documentation man  

command documentation in multiple levels info  

command history history 

command introduction in single line whatis  

command type (external, internal, or alias) type  

commands containing keyword apropos

das76205_AppF_696-700.indd   696das76205_AppF_696-700.indd   696 12/13/11   10:55 AM12/13/11   10:55 AM



Appendix F: The HOWTO 697

How to Do or Display Command
compile C program cc, gcc  

compress fi le (to .bz2) bzip2  

compress fi le (to .gz) gzip  

compress multiple fi les to a single fi le (to .zip) zip  

concatenate fi les cat  

control access to X server xhost 

convert fi le from DOS to UNIX dos2unix, fromdos 

convert fi le from UNIX to DOS unix2dos, todos 

copy directory tree cp -r  

copy fi le cp 

copy fi le between machines ftp, scp, sftp

copy fi le to and from DOS diskette doscp, mcopy 

copy fl oppy diskette or tape media dd 

count number of lines containing a pattern grep -c 

count number of lines, words, and characters wc 

create archive of C object fi les ar

create fi le cat >, echo >, pico, vi, emacs

create links to a fi le ln  

create SCCS/RCS fi le admin, ci

create specifi cation fi le for cron crontab 

create symbolic links to a fi le ln -s  

cut columns or fi elds from fi le cut

debug a C program dbx, gdb 

default fi le permissions umask 

delay command execution in a script sleep 

device name of current terminal tty  

difference between two fi les (as sed-like instructions) diff 

difference between two fi les (character-wise list) cmp  

directory list ls -l | grep “^d” 

disk space utilization du

duplicate standard input stream tee 

echo a message echo, printf

edit fi le pico, vi, emacs 

end of fi le tail 

execute command in background and log out nohup 

execute command on remote machine without logging in ssh 

execute command with arguments from standard input xargs 

execute commands from a shell in X window xterm 

execute shell script without spawning sub-shell . (dot), source 

fi le attributes ls -l 

fi le content cat  

fi le content (compressed) (.Z or .gz) zcat 

fi le content in DOS diskette doscat, mtype 

fi le content in k columns pr -k 

H
O

W
T

O

das76205_AppF_696-700.indd   697das76205_AppF_696-700.indd   697 12/13/11   10:55 AM12/13/11   10:55 AM



698 Your UNIX/Linux: The Ultimate Guide

How to Do or Display Command
fi le content one page at a time more, less 

fi le content with headings and page numbers pr 

fi le list ls 

fi le list containing a pattern grep -l 

fi le list in DOS diskette dosdir, mdir 

fi nd fi les by name or any other attribute find 

format DOS fl oppy diskette dosformat, mformat

format UNIX fl oppy diskette fdformat  

free disk space df  

free space in memory and swap top

generate public/private key pair ssh-keygen 

handle signal from shell script trap 

input data to shell script interactively  read 

join two fi les laterally paste 

kill job See “terminate” 

lines common to two fi les or unique to one comm  

lines containing one or more of multiple patterns grep -E, egrep, fgrep 

lines containing pattern grep 

lines in ASCII collating sequence sort 

lines in double space pr -d -t 

lines in numeric sequence sort -n 

lines in reverse order tail -r 

lines not containing pattern grep -v 

lines sorted ignoring case sort -f 

lines that are repeated  uniq -d 

lines that occur only once uniq -u 

log in to remote machine telnet, slogin, ssh

log session script 

mail message mailx

maintain group of C programs make 

manipulate individual fi elds in a line awk, perl 

maximum fi le size ulimit 

modify user account (superuser only) usermod 

monitor growth of fi le tail -f 

mount fi le system mount 

move fi les to another directory mv 

move job to background bg  

move job to foreground fg  

multiple segments from a fi le sed 

name of local host hostname 

number lines including empty lines pr -n -t 

octal value of character od 

operating system name uname  

operating system release  uname -r  

das76205_AppF_696-700.indd   698das76205_AppF_696-700.indd   698 12/13/11   10:55 AM12/13/11   10:55 AM



Appendix F: The HOWTO 699

How to Do or Display Command
pass variable value to sub-shell export, setenv 

print fi le lp, lpr

print queue lpstat, lpq 

process ancestry ps -f, ps f 

process attributes ps 

process HTML form data perl 

remove duplicate lines sort -u 

remove duplicate lines from sorted fi le uniq 

remove empty directory rmdir 

remove empty or blank lines grep -v, sed 

remove fi le rm  

remove newline character from text tr -d 

remove nonempty directory rm -r

remove user account (superuser only) userdel  

rename fi le or directory mv 

replace current shell with another program exec 

replace pattern See “substitute”

restore fi les from backup media tar

SCCS/RCS activity prs, rlog

SCCS/RCS history sact, rlog 

schedule job for one-time execution at 

schedule job for repeated execution cron 

schedule one-time job when system load permits batch 

search a fi le for one or more patterns See “lines containing”

send signal to process kill

set default fi le permissions umask 

set maximum fi le size (superuser only) ulimit 

set run level of system (superuser only) init 

set system date (superuser only) date 

set terminal characteristics stty  

shift positional parameters to next lower-numbered one shift 

shut down system (superuser only) shutdown, init 

sound beep echo “\007” 

squeeze multiple spaces to single space tr -s

start SSH authentication agent ssh-agent 

string length expr 

substitute one character for another tr  

substitute one pattern for another sed 

substring extracted from larger string expr 

substring position within larger string expr 

superuser from nonprivileged account su  

system date date  

system memory usage top 

system run level who -r, runlevel 

das76205_AppF_696-700.indd   699das76205_AppF_696-700.indd   699 12/13/11   10:55 AM12/13/11   10:55 AM



700 Your UNIX/Linux: The Ultimate Guide

How to Do or Display Command
terminate last background job kill $! 

terminate login session exit, logout   

terminate process kill 

terminate shell script exit 

test connectivity of host ping 

uncompress .bz2 fi le bunzip2 

uncompress .gz fi le gunzip 

uncompress .zip fi le unzip 

unmount fi le system umount 

users and their activities who  

World Wide Web pages with graphics firefox 

write kernel buffer contents to disk (superuser only) sync 

write different segments of fi le to different fi les sed 

das76205_AppF_696-700.indd   700das76205_AppF_696-700.indd   700 12/13/11   10:55 AM12/13/11   10:55 AM



701

G 
A P P E N D I X

 G
The ASCII Character Set

The appendix lists the values of the first 128 characters of the ASCII character 

  set in decimal, hexadecimal, and octal. Octal values are used by the UNIX 

commands awk, echo, printf, perl, and tr, while od displays characters in octal. 

Many of these commands also use escape sequences of the form \ x as shown for some 

characters under the Remarks column. awk and perl also use hexadecimal values.

Character Decimal Hex Octal Remarks

(null) 0 00 000 Null

[Ctrl-a] 1 01 001

[Ctrl-b] 2 02 002

[Ctrl-c] 3 03 003

[Ctrl-d] 4 04 004

[Ctrl-e] 5 05 005

[Ctrl-f] 6 06 006

[Ctrl-g] 7 07 007 Bell (\a)

[Ctrl-h] 8 08 010 Backspace (\b)

[Ctrl-i] 9 09 011 Tab (\t)

[Ctrl-j] 10 0A 012 Newline (\n) (LF)

[Ctrl-k] 11 0B 013 Vertical tab (\v)

[Ctrl-l] 12 0C 014 Formfeed (\f) (FF)

[Ctrl-m] 13 0D 015 Carriage return (\r) (CR)

[Ctrl-n] 14 0E 016

[Ctrl-o] 15 0F 017

[Ctrl-p] 16 10 020

[Ctrl-q] 17 11 021

[Ctrl-r] 18 12 022

[Ctrl-s] 19 13 023

[Ctrl-t] 20 14 024

[Ctrl-u] 21 15 025

[Ctrl-v] 22 16 026

[Ctrl-w] 23 17 027

[Ctrl-x] 24 18 030

[Ctrl-y] 25 19 031

[Ctrl-z] 26 1A 032

A
S

C
II S

E
T

das76205_AppG_701-704.indd   701das76205_AppG_701-704.indd   701 12/13/11   10:55 AM12/13/11   10:55 AM



702 Your UNIX/Linux: The Ultimate Guide

Character Decimal Hex Octal Remarks
[Ctrl-[ ] 27 1B 033 Escape

[Ctrl-\] 28 1C 034

[Ctrl-]] 29 1D 035

[Ctrl-^] 30 1E 036

[Ctrl-_] 31 1F 037

(space) 32 20 040 Space

! 33 21 041 Exclamation mark or bang

“ 34 22 042 Double quote

# 35 23 043 Pound sign

$ 36 24 044 Dollar sign

% 37 25 045 Percent

& 38 26 046 Ampersand

‘ 39 27 047 Single quote

( 40 28 050 Left parenthesis

) 41 29 051 Right parenthesis

* 42 2A 052 Asterisk

+ 43 2B 053 Plus sign

, 44 2C 054 Comma

- 45 2D 055 Hyphen

. 46 2E 056 Period

/ 47 2F 057 Slash

0 48 30 060

1 49 31 061

2 50 32 062

3 51 33 063

4 52 34 064

5 53 35 065

6 54 36 066

7 55 37 067

8 56 38 070

9 57 39 071

: 58 3A 072 Colon

; 59 3B 073 Semicolon

< 60 3C 074 Left chevron

= 61 3D 075 Equal sign

> 62 3E 076 Right chevron

? 63 3F 077 Question mark

@ 64 40 100 At sign

A 65 41 101

B 66 42 102

C 67 43 103

D 68 44 104

E 69 45 105

F 70 46 106

das76205_AppG_701-704.indd   702das76205_AppG_701-704.indd   702 12/13/11   10:55 AM12/13/11   10:55 AM



Appendix G: The ASCII Character Set 703

Character Decimal Hex Octal Remarks
G 71 47 107

H 72 48 110

I 73 49 111

J 74 4A 112

K 75 4B 113

L 76 4C 114

M 77 4D 115

N 78 4E 116

O 79 4F 117

P 80 50 120

Q 81 51 121

R 82 52 122

S 83 53 123

T 84 54 124

U 85 55 125

V 86 56 126

W 87 57 127

X 88 58 130

Y 89 59 131

Z 90 5A 132

[ 91 5B 133 Left square bracket

\ 92 5C 134 Backslash

] 93 5D 135 Right square bracket

^ 94 5E 136 Caret or hat

_ 95 5F 137 Underscore

` 96 60 140 Backquote or backtick

a 97 61 141

b 98 62 142

c 99 63 143

d 100 64 144

e 101 65 145

f 102 66 146

g 103 67 147

h 104 68 150

i 105 69 151

j 106 6A 152

k 107 6B 153

l 108 6C 154

m 109 6D 155

n 110 6E 156

o 111 6F 157

p 112 70 160

q 113 71 161

r 114 72 162

das76205_AppG_701-704.indd   703das76205_AppG_701-704.indd   703 12/13/11   10:55 AM12/13/11   10:55 AM



704 Your UNIX/Linux: The Ultimate Guide

Character Decimal Hex Octal Remarks
s 115 73 163

t 116 74 164

u 117 75 165

v 118 76 166

w 119 77 167

x 120 78 170

y 121 79 171

z 122 7A 172

{ 123 7B 173 Left curly brace

| 124 7C 174 Vertical bar or pipe

} 125 7D 175 Right curly brace

~ 126 7E 176 Tilde

 127 7F 177 Delete or rubout

das76205_AppG_701-704.indd   704das76205_AppG_701-704.indd   704 12/13/11   10:55 AM12/13/11   10:55 AM



705

H 
A P P E N D I X

 H
Glossary

absolute pathname A pathname which begins with a /, indicating that the file must 

be referenced in an absolute manner—from root. See also relative pathname.

access time A file’s time stamp representing the date and time a file was last accessed. 

A file is considered to be accessed if it is read, written, or executed. The access time is 

stored in the inode and displayed by ls -lu.

action A component of an sed, awk, or perl instruction which acts on text specified by 

an address. It normally uses a single character to represent an action for sed, but could 

be a complete program in the case of awk or perl. Also known as internal command.

address A component of an sed, awk, or perl instruction which specifies the lines to 

be affected by the action. The specification could be made with a single line number or a 

range of them, or with a regular expression or a pair of them, or any combination of the two.

alias Term used to refer to a command sequence by another name. Aliasing is available 

in csh, bash, and ksh to abbreviate long command sequences.

anonymous FTP A public FTP site where users use the login name “anonymous” and 

the email address as the password to gain access. Most downloadable software is hosted 

in these sites. Doesn’t permit uploading of files.

archive Term used to a store a group of files as a single unit—either on magnetic media 

or as a single disk file. Refers to such units created by tar, cpio, and zip. Also refers 

to a library of object files.

argument A word that follows a command. It can be an option, an expression, an instruc-

tion, a program, or one or more filenames. Options can also have their own arguments.

ASCII collating sequence The sequence used by ASCII (American Standard Code 

for Information Interchange) to number characters. Control characters occupy the top 

slots, followed by numerals, uppercase letters, and then lowercase. Sequence followed 

by any UNIX command which sorts its output.

G
LO

SSA
R

Y

das76205_AppH_705-727.indd   705das76205_AppH_705-727.indd   705 12/13/11   10:56 AM12/13/11   10:56 AM



706 Your UNIX/Linux: The Ultimate Guide

associativity An attribute of an operator in C that determines which operator associates 

with the operand. This attribute is enforced only when two operators having the same 

precedence share an operand. The associativity is either left-to-right or right-to-left. See 

also precedence.

atomic operation Multiple actions that must be performed in entirety or not at all. 

A system call represents an atomic operation.

attachment A file that is sent along with an email message. An attachment can be 

a text or binary file that is viewed by a mail client either inline or using a plugin or 

helper application.

autosave Feature of the emacs editor that saves the editing buffer periodically in a 

separate file. The autosaved file has a # on either side of its name and can be recovered 

with the recover-file command of the editor.

background job One or more related processes that run without being waited for by 

the parent. A command, when terminated by the & symbol, runs in the background. See 

also foreground job.

block device A hard disk, tape unit, or floppy drive where output is written to and read 

from in units of blocks rather than bytes. Indicated by the letter b in the first character 

of the permissions field of the listing. See also character device.

boot block A special area in every file system. For the root file system, this block 

contains the boot procedure and the partition table, while for others it is left blank.

breakpoint A point in a program where a program will pause when run with a debugger. 

The point may be a line number or function. See also watchpoint and catchpoint.

browser A program used to view HTML pages of the World Wide Web. Common Web 

browsers include Firefox and Internet Explorer (for Microsoft Windows and selected 

UNIX flavors). Linux is shipped with Firefox, Opera, and Konqueror.

brute force attack A technique of trying out every possible key combination to de-

crypt data without knowledge of the key used to encrypt it. Time taken depends mainly 

on the size of the key.

BSD UNIX A flavor of UNIX from the University of California, Berkeley. Berkeley 

introduced a number of enhancements like the vi editor, C shell, r-utilities, PPP, and 

symbolic links. TCP/IP was first available on BSD UNIX.

buffer A temporary storage that is often used to hold frequently requested information 

in memory, rather than on disk, thus speeding up data transfer. Used by vi and emacs 

to make a copy of a file before editing. See also buffer cache.

buffer cache A pool of buffers maintained by the kernel to store data when doing I/O. 

All programs read from and write to these buffers unless explicitly directed to skip them.

das76205_AppH_705-727.indd   706das76205_AppH_705-727.indd   706 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 707

cache Same as buffer.

cast An operator used in C that forces a variable, constant, or expression to have a 

specific but compatible data type. A cast is specified by enclosing the desired type in 

parentheses and placing it before the variable, constant, or expression.

catchpoint Used by a debugger to stop a program when a specific event occurs. See 

also breakpoint and watchpoint.

character The smallest unit of information. The press of a key generates a single 

character, while ASCII has a set of 256 of them.

character device A terminal or printer where output is written to and read from in 

streams of characters. Indicated by the letter c in the first character of the permissions 

field of the listing. See also block device.

child process A process having a separate PID that is created by the parent process. 

The created process inherits some of the environmental parameters of its parent, but 

environmental changes made in the child are not available in the parent.

client-server A two-tier scheme that allows two processes to run in a cooperative 

manner. The client process requests a service from a server process, generally running 

on a different host. X Window treats the concept in a reverse manner. See also X server 
and X client.

command Normally the first word entered at the prompt. It is usually an executable 

file, but can also include built-in statements (also known as internal commands) of 

the shell and other commands (like mailx, vi, etc.).

command failure The exit status returned by a command on unsuccessful completion. 

A value greater than 0 indicates failure and 0 signifies success. See also command success.

command line A complete sequence of a command, its options, filenames, and other 

arguments that are specified at the shell prompt. The shell executes a command only 

when it encounters a complete command line.

Command Mode One of the three modes available in the vi editor to let keystrokes 

be interpreted as commands to act on text. See also Input Mode and ex Mode.

command substitution A feature of the shell which executes a command enclosed 

within a pair of backquotes (``) and uses its standard output to form the arguments of 

another command. Double quotes enable command substitution, but not single quotes.

command success The exit status returned by a command on successful completion. 

A value of 0 indicates success; any other value signifies failure. See also command failure.

commit Term used in the Concurrent Version System to confirm a change made to the 

repository. Used as an argument to the cvs command.

das76205_AppH_705-727.indd   707das76205_AppH_705-727.indd   707 12/13/11   10:56 AM12/13/11   10:56 AM



708 Your UNIX/Linux: The Ultimate Guide

Common Desktop Environment (CDE) A standardized look and feel of the entire 

desktop under the X Window system now adopted by most UNIX vendors. Features a 

Front Panel from which applications can be launched, a File Manager, and a Workspace 

Switch to allow the use of multiple desktops.

Common Gateway Interface (CGI) The interface offered by a Web server to pass 

on form data to an external application. The application processes the data and sends 

back the results to the server.

concatenate The combination of two or more entities. Term used in connection with 

the cat command, character strings, and shell variables.

Concurrent Version System (CVS) A version control system that allows multiple 

users to concurrently make changes to the same file. Also allows operation in a network 

like the Internet.

context address A form of addressing used by sed, awk, and perl which uses a regular exp-

ression enclosed by a pair of /s. The commands act only on the lines containing the expression.

context switch Term used to refer to the change of process context when the time 

quantum allocated to a process expires. This can also occur when a process invokes an 

I/O bound system call.

control command A command used in the command line of a shell, awk, or perl 

conditional or loop to determine the control flow of the construct.

control file A text file used by some programs to take their instructions from. 

$HOME/.exrc, /etc/sendmail.cf, /etc/inittab, and /etc/inetd.conf are some 

of the control files found on a UNIX system.

cron The chronograph of the UNIX system. It executes the commands listed in a 

crontab file at a frequency specified by the various fields in the file. Widely used for 

scheduling noninteractive jobs.

crontab A control file named after the user-id containing all instructions that need to 

be executed periodically. The cron command looks at this table every minute to execute 

a command scheduled for execution.

cryptography The science of protecting information using one or more keys. 

Symmetric cryptography uses a single key, while asymmetric cryptography uses a 

private key and a public key.

current directory The directory in which the user is placed after using the cd com-

mand with an argument. Usually is set to the home directory during login time. See 

also home directory.

daemon A process that runs continuously without a user specifically requesting it. 

Usually not associated with a specific terminal. cron, init, inetd, lpsched, and 

sendmail are important daemons that keep the system running.

das76205_AppH_705-727.indd   708das76205_AppH_705-727.indd   708 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 709

DARPA set The original set of TCP/IP utilities developed at the behest of DARPA; 

includes telnet and ftp. These tools are being phased out in favor of secure 
shell (SSH) tools.

debugger A program that controls the execution of another program. A debugger can 

pause a program at any point, check the value of variables, and also reassign them. dbx 

and gdb are two of the most popular debuggers available in UNIX and Linux.

delta Term used to describe a version in the Source Code Control System.

dereference The property of a pointer to access the value at the location stored by it. 

Dereferencing is done by applying the unary * operator on the pointer variable.

device driver A set of routines built into the kernel to handle a device. The kernel 

identifies the device driver from the device name used as argument to a command. The 

parameters passed by the kernel to the device driver are indicated by the major number 

and minor number of the device.

device file A file that represents a device. Provides a communication channel so that 

interaction with the file actually results in activation of the physical device.

digit argument A numeric prefix used by an emacs command to repeat the command 

that many times. Known as repeat factor in vi.

directory file A file that contains the name and inode number of other files and sub-

directories. Writing a directory file is possible only with the kernel.

DNS Same as domain name system.

domain A common string used by several hosts as part of their fully qualified host-

names. Examples of top-level domains on the Internet are com, edu, org, etc.

domain name system (DNS) A service available on the Internet to convert hostnames 

to IP addresses, and vice versa. The database containing the mappings is distributed in 

a large network with consequent delegation of authority.

empty regular expression A null string signified by two /s, which indicates that the 

string to be acted upon is the same as the last string searched. Used by sed in perform-

ing substitution.

encryption A method of encoding a string of characters into a seemingly random char-

acter sequence. Used by the secure shell to encrypt all communication in a network. 

Also used for storing the password of every user of the system.

environment variable A shell variable that is visible in all processes run by a user. 

The export and setenv commands create environment variables. HOME, TERM, and SHELL 

are common environment variables. See also local variable.

escape sequence A character that is preceded by a \ (like \t) and has a special meaning. 

Escape sequences are used by the shell and commands like echo, printf, awk, and perl. 

das76205_AppH_705-727.indd   709das76205_AppH_705-727.indd   709 12/13/11   10:56 AM12/13/11   10:56 AM



710 Your UNIX/Linux: The Ultimate Guide

escaping The use of the \ immediately before a character to indicate that the follow-

ing character should be treated literally. Mostly used to remove the special meaning of 

a character, but sometimes also used to emphasize it. See also quoting.

ex Mode A mode available in the vi editor to let ex commands act on text. An indis-

pensable mode for substitution, handling multiple files, and customizing the editor. Also 

known as Last Line Mode. See also Command Mode and Input Mode.

exec The mechanism used by a process to overwrite itself with the code of a new program. 

Usually follows the fork operation. Also represents a family of six C functions that do the job.

exit status A value returned by a program after execution. A value 0 indicates suc-

cessful (true) execution. In a C program, the wait system call directs the parent to pick 

up the child’s exit status.

export A built-in shell command which makes shell variables of the parent process 

also visible in the child process. The child views only copies, so changes made to them 

don’t affect the original.

extended regular expression (ERE) An enhanced regular expression used by 

grep -E, egrep, awk, and perl which allows the specification of multiple patterns. Uses 

the metacharacters ?, +, (, ), and |.

FAQ A collection of frequently asked questions.

file A container for storing information. An ordinary file contains data. A directory 
file contains filenames. A device file provides the interface to access a physical device. 

A symbolic link points to the file that actually contains data.

file attributes A set of parameters stored in the inode which describe the characteristics 

of a file. They consist of the type, ownership, permissions, time stamps, size, number 

of links, and an array of disk block addresses.

file descriptor A small integer returned by the open system call when a file is opened. 

Each descriptor, maintained in the file descriptor table, points to the file table. The first 

three entries are usually allocated to the shell’s standard streams.

file offset pointer The location within the file where the next read or write operation 

will take place. This location is maintained in the file table and is updated every time 

a read or write operation on the file takes place.

file ownership One of the attributes of a file. The user creating or copying a file is 

generally the owner as well. The owner of a file has certain privileges that are denied 

others. Ownership can be surrendered only by the superuser on a BSD-based system. 

Similar attribute refers to the group owner.

file permissions Term used to describe a file’s read, write, and execute permissions 

available to three categories of users—user, group, and others. Can be altered only 

by the owner of the file with chmod.

das76205_AppH_705-727.indd   710das76205_AppH_705-727.indd   710 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 711

file system A hierarchical structure of files and directories having its separate root 

directory. Every hard disk has at least one file system on it, which is attached to the 

root file system with the mount command.

file table A structure maintained in memory that contains the file’s opening modes, 

status flags, position of the offset pointer, and a reference count field. Two file descrip-

tors point to the same file table when a process forks or when a descriptor is replicated 

using dup, dup2, or fcntl.

file time stamps A set of three dates and times representing the date of last modifica-

tion, access, and change of inode of a file. This information is stored in the inode and 

is displayed with various options to ls.

File Transfer Protocol (FTP) A TCP/IP application protocol that transfers files 

between two remote machines. The ftp command uses this protocol.

filehandle The logical name of a file used by I/O statements in perl.

filter A program that uses a character stream as standard input, manipulates its con-

tents, and writes a character stream to the standard output. Shell’s redirection and piping 

features can be used with filters.

foreground job Refers to a job where the parent waits for execution to complete. You 

can run only one job in the foreground. See also background job.

fork Term refers to the mechanism of process creation by replicating the address space 

of the existing process. The copied process inherits the file descriptors of its parent, cur-

rent directory, and exported variables. A fork is usually followed by an exec. Features 

a system call by that name.

FQDN See fully qualified domain name.

Free Software Foundation Same as GNU.

fully qualified domain name (FQDN) A set of dot-delimited strings representing 

the domains and subdomains to which the host belongs. The FQDN of a host is unique 

on the Internet.

function definition The code associated with a C function that will be executed when 

the function is called. The compiler checks the number and types of arguments, and the 

type of return value in both function declaration and definition.

function prototype A declaration of a function in C that specifies the number and 

type of its arguments, and type of the return value, if any. A function prototype must be 

followed by the function definition that defines the body of the function.

GET A method of sending form data to a Web server as a component of the URL. The 

data is available as name=value pairs in the QUERY_STRING variable of the Web server. 

See also POST.

das76205_AppH_705-727.indd   711das76205_AppH_705-727.indd   711 12/13/11   10:56 AM12/13/11   10:56 AM



712 Your UNIX/Linux: The Ultimate Guide

getty A process that runs at every free terminal to monitor the next login. Spawned by 

init and execs the login program whenever a user tries to log in.

GNOME A graphical environment offered by Linux that comprises a workspace, 

menus, and icons. Operations are performed in separate windows whose look and feel 

are controlled by the window manager. See also KDE.

GNU An organization founded by Richard Stallman which expands to GNU’s Not 

UNIX, but now known as the Free Software Foundation. Many Linux tools have 

been developed by GNU or distributed under its license, which requires all developers 

to make the source code public.

graphical user interface (GUI) Feature of the X Window system that allows the 

manipulation of individual pixels on the screen. Used to display graphics.

group A category of user understood by the chmod command. More than one user 

may belong to a group, and a set of file permissions is associated with this category. 

See also owner and others.

group-id (GID) The group name or number of the user, which is allotted by the system 

administrator when creating a user account. The name and its numeric representation are 

maintained in /etc/group, while the numeric value is also available in /etc/passwd. 

See also user-id.

hard link See link.

header file A file (like stdio.h) that is included at the beginning of a C program with 

the #include directive. The preprocessor places the contents of the file at the location 

of the directive before acting on them.

helper application An external program invoked by a browser to handle a special 

file format. Unlike a plugin, a helper application views files in a separate window. The 

file’s extension, content type, and external program needed to handle it are specified in 

mime.types and mailcap.

here document A form of standard input (<<) that forms part of the command line 

itself signifying that the input is here. Especially useful when used with commands (like 

mailx) that don’t accept the input filename as argument.

history Facility provided by the shell to store, recall, and execute previous commands. 

Available in csh, bash, and ksh and also features a command by that name in these shells.

home directory A field in /etc/passwd that indicates the directory where a user is 

placed on login. The cd command switches to the home directory when used without 

arguments. Same as login directory.

home page Term used to refer to the first page presented to the user on connecting 

to a Web site.

das76205_AppH_705-727.indd   712das76205_AppH_705-727.indd   712 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 713

host A computer or device in a network having a separate IP address.

hostname The name of a host that is unique in the network. Often used on the Internet 

with a series of dot-delimited strings to represent a fully qualified domain name. 
Features a command by that name which both displays and sets the hostname.

hosts file Refers to the file /etc/hosts that contains the hostname-IP address 

mappings.

Hyper Text Markup Language (HTML) The language used to code Web docu-

ments. Uses tags to transfer control to another document on another machine. HTML 

documents can be used to view animation, video, or play audio.

Hyper Text Transfer Protocol (HTTP) The application protocol that retrieves HTML 

documents from a Web server. It is stateless in that a connection has no knowledge of the 

state of the previous connection. HTTP 1.1 supports keep-alive (persistent) connections.

hypertext A link placed in one document with the <A HREF> tag, which points to a 

location in another document in the same machine or another. The World Wide Web is 

a collection of these documents. See also Web page.

in-line editing Feature available in the Korn shell and Bash to recall and edit previous 

commands with vi- and emacs-like commands. Enabled with set -o vi or set -o emacs.

in-place editing Term used in perl to edit a file and write the output back to the same 

file without using redirection.

incremental search A fast and efficient search mechanism available in emacs. The 

search commences the moment a character is entered.

infinite loop A while, until, or for loop which never terminates. The break (last 

in perl) statement is used to transfer control out of the loop.

init A process having the PID number 1, which is responsible for the creation of all 

major processes. init runs all system daemons and the getty process at terminal ports. 

Can also be used as a command to set the system to a specific run level.

inode A structure that stores all file attributes except the filename and is maintained 

in a special area of disk. Copy loaded into memory when a file is opened. See also 

vnode table.

inode number A number that identifies an inode of a file. The number is unique in 

a single file system and displayed with ls -i.

Input Mode One of the three modes of the vi editor where any key depression is interpreted 

as input. Mode terminated by pressing [Esc]. See also Command Mode and ex Mode.

instruction A combination of an address and action as used by sed and awk. The 

address specifies the lines to be affected by the action.

das76205_AppH_705-727.indd   713das76205_AppH_705-727.indd   713 12/13/11   10:56 AM12/13/11   10:56 AM



714 Your UNIX/Linux: The Ultimate Guide

internal command Name given to a sub-command of many UNIX tools like 

vi, emacs, more, mailx, and sed commands, and the shell.

Internet The super network of networks connected by the TCP/IP protocol with 

facilities of email, file transfer, remote login, Net News, and the World Wide Web.

Internet address Same as IP address.

Internet daemon A daemon that listens on multiple ports and invokes other dae-

mons for FTP, TELNET, and POP services. Available as the program inetd or xinetd.

interrupt The sending of a signal (SIGINT) to a process with the intention of terminat-

ing it. A specific key is assigned this job, usually [Ctrl-c] or [Delete], though it can be 

reassigned with the stty command.

interval regular expression (IRE) A regular expression that uses a single or a 

comma-delimited pair of numbers, enclosed by a matched pair of escaped curly braces 

(\{ and \}). The two numbers indicate the minimum and maximum number of times that 

the single character preceding it can occur. Used by grep, sed, and perl commands. 

perl drops the \ in its implementation.

IP address A string of four dot-delimited octets used to describe the logical address 

of a machine in a TCP/IP network. Same as Internet address.

iteration The repeating of a loop’s instruction set as long as the control command 

returns true. Term used in connection with the while, until, and for loops.

job A group of processes working toward a common goal. A pipeline is a simple example 

of a job. All processes in a job have the same process group-id (PGID).

job control A feature provided in most shells (except Bourne) of moving jobs 

between foreground and background and suspending them. Features the fg, bg, and 

jobs commands.

KDE A graphical environment offered by Linux that comprises a workspace, menus, and 

icons. Operations are performed in separate windows whose look and feel are controlled 

by the window manager. See also GNOME.

keep-alive connection A feature available in HTTP 1.1 that allows multiple resources 

to be fetched in a single (persistent) connection. Server holds the connection for a certain 

time to allow further requests. Persistent connections speed up Web access.

kernel The part of the UNIX operating system which is responsible for the creation and 

management of files and processes. Loaded into memory when the machine is booted and 

interacts directly with the machine hardware. All system calls are built into the kernel.

kernel mode A mode of the CPU used by the kernel when it runs on behalf of the 

user process. In this mode, the kernel can access any memory location. A switch from 

user mode to this mode takes place when a program invokes a system call.

das76205_AppH_705-727.indd   714das76205_AppH_705-727.indd   714 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 715

key binding The association of an emacs command with a key sequence. When a 

valid key sequence is pressed, emacs internally executes the command bound to the key.

kill A misnomer; it actually signifies the sending of a signal to a process—often with 

the intention of terminating it. Features a command and system call by the name.

kill ring A temporary storage area used by emacs to store up to the last 30 deletions 

(normally) and copies for later retrieval.

kill script An rc script beginning with K that kills a service. See also start script.

Last Line Mode Same as ex Mode.

library function A C function available in the standard library that performs most of 

the common programming tasks. Library functions encapsulate the system calls they 

internally use and often provide more convenient interfaces than the ones offered by 

system calls.

line A sequence of characters terminated by the newline character.

line address A form of addressing used by sed, awk, and perl to specify a single line 

or a group of contiguous lines. Represented as a single line number or a pair of them to 

limit the boundaries of the text.

link A file attribute stored in the inode that allows a file to be referred to by more than 

one name. Same as hard link. See also symbolic link.

listing The output obtained with the ls -l command showing seven attributes of a file.

local variable A variable that is visible only in the process or function where it is 

defined. See also environment variable.

login A process that overlays the getty program when a user attempts to log in. 

It execs the shell process on successful login.

login directory Same as home directory.

login name Same as user-id.

magic Term used in vi to refer to the special meaning of a character used in a regular 

expression. The magic is turned on and off by using the ex Mode commands

set magic and set nomagic.

Mail Delivery Agent (MDA) The agency responsible for delivering mail to the user. 

Receives a mail message from the Mail Transport Agent and appends it to a text file 

in /var/mail (/var/spool/mail in Linux).

Mail Transport Agent (MTA) The agency responsible for transporting mail across 

a network. Sender’s MTA hands over mail to recipient’s MTA. SMTP is the standard 

protocol used by MTAs.

das76205_AppH_705-727.indd   715das76205_AppH_705-727.indd   715 12/13/11   10:56 AM12/13/11   10:56 AM



716 Your UNIX/Linux: The Ultimate Guide

Mail User Agent (MUA) The client program that is used to send and receive mail. The 

MUA looks at the spool directory in /var/mail (/var/spool/mail in Linux) for incoming 

mail. It also hands over outgoing mail to the Mail Transport Agent. mailx, elm, pine, 

and Netscape Messenger are common MUAs.

mailbox A text file containing incoming mail that has not been viewed. File is named 

after the username, usually in /var/mail (/var/spool/mail in Linux). Binary attach-

ments are held in this file in encoded form. See also mbox.

major number A file attribute that is stored in the inode and that appears in the listing 

of a device file. Indicates the device driver required to access the device. Similar devices 

have the same major number. See also minor number.

makefile A control file used by the make command to determine the programs that need 

to be recompiled. Has the name makefile or Makefile in the user’s working directory.

man page The UNIX documentation as viewed by the man command. Every command, 

system configuration file, system call, and library function is associated with a man page.

manifest constant See symbolic constant.

mbox A text file where a mail message is saved after it has been viewed. Many 

character-based mail clients use $HOME/mbox as the default mbox. See also mailbox.

meta key A control key used in combination with other keys to invoke an emacs 

command. On PCs, this key is represented either by [Esc] or [Alt].

metacharacter Term used to describe a character that means something special to the 

shell. The meaning is reversed by preceding the character with a \. Concept also extends 

to special characters used by certain commands as part of their syntax.

minibuffer The last line in the emacs screen that is used to display system messages 

and commands entered by a user. Search text is entered at the minibuffer. Preceded by 

the mode line.

minor number A file attribute that is stored in the inode and that appears in the 

listing of a device file. Represents the parameters passed to the device driver. See also 

major number.

mode line The line next to the bottom-most line in the emacs screen which displays 

the filename, line number, the modification status, and the mode of the editor. Shows 

up in reverse video.

modification time One of the time stamps of a file stored in the inode which represents 

the date and time the file was last modified. One of the attributes displayed by the listing.

mounting The process of attaching a standalone file system to another file system. 

During booting, all stand-alone systems are mounted on the root file system. Also 

features a command by the name mount. See also unmounting.

das76205_AppH_705-727.indd   716das76205_AppH_705-727.indd   716 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 717

MULTICS An operating system whose development work was aborted to give way to the 

UNIX operating system. Many of the features of UNIX owe their origin to MULTICS.

Multipurpose Internet Mail Extensions (MIME) A standard used on the 

Internet to encode and decode binary files. Also useful in encoding multiple 

data formats in a single mail message. Features two headers—Content-Type and 

Content-Transfer-Encoding.

name server A dedicated service used on the Internet to convert the fully qualified 
domain name of a host to its IP address and vice versa. A name server is queried by 

a resolver and may either provide the answer or the address of another name server.

newline The character generated by hitting [Enter]. Used as the delimiter between 

two lines and forms one of the characters of whitespace.

newsgroup An offline discussion group on the Internet which originated from the 

UNIX-based USENET.

nonprivileged user An ordinary user having no superuser privileges.

Open Group See The Open Group.

option A string normally beginning with a -, which changes the default behavior of a 

command. Multiple options can generally be combined with a single - symbol.

ordinary file The most common file of the UNIX system represented by programs, 

data, and text. It contains data, but not the end-of-file mark. Also known as regular file.

orphan A process whose parent has died. Orphans are usually adopted by init to 

become their parent.

others A category of user understood by the chmod command. A user who is neither 

the owner nor a group owner of a file belongs to this class. One set of file permissions 

is associated with this category. See also owner and group.

overlay Same as exec.

owner A file attribute that signifies that the user has complete authority to determine 

the file’s contents and permissions. Understood as user by the chmod command. The 

string and numeric representations of the owner are stored in /etc/passwd. See also 

group and others.

packet Term applied to describe a fragmented unit of data in a TCP/IP network.

pager A tool that displays output one screen at a time. more and less are the standard 

pagers on UNIX and Linux systems.

parent process-id (PPID) The process-id of the parent process, which is stored in 

the process table entry for every process.

das76205_AppH_705-727.indd   717das76205_AppH_705-727.indd   717 12/13/11   10:56 AM12/13/11   10:56 AM



718 Your UNIX/Linux: The Ultimate Guide

pass-by-value Name given to the mechanism of copying the values of the arguments 

of a function to its parameters. Because of pass-by-value, a function can’t swap the 

values of its two arguments unless pointers are used. Concept applies to all high-level 

programming languages.

passphrase A secret string used to protect a user’s private key. Unlike a password, 

a passphrase can contain spaces.

password A secret string used by a user for authentication during login. The code is 

not flashed on the terminal, but is stored in an encrypted manner in /etc/shadow. Also 

features a command with a similar name (passwd) to change the password.

PATH A shell variable that contains a colon-delimited list of directories that the shell 

will look through to locate an invoked command. The PATH generally includes /bin and 

/usr/bin for nonprivileged users and /sbin and /usr/sbin for the superuser.

pathname A sequence of one or more filenames using a / as a delimiter. All except 

the last filename have to be directories. See also relative pathname and absolute 
pathname.

pending signals mask A field maintained in the process table which stores the 

signals received for a process. The kernel looks up this field and the signal disposition 

table to determine the action to be taken.

ping  The sending of packets to a remote host to check the connectivity of the network. 

Also a command by that name.

pipe A buffered object using flow control that allows one-way data transmission through 

its two ends. Whatever is written to one end is read from the other. Signified by the 

shell’s | symbol. Also a system call by that name. Used to create a pipeline.

pipeline A sequence of two or more commands used with the | symbol so that the 

input of one command comes from the output of the other. See also pipe.

plugin A small program installed in a browser to handle special file formats that can’t be 

handled by the browser. Unlike a helper application, a plugin can’t be invoked separately.

pointer A derived data type in C that can store the address of a variable of any type. 

A variable prefixed with & evaluates to a pointer. A pointer is dereferenced with * to 

access the value at the memory location stored by it. See also dereference.

port number A number used to identify a TCP/IP application, defined in /etc/services. 

Servers use fixed port numbers, but clients use random port numbers. A packet has two 

port numbers, one for each end of the channel. See also socket.

positional parameters The external arguments to a shell script which are read into 

a series of special variables designated as $1, $2, $3, etc. These parameters can be re-

numbered with the shift command.

das76205_AppH_705-727.indd   718das76205_AppH_705-727.indd   718 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 719

POSIX A set of standard interfaces based on the UNIX operating system. POSIX 

compliance ensures that a set of programs developed on one machine can be moved 

to another without recoding. POSIX.1 is the standard for the application programming 

interface of the C language. POSIX.2 provides the interface for the shell and utilities.

POST A method of sending form data to a Web server. Data is sent as a string of 

name=value pairs and fed as standard input to a Common Gateway Interface (CGI) 
program. See also GET.

Post Office Protocol (POP) The TCP/IP protocol used for fetching mail from a mail 

server. POP is often used over a dialup line to fetch Internet mail.

precedence level The priority accorded to an operator in an expression used in C. 

When an operand is shared by two operators, the operator with a higher precedence gets 

priority during evaluation. See also associativity.

preprocessor directive A command meant for the preprocessor that is placed at the 

beginning of a C program. A preprocessor directive begins with # and is not terminated 

with a semicolon. The preprocessor uses these directives to re-create the source program 

in a form that can be understood by the compiler.

private key A key used for encrypting or decrypting data, but which doesn’t leave the 

user’s machine. Often protected by a passphrase. Data encrypted with this key can 

only be decrypted with the public key and vice versa.

process An instance of a running program. Created by the fork system call and usu-

ally followed by an exec. Most of the shell’s internal commands are executed without 

creating a process.

process address space The memory locations that a process can access. Includes 

the text, data, heap, and stack segments.

process birth Term used to refer to the creation of a process. The process is created 

when the command representing it is invoked and dies when command execution is 

complete. The fork system call gives birth to a process.

process context The complete environment seen by the process when it runs. Includes 

a hardware context (the state of the CPU registers) and a software context (the address 

space, process credentials). The kernel saves the context of the current process before 

running another one.

process death Term used to refer to the termination of a process. The process dies 

when the command representing it has completed execution or a signal is sent to it.

process group A collection of processes having some common attributes. In shells 

supporting job control, each job or process is placed in its own process group. 

A process group can be suspended and killed by sending a signal to the leader of 

the group.

das76205_AppH_705-727.indd   719das76205_AppH_705-727.indd   719 12/13/11   10:56 AM12/13/11   10:56 AM



720 Your UNIX/Linux: The Ultimate Guide

process group-id (PGID) A common number allotted to a group of processes. The 

PGID of the group leader is its own PID. See also process group.

process table A structure maintained in memory containing the attributes of every 

active process running in the system. Also maintains the exit status of a terminated 

process until fetched by its parent.

process-id (PID) A unique number allotted to a process by the kernel when it is born.

profile A startup file used and maintained by a user in the home directory. Instructions 

in this file are executed during login time without spawning a sub-shell. However, 

/etc/profile is executed before the user’s own profile.

prompt A string that shows the position of the cursor. The appearance of a prompt 

generally indicates that the previous command has completed its run. Can be customized 

by setting the value of the shell variable PS1.

public key A key used for encrypting or decrypting data, but which is distributed to all. 

Data encrypted with this key can only be decrypted with the private key and vice versa.

quoting Enclosing a group of characters in single or double quotes to remove their 

special meaning. Though the shell ignores all special characters enclosed in single 

quotes, double quotes permit evaluation of $ as a variable and ` for command 
substitution.

r-utilities A set of TCP/IP tools developed by Berkeley as alternatives to the DARPA 
set. The tools include rlogin, rcp, and rsh and are inherently insecure. Have been 

superseded by tools of the secure shell (SSH) suite.

race condition A situation where two or more events contend for the same resource 

and the eventual outcome is determined by the sequence in which the events are serviced.

rc script A shell script maintained in the home directory that is automatically executed 

when creating a sub-shell. Also refers to a set of scripts in /etc that start the daemons that 

should run for a specific run level and kill the ones that shouldn’t. See also start script 

and kill script.

recursion A characteristic feature of some UNIX commands to descend a 

specified directory to access all subdirectories under this directory, and beyond. 

ls, rm, chmod, chown, and chgrp use a special option to do that, while find and tar 

do it compulsorily.

redirection A shell feature that reassigns the standard input or standard output of a 

command. The default source and destination of these streams can be redirected to point 

to a disk file or to a pipe.

region An editing area in vim and emacs that can be defined by a user. A region may 

be copied, deleted, or moved.

das76205_AppH_705-727.indd   720das76205_AppH_705-727.indd   720 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 721

regular expression An ambiguous expression containing some special characters. 

The expression is expanded by a command to match more than one string. Should be 

quoted to prevent interference from the shell. See also wild card.

regular file Same as ordinary file.

relative pathname A pathname which specifies the location of a file using the 

symbols . and .. to refer to the current and parent directories, respectively. See also 

absolute pathname.

remote login Connecting to a remote machine using a username and password. All 

commands entered after logging in are actually executed on the remote machine. See 

also TELNET and secure shell (SSH).

repeat factor A feature available in the vi editor and the more and less commands 

which uses a number as a command prefix to repeat the command that number of times. 

In emacs, it is known as the digit argument.

repository Refers to the centralized storage of a module or project in the Concurrent 

Version System. All users check out and check in files from and to the repository.

resolver A set of library routines used by a TCP/IP application to query a name 
server for resolving a domain name to the IP address. The resolver also looks up 

/etc/resolv.conf.

revision Term used to describe a version in the Revision Control System.

Revision Control System (RCS) An implementation of the document maintenance 

system as described in the Source Code Control System (SCCS).

root The topmost directory in every file system which has no parent. Indicated by the

/ symbol. Also signifies a user who uses the login name root to log on to the superuser 

account.

root file system The main file system containing the essential utilities needed to 

keep the system running. All other file systems are mounted at different mount points 

of this file system.

root name server A server running DNS that specifies the name servers of the top-

level domains like com, edu, org, etc. 

router A special device that routes packets from one network to another.

run level Term used to refer to the various states that a UNIX system can be in. 

Determined by argument to the init command. Action to be taken for a specific run 

level is specified in /etc/inittab and includes the execution of rc scripts.

sandbox Refers to the user’s work area in the Concurrent Version System. All files are 

checked out from a central repository to the sandbox.

das76205_AppH_705-727.indd   721das76205_AppH_705-727.indd   721 12/13/11   10:56 AM12/13/11   10:56 AM



722 Your UNIX/Linux: The Ultimate Guide

secure shell (SSH) A suite of networking tools that enable remote login, file transfer, 

and command execution. Unlike the case with older tools like telnet and ftp, com-

munication with the secure shell is totally encrypted.

server See client-server.

set-user-id (SUID) A special mode of a file indicated by the letter s in the permis-

sions field. The effective user-id of a process having this bit set is the owner of the file 

and not the user running the program. This property lets users modify important system 

files by using a specific command, rather than directly.

shared library A group of object files that are loaded into memory only during runtime. 

Several programs can share the same library code. See also static library.

shell The command interpreter of the UNIX system, which runs perpetually at every 

occupied terminal. The shell processes a user request and interacts with the kernel to 

execute the command. It also possesses a programming capability.

shell function A group of statements executed as a bunch in the current shell. A shell 

function accepts parameters and can return only a boolean value.

shell script An ordinary file containing a set of commands, which is executed in an 

interpretive manner in a sub-shell. All the shell’s internal commands and external UNIX 

commands can be specified in a script.

side effect The action performed by a function in C apart from returning a value. 

A function is used for its side effect, or its return value, or both.

signal The notification made by the kernel that an event has occurred. A signal has a 

default disposition (action to take), but it can be overridden by a user-defined signal 
handler. Signals SIGKILL and SIGSTOP can’t be ignored or handled otherwise. See 

also signal disposition.

signal disposition The action taken when a signal occurs. Every signal has a default 

disposition, maintained in the signal disposition table, which could be to terminate, to 

stop the process, or to ignore the signal. The disposition can be changed by using a 

signal handler except for the SIGKILL and SIGSTOP signals.

signal handler A user-defined function in a C program that catches a signal and makes 

it behave in a manner that is different from the default. Signals SIGKILL and SIGSTOP 

can’t be caught.

signature file A file named .signature in a user’s home directory. Used to enter a 

person’s details that must accompany every mail message. Most mail user agents are 

configured to automatically attach the file with every outgoing message.

Simple Mail Transfer Protocol (SMTP) The TCP/IP protocol used to transport mail 

across the Internet. The SMTP client communicates with the SMTP server at the other 

das76205_AppH_705-727.indd   722das76205_AppH_705-727.indd   722 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 723

end and directly delivers the message. sendmail is the most common implementation 

of SMTP.

sleep Term used to refer to the temporary suspension of a process. Also features a 

command and library function by that name.

socket A combination of a port number and IP address. Both source and destination 

hosts use a socket each for communication. No two connections can have the same 

socket pair. See also port number.

Source Code Control System (SCCS) An optimized document maintenance system 

that stores one version in full and only the changes needed to generate the other versions. 

Also features checks to prevent multiple users from editing the same version. See also 

Revision Control System (RCS).

spawn Term used to refer to the creation of a child process. See also process birth.

standard error The destination used by the diagnostic output stream to write its output. 

Includes all error messages generated by UNIX commands. The default destination of 

this stream is the terminal, but it can be redirected to any file.

standard input The source opened by the shell to accept information as a stream of 

characters. By default, the keyboard is assigned this source, but it can also come from 

a file, a pipeline, or a here document.

standard library A collection of the code of functions and their supporting files ar-

chived into one or more files. These archives are shipped with every distribution of C. 

All the commonly used functions like printf and scanf have their code and related 

information in this library.

standard output The destination used by commands to send output to. Used by all 

UNIX commands that send output to the terminal. The default destination can also be 

reassigned to divert output to another file or a pipeline.

start script An rc script beginning with S that starts a service. See also kill script.

static library A group of object files bundled into an archive. A program using a static 

library contains the object code of the library. See also shared library.

sticky bit A special mode assigned to a file or a directory and indicated by the letter t 

in the permissions field. The executable code of an ordinary file gets stuck in the swap 

area once it has been executed. A directory with the sticky bit set can be shared by a 

group of users, where one user can’t tamper with another user’s files.

sub-shell A second shell created by the parent shell. It is normally required for execut-

ing a shell script or a group of commands with the () operators. Changes made to the 

environment of a sub-shell are not available in the parent.

das76205_AppH_705-727.indd   723das76205_AppH_705-727.indd   723 12/13/11   10:56 AM12/13/11   10:56 AM



724 Your UNIX/Linux: The Ultimate Guide

subroutine A group of statements executed as a bunch in perl—like a shell function. 

Subroutines use arguments which are stored in the array @_. perl uses the & symbol to 

call a subroutine.

superblock A special area in every file system which contains important information on 

the file system. Includes a list of free data blocks and inodes. The disk copy is regularly 

updated with the memory copy by the sync command.

superuser Same as system administrator.

suspend The stopping of a job. The job may later be resumed either in the background 

or foreground. This feature is available in csh, ksh, and bash.

swapping The process of moving currently inactive processes from memory to the 

swap area of the disk (swapping out). Also refers to the transfer of these processes from 

the swap area to memory when ready for execution (swapping in).

symbolic constant A named constant defined with the #define directive of the C 

preprocessor. A symbolic constant can effectively replace a variable if its value doesn’t 

change. Also known as manifest constant.

symbolic link A file which points to the location of another file or directory. Unlike 

hard links, a symbolic link can link files across file systems. Can be used to link direc-

tories also. See also link.

symlink Same as symbolic link.

sync Term used to describe synchronization of the superblock and inodes with their 

respective memory versions. Also features a command by that name which the kernel 

uses to write the memory data to disk.

system administrator The person responsible for the management of system 

resources. The administrator can change any file attribute and kill any user process. Uses 

a special user account (generally, root) to perform administrative duties. Also known 

as superuser.

system call A routine defined in the kernel which performs the basic operations of the 

computer, like opening a file and creating a process. All UNIX commands and library 

functions are written in terms of system calls. Processor switches from user mode to 

kernel mode when executing a system call.

system process A process which runs in the system during booting without being 

specifically requested by a user. init, getty, cron, and lpsched are some of the system 

processes. See also daemon.

tab A single character which simulates a contiguous set of spaces. Is generated by 

hitting a specific key or [Ctrl-i]. Forms one of the characters of whitespace. Useful 

for aligning columns.

das76205_AppH_705-727.indd   724das76205_AppH_705-727.indd   724 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 725

tagged regular expression (TRE) Term used to indicate the grouping of a regular 

expression with an escaped pair of parentheses, \( and \). This group is repeated elsewhere 

in the line by using the tag \n or $n (perl), where n is a number between 1 and 9. Used 

by grep, sed, and perl commands.

TCP/IP Expands to Transmission Control Protocol/Internet Protocol—a collection 

of protocols used for networking computers that use different operating systems and 

different hardware. Ensures reliable transmission with full error-correction facilities.

TELNET A TCP/IP protocol that enables a user to log on to a remote machine after 

supplying a username and password. After logging in, the user can use the remote 

machine as if it is a local one. All files are created on the remote machine. The telnet 

command uses this protocol.

The Open Group Owner of the UNIX standard and originator of The Single UNIX 

Specification. Includes X/OPEN in its fold. Also maintains the X Window system.

toggle switch A command that reverses the effect of its immediate previous invocation. 

emacs has a number of commands that act as toggle switches.

top-level domain (TLD) Any domain under the root (.) domain which has not been 

allotted to a specific country. TLDs comprise the generic domains com, edu, org, net, 
museum, biz, etc.

umask A number maintained in the shell that determines a file’s default permissions. 

This number is subtracted from the system’s default to obtain a file’s actual permissions. 

The value can be displayed and set by using a command of the same name.

Uniform Resource Locator (URL) A string of characters that specifies a resource 

on the Web. Comprises the protocol, the FQDN of the site, and the pathname of a file 

or program to run.

unmounting The process of disengaging a file system from the main file system. The 

umount command performs this unmounting. See also mounting.

user The owner of a file as understood by the chmod command. See also group and others.

user mode A mode of the CPU when running a program. In this mode, the program 

has no access to the memory locations used by the kernel. See also kernel mode.

user-id (UID) The name used by a user to gain access to the system. A list of author-

ized names is maintained in /etc/passwd along with their numeric representations. 

Also known as login name and username. See also group-id.

username Same as user-id.

virtual console A system of using multiple screens and logins from a single UNIX 

machine. A new screen is opened by using [Alt] and a function key.

das76205_AppH_705-727.indd   725das76205_AppH_705-727.indd   725 12/13/11   10:56 AM12/13/11   10:56 AM



726 Your UNIX/Linux: The Ultimate Guide

vnode table The image of the inode in memory. Contains, apart from the inode in-

formation, a reference count that shows the number of processes that point to the table. 

A file can’t be entirely deleted as long as this table is open. See also file table.

wait Term used to refer to the inaction of a parent process while a child is running. 

Normally the parent waits for the death of the child to pick up its exit status. Also 

features a shell built-in command and a system call by that name.

wake Term used to indicate the termination of a dormant activity when an event occurs. 

The kernel wakes up a sleeping process when a specific event has occurred (like the 

completion of I/O).

watchpoint Used by a debugger to keep a watch on a variable. The program pauses 

when the value of the variable changes. See also breakpoint and catchpoint.

Web page An HTML document containing text and graphics that is presented in 

the form of a page at every Web site. A Web page has links to other pages—often on 

different machines.

Web server A TCP/IP application that runs the HTTP protocol. The World Wide Web 

serves all resources through Web servers.

whitespace A contiguous sequence of spaces, tabs, or newlines. Also, the default value 

of the IFS variable. Used as delimiter by the shell to parse command-line arguments and 

by the set statement to assign its arguments to positional parameters.

wild card A special character used by the shell to match a group of filenames with 

a single expression. The * and ? are commonly used wild-card characters. See also 

regular expression.

word A contiguous string of characters not containing whitespace. wc can count words, 

and vi and emacs also enable cursor movement using a word as a navigational unit.

World Wide Web A service on the Internet featuring a collection of linked documents 

and images. The browser (client) fetches these resources from a Web server using the 

HTTP protocol.

wraparound A feature provided by the vi and emacs editors for resuming the search 

for a pattern from the other end of a file. The entire file is thus searched irrespective of 

the position in the file the search was launched from.

X client An X program which performs a specific function and uses the X server for 

display. xterm is a common X client found in every X Window system.

X server The program in X Window which controls the display, including the monitor, 

mouse, and keyboard. X clients write their output to this program. If the display changes, 

only the server needs to change and not the clients.

das76205_AppH_705-727.indd   726das76205_AppH_705-727.indd   726 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix H: Glossary 727

X Window System The graphical component of the UNIX system. X clients write 

their output to the server, which is responsible for their display on separate windows.

zipped file Any file that is compressed with the gzip, zip, or bzip2 commands. They 

are decompressed with gunzip, unzip, and bunzip2.

zombie A dead process whose exit status has not been picked up by its parent using 

wait. Zombies clog the process table and can’t be killed.

das76205_AppH_705-727.indd   727das76205_AppH_705-727.indd   727 12/13/11   10:56 AM12/13/11   10:56 AM



728

I 
A P P E N D I X

 I
Solutions to Self-Test 

Questions
  Chapter 1 

1.1 Kernel, shell.

1.2 No, a program is an executable file that resides on disk. A process is created in 

memory by executing the program.

1.3 The ASCII value.

1.4 The machine name.

1.5 Not necessarily; the password could be incorrect too.

1.6 (i) ls, (ii) ps (iii) who.

1.7 The shell is assigned a new PID by the kernel.

1.8 The command displays (concatenates) the contents of both files. cat can be used 

with multiple filenames.

1.9 The abbreviated command also displays the contents of both files.

1.10 The command should have been echo $SHELL.

1.11 ls displays the directory named bar, but ls bar displays foo, the name of the 

file in bar.

1.12 Ken Thompson and Dennis Ritchie.

1.13 Because it was then prevented by the U.S. government from selling computer 

software.

1.14 From the University of California, Berkeley. Notable contributions include the 

vi editor, C shell, symbolic links, and TCP/IP.

1.15 Linux.

1.16 (i) Sun, (ii) IBM, (iii) HP (Digital).

1.17 X/OPEN was a standards body now merged with The Open Group, which owns 

the UNIX trademark.

1.18 Richard Stallman and Linus Torvalds.

1.19 Software developers distributing products under that license must make the source 

code public.

1.20 Because it is written in C, a high-level language. A program written in a high-level 

language can run without major modifications when moved to another machine.

1.21 System V (AT&T) and BSD (Berkeley). SunOS is based on BSD, but Solaris is 

based on AT&T’s SVR4.

1.22 Because complex jobs can be handled by connecting a number of these simple ones.

das76205_AppI_728-751.indd   728das76205_AppI_728-751.indd   728 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  729

1.23 The X Window system.

1.24 The shell, perl, tcl and python.

1.25 Fedora, SuSE, and Ubuntu.

  Chapter 2 
2.1 The : must be a command that does nothing. The command type : indicates 

that the command is built into the shell.

2.2 False, you can use uppercase and provide extensions to command filenames, 

although convention follows the opposite.

2.3 printf, script, and passwd.

2.4 echo and pwd are internal commands; date and ls are external.

2.5 The command that occurs first in the PATH list would require no special treatment. 

The other command needs to be used with a pathname.

2.6 With a dot.

2.7 Three.

2.8 Linux.

2.9 The command line.

2.10 uname -r.

2.11 Because the commonly used UNIX commands are located there.

2.12 Whitespace is a contiguous set of spaces, tabs, and newline characters. The shell 

compresses multiple contiguous whitespace characters into a single space.

2.13 No, the buffer associated with the keyboard stores all input.

2.14 fname is supposedly a variable, so it should be prefixed with a $.

2.15 A pager is a program that displays text on the screen a page at a time. more and 

less are two standard pagers used by man.

2.16 Press n repeatedly.

2.17 Try using apropos with a keyword.

2.18 The -u option provides information on idle time.

2.19 Unviewed mail is deposited in the mailbox, but viewed mail moves to the mbox.

2.20 The root user is not prompted for the old password. The password encryption is 

stored in /etc/shadow.

2.21 Not as an ordinary user.

2.22 The name of the operating system.

2.23 Run script foo at the beginning of the session.

2.24 The command is run by romeo who is logged in from a host named pc123 at the 

date and time shown. romeo’s terminal file is pts/10.

2.25 Run stty -a and look for these three keywords in the output.

2.26 stty sane

  Chapter 3 
3.1 255 characters. The / and NULL (ASCII value 0) can’t be used as filename 

characters.

3.2 (i) Difficult to remove such a file. (ii) Many commands interpret such filenames 

as options.

SO
LU

T
IO

N
S

das76205_AppI_728-751.indd   729das76205_AppI_728-751.indd   729 12/13/11   10:56 AM12/13/11   10:56 AM



730 Your UNIX/Linux: The Ultimate Guide

3.3 Ordinary files can be grouped into text and binary. A text file contains only print-

able characters whose ASCII values are less than 128. A binary file can contain any 

character. C source programs and perl and shell scripts are text files. Executable 

programs, image files, and music files are binary in nature.

3.4 Yes, UNIX filenames are case-sensitive.

3.5 (i) cd ../../mail (ii) cd ../.. or cd /usr
3.6 The directory doesn’t change.

3.7 ls .. displays all filenames in the parent directory, but ls -d .. shows .. as 

the parent directory without displaying its contents.

3.8 Only some of them; most are meant for use by the superuser.

3.9 No, echo is also a shell builtin which is executed by default.

3.10 Use mkdir -p share/man/cat1, which creates all intermediate directories.

3.11 (i) test already exists. (ii) An ordinary file with the same name exists. (iii) The 

user doesn’t have authorization to create a file or directory. (iv) There’s no space 

on disk.

3.12 (i) ls -F (ii) ls -a
3.13 The contents of foo three times.

3.14 od -bc foo
3.15 Use cp -r bar1 bar2. If bar2 exists, then bar1 becomes a subdirectory of bar2, 

so bar2 should be removed before running cp -r.

3.16 rm -rf forcibly deletes a nonempty directory structure, but rmdir does not.

3.17 (i) lp -dlaser -n3 /etc/passwd (ii) lp -dlaser -n3 -m /etc/passwd
3.18 Create a file with these characters, and then use od -bc foo.

3.19 wc shows the count for each file, but also prints a total count at the end.

3.20 Press [Ctrl-x] and answer n at the next prompt.

3.21 Position the cursor at the end of the first line using [Ctrl-e] and press [Ctrl-d] to 

pull up the following line. Repeat this sequence on the new line thus formed as 

many times as you need.

  Chapter 4 
4.1 The ls -l output is called the listing. The command ls -lRa / > foo saves 

the listing of all files in the system.

4.2 (i) 756 (ii) 640 (iii) 124
4.3 (i) r-xrw-rwx (ii) rw--w--wx (iii) r---w---x
4.4 Only the owner can remove a file unless the directory is writable by group.

4.5 The superuser can read, but not write.

4.6 The directory has write permission for them.

4.7 You can create a directory in /tmp (permissions—rwxrwxrwt), but not in 

/bin (rwxr-xr-x). The categories, group and others, can’t write in /bin, but 

they can write in /tmp.

4.8 You can copy once, but not subsequently because the copy is now write-protected.

4.9 Use umask 006 before creating the file.

4.10 ls -i foo
4.11 The inode stores all file attributes except the filename, which is stored in the file’s 

directory.

das76205_AppI_728-751.indd   730das76205_AppI_728-751.indd   730 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  731

4.12 The file has a single inode with a link count of three. The file can be accessed by 

three pathnames.

4.13 The rm command removes both.

4.14 ln *.c bar
4.15 False, a symbolic link has a separate inode.

4.16 (i) ln foo1 foo2 (ii) ln -s foo1 foo2. Deleting foo1 (i) doesn’t make much 

difference as foo1 and foo2 are identical, (ii) deletes the file that actually contains 

the data.

4.17 The UID, GID, the time of last modification and access.

4.18 In /etc/passwd.

4.19 Only the superuser can use chown to change a file’s owner. However, a user can 

change her own group with chgrp but only to one to which she also belongs.

4.20 Recursively changes in the current directory (i) the owner of all files including 

the hidden ones, (ii) the group owner of all files but not the hidden ones.

4.21 False, the access time of a file is not changed by a lookup of the inode.

4.22 The access time of foo doesn’t change when using the >> symbols, even though 

the file has been modified.

4.23 (i) find /docs /usr/docs -name “z*” -print 

 (ii) find /docs /usr/docs \( -name “*.html -o -name “*.java” \) -print

  Chapter 5 
5.1 (i) O (ii) o
5.2 (i) Position the cursor to the end of has and then press sve[Esc]. (ii) Use S.

5.3 [Ctrl-l]
5.4 The commands :x, :wq and ZZ save the buffer before terminating a session. The 

q! command aborts a session.

5.5 You didn’t press [Esc] before using 50k. Press [Ctrl-w] to erase the text and then 

press [Esc].

5.6 (i) 40| (ii) 0 (iii) $
5.7 Use 0, 5w, 4s, enter counter and press [Esc].

5.8 (i) 7 (ii) 2

5.9 Only (iii) and (iv) because they change the buffer. (i) and (ii) merely perform 

navigation without changing the buffer.

5.10 Position the cursor on t and use xp.

5.11 With the cursor on the topmost line, use 5J, then 0 to move to line beginning 

and keep ~ pressed until the cursor moves to the end of line. (You can also use a 

repeat factor with ~.)

5.12 Use :!cc % where % signifies the current filename.

5.13 n repeats a search in the same direction the original search was made, which could 

be forward or back. N operates in a reverse manner.

5.14 Because you pressed an o before pressing the dot.

5.15 Use :.w foo, and if foo exists, use :.w! foo.

5.16 (i) d1G (ii) 10yl (el) (iii) 10yw
5.17 Use the command “a5yy on the first of the lines to be copied. Bring up the second file 

with :e filename, move to the right location, and press “ap. To toggle, use [Ctrl-^].

das76205_AppI_728-751.indd   731das76205_AppI_728-751.indd   731 12/13/11   10:56 AM12/13/11   10:56 AM



732 Your UNIX/Linux: The Ultimate Guide

5.18 u undoes the last editing action. U undoes all changes made to the current line. It 

won’t work if the cursor is moved away from the current line.

5.19 d and y are operators, but j and $ are commands that can be used singly. An 

operator can either be doubled by itself (like dd) or combined with a Command 

Mode command (like d$).

5.20 Use :1,$s/Internet/Web/g in the ex Mode.

5.21 :e!
5.22 Make the setting :set autowrite in ~/.exrc.

  Chapter 6 
6.1 Because they mean nothing to the command. A * is expanded to match all file-

names in the current directory.

6.2 The command lists all filenames where a dot occurs anywhere in the filename 

except at the beginning.

6.3 rm .[!.]* removes all files beginning with a dot except the . and .. directories.  

rm * doesn’t remove these files.

6.4 chap[a-cx-z]
6.5 Yes, because 3 has a higher value than h in the ASCII collating sequence.

6.6 Use cp chap0[1-9] chap1[0-9] chap2[0-6] .. in the Bourne shell. For other 

shells, you can use chap{0[1-9],1[0-9],2[0-6]} as a single wild-card pattern.

6.7 (i) *[!0-9] (ii) ????*
6.8 When there is only one file in the current directory and that file is also a directory.

6.9 find
6.10 Press a \ before pressing [Enter].

6.11 The terminal, file, and pipe.

6.12 No, but to the file representing the terminal.

6.13 Legitimate; the bc command reads standard input from bar and writes standard 

output to foo.

6.14 ls -lRa $HOME > foo
6.15 To prevent extraneous output and error messages from appearing on the terminal.

6.16 They expect input from standard input—the terminal by default. Press [Ctrl-d] 

to return to the shell.

6.17 Use echo >\ [Enter] where the \ is followed by a space. The sequence ls | od -bc 

shows octal 040 as the filename.

6.18 (i) who | wc -l (ii) find $HOME -type d -print | wc -l
6.19 $SHELL is evaluated in double quotes only.

6.20 (ii)

6.21 No, it doesn’t. The shell interprets x as a command and = and 10 as its arguments.

6.22 (iv)

  Chapter 7 
7.1 The PID is a unique number assigned to a process by the kernel. The PPID is the 

PID of the parent. The command echo $$ displays the PID of the shell.

7.2 Use ps -e (SVR4) or ps aux (Linux).

das76205_AppI_728-751.indd   732das76205_AppI_728-751.indd   732 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  733

7.3 Shell scripts. The sub-shell reads and executes each statement in the script.

7.4 cd, pwd, echo
7.5 fork and exec.

7.6 ps -f -u timothy (ps --user timothy in Linux)

7.7 Run ps -e and note those processes that show a ? in the TTY column.

7.8 Use the -s KILL option.

7.9 Use kill $!, which should work in most shells.

7.10 kill -l
7.11 No, use an & as well to run it in the background.

7.12 When the shell doesn’t support job control.

7.13 Press [Ctrl-z] to suspend the process. Use fg to return to the editor from the shell.

7.14 You can’t do that.

7.15 at 8 pm tomorrow < dial.sh
7.16 The find command runs at 21:30 hours every day.

7.17 Use the interrupt key, but not [Ctrl-d].

7.18 By removing the .allow and .deny files of these commands.

  Chapter 8 
8.1 By using the export variable command.

8.2 It is set by /etc/passwd. However, an explicit reassignment of HOME doesn’t 

change the home directory, only the directory to which cd switches by default.

8.3 In /usr/share/lib/terminfo/v or /usr/share/terminfo/v.

8.4 Make the setting PATH=$PATH:.. in the profile.

8.5 MAILCHECK=60
8.6 Define alias rm=”rm -rf”. To execute the rm command on disk, use \rm.

8.7 (i) r (ii) !!
8.8 (i) No command; HISTSIZE determines size of the history file. (ii) HISTSIZE=200
8.9 (i) r tar sh=pl (ii) !tar:s/sh/pl
8.10 (iii)

8.11 set -o vi (on) and set +o vi (off).

8.12 The next command should be more $_ or more !*.

8.13 Make the setting set -o noclobber. To overwrite, use >|.

8.14 Run cd /usr/include ; cd ../lib. The command cd - will now toggle between 

the two directories.

8.15 cp ~henry/* 
8.16 /etc/profile is meant for storing global settings and is executed when a user 

logs in, and before her own profile is executed.

8.17 No, Bash will read only .bash_profile.

8.18 False; a script runs only the rc file.

  Chapter 9
9.1 (i) pr -t -d foo (ii) ls | pr -t -3
9.2 comm -12 foo1 foo2
9.3 The two files are identical.

das76205_AppI_728-751.indd   733das76205_AppI_728-751.indd   733 12/13/11   10:56 AM12/13/11   10:56 AM



734 Your UNIX/Linux: The Ultimate Guide

9.4 head picks up 10 lines from each file, but precedes each group with a header that 

shows the filename.

9.5 ps | tail +2
9.6 echo “Line length = `head -n 1 shortlist | wc -c`”
9.7 Run a.out in the background with & and then use tail -f foo if foo is the 

name of the log file.

9.8 You can use either the -c or -f option, not both.

9.9 PATH=`echo $PATH | cut -d: -f2-`
9.10 year=`date | cut -d” “ -f6`
9.11 sort -t: -k 5.1 shortlist
9.12 First cut out the date field and then the year: 

 cut -d: -f5 shortlist | cut -c7- | sort | uniq -c
9.13 cut -d: -f4 shortlist | sort -u | pr -t -n
9.14 (i) uniq foo (ii) sort -u foo
9.15 tr ‘[a-z]’ ‘[A-Z]’ < shortlist

  Chapter 10 
10.1 grep done foo | tail -n 1
10.2 grep searches for an asterisk at the beginning of the line. The * is not preceded 

by a character, so the \ isn’t required.

10.3 cat *.[hH][tT][mM] *.[hH][tT][mM][lL] | grep -ic “IMG SRC”
10.4 find . -name “*.c” -print | grep -v “/.*/”
10.5 numb=`grep -l printf *.c | wc -l`
10.6 ls -lut `grep -l wait *.c`
10.7 (i) The longest pattern starting with a and ending with b, as close to the left of 

the line as possible. (ii) At least one character in the line. (iii) The } as the only 

character in the line.

10.8 Use grep -E with these patterns: (i) SIG(STOP|TSTP), (ii) SIGTT(IN|OU), 

(iii) harris(|on).

10.9 g* could match nothing, but gg* matches at least one g.

10.10 (i) ........... (11 dots) (ii) .\{11\}
10.11 grep -v director emp.lst | sort -t: -k 5.7 -r | cut -d: -f2,3 | 

head -n 1
10.12 Displays the usernames of those using the shell evaluated from $SHELL. The 

second $ anchors the pattern at the end of the line.

10.13 grep -E “^[0-9]+\.[0-9]+ |^[0-9]+\.[0-9]+\.[0-9]+ “ chap[01][0-9]
10.14 (i) alias lsdir=”ls -l | grep ‘^d’” 
 (ii) alias lsdir=”ls -l | sed -n ‘/^d/p’”
10.15 (i) sed -n ‘3,10p’ foo (ii) sed -n ‘$!p’ foo
10.16 (i) sed ‘p’ foo  
 (ii) 

  sed -n ‘a\
  .... A blank line ....
  ‘p foo

das76205_AppI_728-751.indd   734das76205_AppI_728-751.indd   734 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  735

10.17 Use any numeral as a “temporary” character for sed:

 sed -e ‘s/_/9/g’ -e ‘s/-/_/g’ -e ‘s/9/-/g’ foo
10.18 sed ‘s/Linux/Red Hat &/g’ foo
10.19 sed ‘s/^/  /’ foo
10.20 Look for the locations where the : occurs and then use the TRE:

 sed ‘s/\([^:]*:\)\([^ ]*\) \([^:]*\)/\1\3 \2/’ emp.lst

  Chapter 11 
11.1 TCP/IP uses timeout and retransmission facilities to monitor segments. It ensures 

that a missing or corrupted segment makes reassembly impossible.

11.2 The port number associates a packet with an application. Look up /etc/services, 

and you’ll find that finger uses port 79.

11.3 Because the password in both is sent in clear text, which can easily be intercepted. 

The Secure Shell (SSH) encrypts transmission, so it is used by many.

11.4 Use the hostname command.

11.5 You did not use ftp’s binary command before starting the transfer, and the 

machine’s default mode is not binary.

11.6 You can’t.

11.7 Trying out every possible key combination. The longer the key, the more the 

possible combinations.

11.8 Symmetric key.

11.9 Unlike a password, a passphrase allows the use of spaces. A passphrase also 

protects the private key.

11.10 scp -r juliet@saturn:”*” .
11.11 Runs the date command on jupiter and saves the output on that machine.

11.12 By separating the display handling component from the program and placing that 

responsibility on the server program that handles the display.

11.13 Yes, by using the -display option of the client or the DISPLAY variable before 

invoking the client.

11.14 The file has to be maintained in every host of a network.

11.15 aero, biz, pro are three new entrants. Domain names are case-insensitive.

11.16 The MUA hands over outgoing mail to the MTA, which connects directly to its 

peer at the destination to transmit the message. The MTA finally invokes the MDA 

to deliver mail to the user’s mailbox.

11.17 The original SMTP protocol used 7-bit ASCII, so 8-bit data are encoded 

using base64. Encoded data is preceded by the headers Content-Type and 

Content-Transfer-Encoding.

11.18 GIF, JPEG, and PNG.

11.19 Hypertext is a system of organizing information by which references can be made 

to other documents in the same or different server. The concept applies to images 

as well.

11.20 Hyper Text Transfer Protocol—the application protocol that uses port number 

80 to serve resources on the Web.

das76205_AppI_728-751.indd   735das76205_AppI_728-751.indd   735 12/13/11   10:56 AM12/13/11   10:56 AM



736 Your UNIX/Linux: The Ultimate Guide

11.21 A program invoked by an HTTP server to perform some processing work that it 

is unable to do itself. A CGI program creates HTML code and passes it back to 

the server.

11.22 Use the URL http://localhost.

  Chapter 12
12.1 Both print the entire line. print is not necessary if the selection criteria are 

specified.

12.2 awk -F: ‘$5 ~ /^09|^12/’ empn.lst
12.3 (i) awk ‘NR <= 5’ foo (ii) awk ‘NR == 5, NR == 10’ foo 

 (iii) awk ‘NR >= 20’ foo (iv) awk ‘/negroponte/’ foo
12.4 awk ‘{ print NR “. “ $2 }’ foo
12.5 awk ‘$0 !~ /^[ ]*$/’ foo
12.6 The sort command must be enclosed in double quotes.

12.7 awk ‘{ x= NR % 2 ; if ( x == 1 ) print }’ foo
12.8 

    awk -F: ‘{ 
       if ($6 > 100000)
           print > “foo1”
       else
           print > “foo2”
    }’ emp.lst

12.9 This one needs a small tweak: awk ‘{print $NF}’ foo.

12.10 awk ‘length > 100 && length < 150’ foo
12.11 ls -l | awk ‘$1 ~ /^-/ { tot += $5 } END {print tot}’
12.12 awk -F: ‘{ split($2, name, “ “) ; print name[2], name[1]}’ empn.lst
12.13 x=`awk -F: ‘{ x+= $6 } END { print x/NR }’ empn.lst`
12.14 ls -lR $HOME | awk ‘ $6 ~ /^Jan/ && $7 ~ /^6/ && $8 ~ /^11/’
12.15 

     echo “DOCUMENT LIST” | \
     awk ‘{ for (k = 1 ; k < (55 - length($0)) / 2 ; k++)
               printf “%s”,” “
            print $0 }’

12.16 

     echo “DOCUMENT LIST” | \
     awk ‘{ k = 0
            while (k < (55 - length($0))/2) {
               printf “%s”, “ “ ; k++
            }
            print $0
          }’

das76205_AppI_728-751.indd   736das76205_AppI_728-751.indd   736 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  737

  Chapter 13 
13.1 (i) x10$ (ii) 1010
13.2 Use !/usr/bin/ksh as the she-bang line or use ksh script_name.

13.3 $0 was used in the program.

13.4 The exit status is the value (0—true) returned by the command to its parent. It is 

available in $?.

13.5 Only grep returns a false exit status if the pattern is not found; sed and find 
don’t.

13.6 

 #!/bin/sh
 [ $# -gt 3 ] && option=”-i”
 rm $option $*

13.7 test is a shell builtin. Run the script with sh test or ./test.

13.8 

    case $LOGNAME in
      henry|romeo) case `tty` in
                   *tty0[56]) ;;
                           *) echo “You cannot use this terminal” ; exit ;;
                   esac ;;
                *) echo “You are not authorized to use script” ; exit ;;
    esac

13.9 expr, bc, and basename were discussed because the Bourne shell has no comput-

ing and string-handling facilities. It can’t introduce delays, either, so sleep was 

also discussed.

13.10 The exit statement will always be executed irrespective of the condition. Use this 

instead: [ $# -ne 2 ] && { echo “Usage: $0 min_guid max_guid” ; exit ; }
13.11 

    #!/bin/sh
    for file in * ; do
       echo “==> $file <==”
       tail -n 3 $file
    done

13.12 (i) 

       #!/bin/sh
       echo “Enter a long string: \c”
       read name
       case $name in
       ??????????*) ;;
                 *) echo “String shorter than 10 characters”
       esac

das76205_AppI_728-751.indd   737das76205_AppI_728-751.indd   737 12/13/11   10:56 AM12/13/11   10:56 AM



738 Your UNIX/Linux: The Ultimate Guide

 (ii) The case construct in (i) can be replaced with this:

        if [ `expr “$name” : ‘.*’` -lt 10 ] ; then
           echo “String shorter than 10 characters”
        fi

13.13 expr “$x” : ‘\(.*\)/[^/]*’
13.14 

    #!/bin/sh
    [ $# -eq 0 ] && { echo “Usage: $0 filename” ; exit ;}
    case $1 in
       *.gz) program=gunzip ; ufilename=`basename $1 .gz` ;;
      *.bz2) program=bunzip2 ; ufilename=`basename $1 .bz2` ;;
      *.zip) program=unzip ; ufilename=`basename $1 .zip` ;;
    esac
    if [ -f “$ufilename” ] ; then
        echo “Uncompressed file $ufilename exists; Exiting”
    else
        $program $1
    fi

13.15 

    #!/bin/sh
    cd $1
    for file in * ; do
       if [ -f ../$2/$file ] ; then
          cmp $file ../$2/$file >/dev/null 2>/dev/null && rm ../$2/$file
       fi
    done

13.16 Replace the assignment to lastfile at the beginning of the script with this:

 case $# in
      1) lastfile=$1 ;;
      0) lastfile=`ls -t *.c 2>/dev/null | head -n 1` ;;
      *) exit ;;
 esac
 case $lastfile in
    *.c) ;;
      *) exit;;
 esac

13.17 Both execute an infinite loop (i) unconditionally, (ii) only if script is run with at 

least one argument.

13.18 (i)

        x=1                           
        while [ $x -lt 6 ] ; do               

das76205_AppI_728-751.indd   738das76205_AppI_728-751.indd   738 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  739

           ps -e ; sleep 30                
           x=`expr $x + 1`
        done

 (ii) 

        for x in 1 2 3 4 5 ; do
           ps -e ; sleep 30
        done

 The for loop uses x only as a dummy variable.

13.19 

    #!/bin/sh
    for file in “$@” ; do
       if [ -f $file ] ; then
           ufile=`echo $file | tr ‘[a-z]’ ‘[A-Z]’`
           if [ -f $ufile ] ; then
               echo “$ufile also exists”
           else
               mv $file $ufile
           fi
       else
           echo “$file doesn’t exist”
       fi
    done

13.20 

    #!/bin/sh
    user=$1
    grep “^$user:” /etc/passwd >/dev/null || { echo “Not valid user” ; exit ; }
    find / -type f -user $user -ls 2>/dev/null | awk ‘{tot += $7 }
    END {print tot }’

13.21 We need to use seven dummy variables to skip the first seven fields of the ls -lids 

output:

    #!/bin/sh
    find / -name $1 -ls 2>/dev/null |\
    while read a b c d e f g line ; do
        echo $line
    done

13.22 foo begins with a hyphen.

13.23 Use shift 3 and then access $9.

13.24 

    #!/bin/sh
    OLDIFS=”$IFS”         # Save old value of IFS

das76205_AppI_728-751.indd   739das76205_AppI_728-751.indd   739 12/13/11   10:56 AM12/13/11   10:56 AM



740 Your UNIX/Linux: The Ultimate Guide

    IFS=:                 # before changing it
    set -- $PATH
    for directory in “$@” ; do
        if [ ! -d $directory ] ; then
            echo “$directory doesn’t exist”
        elif [ ! -x $directory ] ; then
            echo “$directory doesn’t have search permission”
        fi
    done
    IFS=$OLDIFS           # Restore old value of IFS

  Chapter 14 
14.1 All commands to be executed with -e. (i) Treats \t literally and prints it, but 

only if the print statement is enclosed within double quotes. (ii) Prints a tab. 

(iii) Prints romeo.com as @heaven is interpreted as an array.

14.2 perl -e ‘print “UNIX” x 20 . “\n” ;’
14.3 perl -ne ‘print “$.\t” . $_’ foo
14.4 

     #!/usr/bin/perl
     print(“Enter three numbers: “) ;
     $reply = <STDIN> ;
     ($n1, $n2, $n3) = split(/\s+/, $reply) ;
     $max = $n1 ;
     $max = $n2 if $n2 > $n1 ;
     $max = $n3 if $n3 > $max ;
     print(“The maximum number is $max\n”) ;

 Try generalizing this program to handle any number of inputs using split and 

a foreach loop.

14.5 

    #!/usr/bin/perl
    print(“String: “) ;
    $stg = <STDIN>;
    print(“Number of times: “) ;
    chomp($numb = <STDIN>);
    print $stg x $numb;

14.6 (i) Use $x in the assignment. (ii) Use ** instead of ^ for exponentiation.

14.7 

 #!/usr/bin/perl
 $x=”A” ;
 while (<>) {
    print $x++ . “. “ . $_ ;
 }

 After Z., the program prefixes an A and prints AA., AB., AC., etc.

das76205_AppI_728-751.indd   740das76205_AppI_728-751.indd   740 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  741

14.8 perl -e ‘$x=A ; print $x++ while $y++ < 26’
14.9 

    #!/usr/bin/perl
    print(“Enter a number: “) ;
    $number = <STDIN> ;
    if ($number > 0) {
        for ($x = 1 ; $x <= $number ; $x++) {
             print(“$x\n”) ;
        }
    } else {
        print(“Not a positive number\n”) ;
    }

14.10 (ii)

14.11 

    #!/usr/bin/perl
    print(“Enter a number: “) ;
    $number = <STDIN> ;
    if ( $number > 255 || $number < 0 ) {
        print(“Not a valid number\n”) ;
    } elsif ($number > 223) {
        print(“C\n”) ;
    } elsif ($number > 126) {
        print(“B\n”) ;
    } else {
        print(“A\n”) ;
    }

14.12 

    #!/usr/bin/perl
    $number = 1 ;
    while ($number != 0) {
        print(“Enter a number: “) ;
        $number = <STDIN> ;
        chop ($number) ;
        $total+= $number if $number != 0 ;
    }
    print “The total is $total\n” ;

14.13 

    #!/usr/bin/perl
    die(“Two arguments required\n”) if $#ARGV != 1 ;
    open (INFILE, “$ARGV[1]”) ;
    while (<INFILE>) {
       if (/$ARGV[0]/) {

das76205_AppI_728-751.indd   741das76205_AppI_728-751.indd   741 12/13/11   10:56 AM12/13/11   10:56 AM



742 Your UNIX/Linux: The Ultimate Guide

          print ; exit ;
       }
    }

14.14 

    #!/usr/bin/perl
    # Note that you can assign a null string with qw
    @month = qw/’’ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec/ ;
    $i = 1 ;
    while ($i <= 12) {
       print $i . “. “ . $month[$i] . “\n” ;
       $i++ ;
    }

14.15 An array element is accessed with the $ prefix; use print $arr{N}.

14.16 

    #!/usr/bin/perl
    $file = $ARGV[0] ;
    if (-e $file) {
       if (-B $file) {
          print(“$file is a binary file\n”) ;
       } else {
          print(“$file is not a binary file\n”) ;
       }
    } else {
        print(“$file does not exist\n”) ;
    }

14.17 perl -ne ‘s/(\w+)/\u$1/g ; print’ foo
14.18 

    #!/usr/bin/perl
    open(INFILE, “/etc/passwd”);
    while (<INFILE>) {
        split(/:/);
        print if ($_[2] == 1);
    }

  Chapter 15
15.1 (i) Semicolon in #include statement, (ii) = in #define statement, (iii) n declared 

without type, (iv) while loop expression not enclosed in (), (v) printf statement 

without semicolon, (vi) ) instead of } in line above return 0;.

15.2 Because they have been previously replaced by the preprocessor.

15.3 At the linking stage.

15.4 No & used with number.

das76205_AppI_728-751.indd   742das76205_AppI_728-751.indd   742 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  743

15.5 

 #include <stdio.h>
    int main(void)
    {
        int x, y;
        printf(“Enter two integers: “);
        scanf(“%d%d”,&x, &y);
        printf(“%d + %d = %d\n”, x, y, x + y);
        return 0;
    }

15.6 

 #include <stdio.h>
    int main(void)
    {
        int your_number;
        printf(“Enter an integer exceeding 10: “);
        scanf(“%d”, &your_number);
        if (your_number < 11)
            printf(“The number you entered does not exceed 10\n”);
        return 0;
    }

15.7 To enable C to run on a wide range of machines that have different sizes for the 

same type. It is possible for int and long to have the same size.

15.8 No, the first one causes truncation, but the second one converts 5 to a float before 

evaluation.

15.9 The second one automatically allocates space for three elements and thus prevents 

wastage.

15.10 

 #include <stdio.h>
    #define SIZE 5
    int main(void)
    {
        short i, arr[SIZE];
        for (i = 0; i < SIZE; i++) {
            printf(“Enter integer %hd: “, i + 1);
            scanf(“%hd”, &arr[i]);
        }
        i = 0;
        while (i < SIZE) {
            printf(“arr[%hd] = %hd\n”, i, arr[i]);
            i++;
        }
        return 0;
    }

das76205_AppI_728-751.indd   743das76205_AppI_728-751.indd   743 12/13/11   10:56 AM12/13/11   10:56 AM



744 Your UNIX/Linux: The Ultimate Guide

15.11 False, because they are equivalent only in main. When used in a user-defined 

function, exit terminates the program, but return switches control to the caller 

in the program.

15.12 Reverse and print an array.

15.13 (i) No, because + and / have different precedence levels, (ii) yes, because * and 

/ have the same precedence levels.

15.14 

 #include <stdio.h>
 #define SIZE 6
 
 void init_array(short array[], short size);  /* Note the [] */
 
 int main(void)
 {
     short arr[SIZE], i;
     init_array(arr, SIZE);       /* Array name is the argument */
     for (i = 0; i < (sizeof arr) / sizeof(short); i++)
         printf(“arr[%hd] = %hd “, i, arr[i]);
     printf(“\n”);               /* Cursor appears on next line */
     return 0;
 }
 void init_array(short array[], short size)
 {
     short i;
     for (i = 0; i < size; i++)
         array[i] = 2 * i;
     return;
 }

 The function must be passed the size of the array because it knows only the 

beginning address but not the end.

15.15 True only for array but not for structure.

15.16 Unlike p, arr represents a pointer value that is a constant. The last two statements 

are thus not legal.

15.17 p should first point to an int variable before it is dereferenced.

  Chapter 16 
16.1 Compiling, assembling, and linking.

16.2 as and ld.

16.3 Yes.

16.4 cc assumes a library name to have the lib prefix and .a suffix. The library files 

are in /lib and /usr/lib and the include files in /usr/include.

das76205_AppI_728-751.indd   744das76205_AppI_728-751.indd   744 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  745

16.5 make will report an error if cc is not preceded by a tab.

16.6 The compiler automatically includes object files in this library without an explicit 

instruction.

16.7 (i) Smaller executables, since the library code is not included in the executable. 

(ii) Easier maintenance, since a modification made to a library doesn’t require 

modification of the programs using the library.

16.8 (i) admin -i foo s.foo (ii) get -e s.foo (iii) delta s.foo
16.9 Use sccsdiff -rsid1 -rsid2 s.foo, where s.foo is the SCCS file containing 

the deltas sid1 and sid2.

16.10 Because they are displayed by the prs command.

16.11 When you make a change to a delta that is not the latest one. A branch delta uses 

a set of four numbers, so 1.2.1 is not a valid SID.

16.12 (i) Can handle a group of files as a single unit, (ii) allows two or more users to 

concurrently edit a file, (iii) allows operation in a network.

16.13 (i) cvs import, (ii)cvs rdiff -r1.3 -r1.6, (iii) cvs update.

16.14 The program was compiled without the -g option. 

16.15 A breakpoint occurs at a line number or function invocation, but a specific memory 

location changes value at a watchpoint.

  Chapter 17 
17.1 System calls are built into the kernel, but library functions are built on top of 

them. When a system call is invoked, the processor switches to the kernel mode 

and returns to the user mode when the call returns.

17.2 Because the value of errno can change later with subsequent system calls even 

if they return success.

17.3 A file descriptor is an integer allocated to a file on opening. It is used by all system 

calls that perform some operation on the file—like read, write, close, and lseek.

17.4 They all return a file descriptor.

17.5 This program terminates when the file descriptor table overflows:

    #include <fcntl.h>
      
    int main(void) {
        int fd;              /* File descriptors for read and write */
        while (1) {
            if ((fd = open(“/etc/passwd”, O_RDONLY)) == -1) {
              perror(“open”);
              exit (1);
            }
            printf(“File des: %d\n”, fd);
        }
        exit(0);
    }

17.6 (i) fd = open(“foo”, O_WRONLY | O_TRUNC); 

 (ii) fd = open(“foo”, O_WRONLY | O_APPEND);

das76205_AppI_728-751.indd   745das76205_AppI_728-751.indd   745 12/13/11   10:56 AM12/13/11   10:56 AM



746 Your UNIX/Linux: The Ultimate Guide

17.7 (i), (iv), and (vii) are opening mode flags; the rest are status flags. A file can be 

opened in one of the modes, but each mode can be associated with one or more 

status flags. O_SYNC ensures that write doesn’t return until the physical write to 

disk has been completed.

17.8 

    #include <fcntl.h>
    #include <unistd.h>
   
    int main(int argc, char **argv) {
        int fd, n;
        char u;
        fd = open(argv[1], O_RDONLY);
        while ((n = read(fd, &u, 1)) > 0) {
           if (u >=97 && u <= 122)          /* Test for lowercase letter */
              u -= 32;                      /* and change it to uppercase */
           write(STDOUT_FILENO, &u, 1);
        }
        close(fd);
        exit(0);
    }

17.9 

    #include <fcntl.h>
    #include <sys/stat.h>
   
    int main(void) {
       int fd;
       mode_t old_mode;
       old_mode = umask(0);                        /* No mask */
       fd = open(“foo”, O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR | S_IRGRP |
                        S_IWGRP | S_IROTH | S_IWOTH);
       mkdir(“bar”, S_IRWXU | S_IRWXG | S_IRWXO);
       close(fd);                  /* File needs to be closed before deletion */
       system(“ls -ld foo bar”);   /* system is discussed in Chapter 18 */
       unlink(“foo”);
       rmdir(“bar”);
       umask(old_mode);            /* Revert to previous mask */
       system(“ls -ld foo bar”);
       exit(0);
    }

17.10 

    #include <sys/stat.h>
    #include <unistd.h>
   

das76205_AppI_728-751.indd   746das76205_AppI_728-751.indd   746 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  747

    int main(int argc, char **argv) {
       struct stat statbuf;
       int exists = 1;
       if ((access(argv[1], F_OK) == 0)) {
           lstat(argv[1], &statbuf);
           if (S_ISREG(statbuf.st_mode)) {    /* If ordinary file exists */
               unlink(argv[1]);               /* then remove it */
               exists = 0;
           }
       } else
           exists = 0;
       if (exists == 0)
           mkdir(argv[1], S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
       exit(0);
 }

17.11 

    #include <stdio.h>
    #define PATH_LENGTH 200
    int main(int argc, char **argv) {
        char newdir[PATH_LENGTH + 1];
        if (chdir(argv[1]) == -1) {
            fprintf(stderr, “Can’t change directory\n”);
            exit(1);
        }
        getcwd(newdir, PATH_LENGTH);             /* Getting new directory */
        printf(“pwd: %s\n”, newdir);
        exit(0);
    }

 The change is not permanent as it took place in a separate process.

17.12 

    #include <sys/types.h>
    #include <sys/stat.h>
    #include <stdio.h>
    #include <dirent.h>
   
    int main(void) {
       DIR *dir; off_t size;
       struct dirent *direntry;  struct stat statbuf;
   
       if ((dir = opendir(“.”)) != NULL)
           while ((direntry = readdir(dir)) != NULL)
              if (lstat(direntry->d_name, &statbuf) == 0)
                  if (S_ISREG(statbuf.st_mode))
                      if ((size = statbuf.st_size) > 100000)

das76205_AppI_728-751.indd   747das76205_AppI_728-751.indd   747 12/13/11   10:56 AM12/13/11   10:56 AM



748 Your UNIX/Linux: The Ultimate Guide

                          printf(“%s: %d\n”, direntry->d_name, size);
                      else if (size == 0)
                          unlink(direntry->d_name);
       exit(0);
    }

17.13 

    #include <fcntl.h>
    #include <sys/stat.h>
   
    int main(void) {
       int fd;
       mode_t old_mode;
       old_mode = umask(0);                        /* No mask */
       fd = open(“foo”, O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR |
                                            S_IRGRP | S_IROTH);
       chmod(“foo”, S_IRWXU | S_IRGRP | S_IWGRP | S_IROTH);
       system(“ls -l foo”);
       fchmod(fd, S_IRUSR | S_IRGRP);      /* Can use fchmod also */
       system(“ls -l foo”);
       umask(old_mode);                    /* Revert to previous mask */
       exit(0);
    }

  Chapter 18 
18.1 Because the addresses specified in the executable don’t point to actual memory 

locations. The text segment is loaded directly from the disk file.

18.2 When a process makes a system call that keeps the CPU idle.

18.3 fork returns the PID in the parent and zero in the child. This makes it possible 

for the parent to control the child.

18.4 dup, dup2, fcntl, pipe.

18.5 

    #include <sys/types.h>
    #include <stdio.h>
    int main(void) {
       if (fork() > 0)
          fork();
       printf(“PID: %d PPID: %d\n”, getpid(), getppid());
    }

18.6 (i) 

        #include <stdio.h>
        int main(void) {
            execl(“/bin/wc”, “wc”, “-l”, “-c”, “/etc/passwd”, (char *) 0);
            printf(“execl error\n”);
        }

das76205_AppI_728-751.indd   748das76205_AppI_728-751.indd   748 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  749

 (ii) 

        #include <stdio.h>
        int main(int argc, char **argv) {
            char *cmdargs[] = { “wc”, “-l”, “-c”, “/etc/passwd”, NULL };
            execv(“/bin/wc”, cmdargs);
            printf(“execv error\n”);
        }

 When using execlp and execvp, change the first argument to “wc”.

18.7 A parent should wait to pick up the exit status of the child from the process table. 

If it doesn’t, the child turns into a zombie and retains its process table entry.

18.8 

    #include <stdio.h>
    #include <sys/wait.h>
   
    int main (int argc, char **argv) {
       int a, b, c, status;
       switch(fork()) {
          case 0:
             a = atoi(argv[1]); b = atoi(argv[2]);
             c = a + b ;
             exit(c);
          default:
             wait(&status);
             printf(“The sum of the two numbers is %d\n”, WEXITSTATUS(status));
             exit(20);
       }
    }

18.9 The exit status is actually eight bits long, and the value set inside the shell script 

is a large value. $?  stores only the last eight bits.

18.10 False.

18.11 

    #include <unistd.h>
   
    int main (void) {
       dup2(STDOUT_FILENO, STDERR_FILENO);
       write(STDERR_FILENO, “hello dolly\n”, 12);
       exit(0);
    }

18.12 A background process has no controlling terminal, so it can’t be sent a signal 

from the keyboard.

das76205_AppI_728-751.indd   749das76205_AppI_728-751.indd   749 12/13/11   10:56 AM12/13/11   10:56 AM



750 Your UNIX/Linux: The Ultimate Guide

18.13 The output of this program will always show two lines for the SIGKILL and 

SIGSTOP signals:

 #include <stdio.h>
 #include <signal.h>
   
 int main (void) {
     struct sigaction act;
     act.sa_handler = SIG_IGN;      /* Disposition set to ignore */
     int i;
     for (i = 1; i <= 32; i++)
         if (sigaction(i, &act, NULL) == -1)
             printf(“Signal %d can’t be ignored\n”, i);
 }

18.14 Because both processes need to use the descriptors of the pipe, which is possible 

only if one process inherits the descriptors from the other.

  Chapter 19 
19.1 In /sbin and /usr/sbin. The PATH for a superuser doesn’t include the current 

directory.

19.2 It doesn’t ask for the old password.

19.3 SHELL and HOME.

19.4 usermod -s /bin/bash romeo
19.5 The password encryption was world-readable in /etc/passwd of older systems. 

This made it vulnerable to attack by hackers. However, /etc/shadow is not 

world-readable.

19.6 The user is running a restricted shell.

19.7 s and t signify the SUID and sticky bits, respectively.

19.8 ls obtains the numeric UID and GID from the inode and then looks up 

/etc/passwd for the name representation of UID and /etc/group for the name 

representation of GID.

19.9 find /bin /usr/bin -perm -4000 -print
19.10 Signifies the state the system is in and is displayed by who -r.

19.11 /etc/inittab is the control file used by init. telinit q activates the changes.

19.12 Printing, network services, and user logins.

19.13 Use shutdown -y -g0. Linux allows the use of [Ctrl][Alt][Del].

19.14 The boot file system contains the UNIX kernel. The swap file system stores the 

process images when they can’t be held in memory.

19.15 The root file system can’t be unmounted because it contains the essential utilities 

that keep the system running.

19.16 To check the file system for consistency.

19.17 -perm 1000 matches a file having exactly those permissions, but -perm -1000 

matches only 1 (the sticky bit) and ignores the other three octal digits.

das76205_AppI_728-751.indd   750das76205_AppI_728-751.indd   750 12/13/11   10:56 AM12/13/11   10:56 AM



Appendix I: Solutions to Self-Test Questions  751

19.18 By using this crontab entry: 00 09-22 * * 1,2,3,4,5 df -t
19.19 du -s .
19.20 (i) doscp *.htm *.html /dev/fd0 (ii) mcopy *.htm *.html a:
19.21 (i) On this system tar looks for .c files in the current directory and there are 

none. (ii) A file foo.c exists in diskette in the form ./foo.

19.22 False, because querying operations are possible from any account.

19.23 Other packages depend on this package.

das76205_AppI_728-751.indd   751das76205_AppI_728-751.indd   751 12/13/11   10:56 AM12/13/11   10:56 AM



752

Index

A
abbreviating text input, 152

ab command, 152

absolute pathnames with commands, 

59, 61–62

access command, 560–563

access times, 112–113

activity status, 504–505

address of line, 278

admin command, 500–501, 510–511

alarm system call, 592, 594

alias command, 69

aliases, 220–221, 233–234

& (ampersand), 201–202

anacron command, 209

anonymous FTP, 306–307

append text, 127–128

Apple Mac OS X, 15

apropos command, 33

archiving, 495–497

archiving files, 84–85, 87–88

ar command, 495–497

arg_check function, 487

arguments, 28

arithmetic operations, 335–337, 

367–369

ARPANET, 16

arrays

awk command, 344–346

C, 452–454, 470–471

perl, 416–420

pointers and, 478–479

ASCII characters, 6, 257–258, 450, 

701–704

ASCII collating sequence, 69

assembling phase, 486

associative arrays, 345, 352–353, 

424–426

associativity of operators, 461–462

* (asterisk), 158–160, 273

asymmetric key algorithms, 308–309

AT&T, 15

at command, 206

atomic operations, 546

automatic conversion, 456–457

awk command, 331–358

arrays, 344–346

BEGIN sections, 342–343

built-in variables, 346–348

control flow, 350–351

END sections, 342–343

expressions, 337–338

functions, 348–350

logical operators, 340–342

looping, 351–354

number processing, 335–337

numeric comparison, 338–340

positional parameters, 343–344

print and printf, 334–335

regular expression operators, 340

standard output, 335

string comparison, 338–340

syntax, 332–334

variables, 337–338

B
background processes, 201–202, 228

backspacing, 48

backtrace command, 531

backup files, 633–636

basename command, 379

Bash shell, 158, 178, 203

programming constructs, 650–656

basic regular expressions (BRE), 

271–275, 287–289, 693

* (asterisk), 273

character class, 271–272

. (dot), 274

interval regular expression, 288, 

289–292

metacharacters losing their 

meaning, 275

pattern locations, 274–275

repeated patterns, 287

substitutions, 285–286

tagged regular expression, 288–292

batch command, 206–207

bc command, 377–378

bcopy, 290

beginning of file, displaying, 247

BEGIN sections, 342–343

Berkeley, 15, 302, 511

bfs file system, 625

binary file, 57

bitwise operators, 456

block special devices, 623

boot block, 624

booting system, 618

Bourne shell, 158, 178, 214

branch deltas, 499, 507, 514

BRE. See basic regular expressions

break, 463, 464, 526

browsers, 323–324

brute force attacks, 308

BSD UNIX, 15, 16

buffer, 124, 548–549, 577

buffer cache, 548, 623

buffers, 680–681

building-block approach, 21

built-in variables, 346–348

byte-by-byte file comparison, 244–245

C
C

arrays, 452–454, 470–471, 644–645

body of program, 443–444

character data, 449–450

comparison operators, 645

constants, 446–447, 451–452

control flow, 462–464

correcting programs, 140

data types, 447–450

evaluation order, 460–462

expressions, 455–458

floating-point data, 449

functions, 465–472, 477–478

history of, 440–441

integer data, 448

lists, 644–645

logical operators, 645

main, 444

operators, 455–458, 460–462

pointers, 472–481

preprocessor section, 443

printf, 445–446

program features, 441–444

programming constructs, 643–649

scanf, 446

shell, 214, 231–235

size of data types, 450–451

structures, 454–455, 471–472

symbolic constants, 451–452

variables, 446–447

vi/vim editor, 140

das76205_ndx_752-760.indd   752das76205_ndx_752-760.indd   752 12/13/11   10:52 AM12/13/11   10:52 AM



Index 753

cancel command, 81–82

case statements, 374–376

casts, 457–458

cat command, 11–12, 76, 104

ccTLD (country-code top-level 

domain), 299

cd command, 62–63, 196–197

CDE (Common Desktop 

Environment), 49

CDPATH variable, 219

Cerf, Vinton, 16

CGI (Common Gateway Interface), 

322–323, 434–435

CGI programming, 322–323

character class, 160–161, 271–272, 695

character data, 6, 449–450

counting, 80–81

nonprintable characters, viewing, 

82–83

translating, 257–259

character special devices, 623

chdir system call, 550–551

check in, 498, 502–503, 512–513, 

519–520

check out, 498, 501–502, 512–513, 519

checksum, 297

chgrp command, 110, 111–112

chmod command, 95, 405, 563–564

chomp command, 406, 414

chop, 415

chown command, 110–111, 564

Christian, Kaare, 19

chsh command, 214

ci command, 511–512

clearing screen, 126

client-server principle, 301–302

close command, 541–542

closing files, 541–542

cmp command, 244–245

co command, 512–513

collective manipulation in shell, 

172–173

column sorting, 253

comb command, 509

command grouping, 172–173

command history, 222–225

command line arguments

perl, 412–413, 419–420

shell programming, 182, 183–184, 

362–364

command mode, 124

commands, 25–55. See also specific 
commands

absolute pathnames with, 61–62

basics, 26–28

displaying messages, 38–39

emacs editor, 659

email, 40–43

flexibility of, 30–31

locating, 27–28

machine’s name and operating 

system, 44–45

navigation, 33

online help, 31–34

options, 28

password changes, 44

PATH variable, 26–27

recording a session, 40

search, 33

shell as processor for, 157

structure, 28–30

system date, 46–47

terminal settings, 47–48

user information, 45–46

X Window system, 49–52

command substitution, 177–178, 182

comm command, 245–246

commonality file comparison, 

245–246

Common Desktop Environment 

(CDE), 49

Common Gateway Interface (CGI), 

322–323, 434–435

comparing files, 243–244

comparison operators, 408–409

compiling applications, 486, 489–490

compound conditions, 371

compressing files, 85–88

computations, 376–377

compute function, 487

concatenating files, 76

concatenation operators, 409–410

Concurrent Version System (CVS), 498, 

517–522

conditional execution, 365

conditionals, 410–412

constants

C, 446–447, 451–452

perl, 406–408

context switch, 572

continue, 464

control characters, 130

control flow

awk command, 350–351

C, 462–464

control keys, 658–659

controlling terminal, 191

converting one file to another, 246–247

copying files, 71–72

copying text

emacs editor, 671–672

vi/vim editor, 144–145

counting lines, words, and characters, 

80–81

country-code top-level domain 

(ccTLD), 299

cp command, 12, 71–72

creating files, 539–541

cron daemon, 33–34, 192, 207–210

crontab daemon, 34, 207–210

cryptography, 307–309

C Shell, 158, 203

C standard library, 441

ctof function, 465

current directory, 63

current line number, 123, 414

cut command, 249–250

CVS (Concurrent Version System), 498, 

517–522

cvs checkout command, 519

cvs commit command, 519–520

cvs export command, 521

cvs help command, 522

cvs import command, 518–519

cvs init command, 518

cvs remove command, 521–522

cvs update command, 520–521

D
daemons, 192

DARPA, 16, 302, 304

data blocks, 625

data segment, 571

data types, 447–450

date command, 9, 10, 46–47

dd command, 631

Debian, 17

debugging, 522–531

DEC, 15

decryption, 308

default variable, 414–415

Defense Department, 16

#define, 451–452

deleting files, 73–75

deleting mail, 43

deleting text

emacs editor, 668–671

vi/vim editor, 138–139, 142–143

delimiter, 26, 392

delta, 498, 502–503

device drivers, 623

device files, 57, 58, 622–624

/dev/null and /dev/tty, 173–174

df command, 629

diff command, 246–247, 499

directories

directory file, 58

file attributes and, 100–102

file transfer protocol, 305

handling, 12–14

IN
D

EX

das76205_ndx_752-760.indd   753das76205_ndx_752-760.indd   753 12/13/11   10:52 AM12/13/11   10:52 AM



754 Your UNIX/Linux: The Ultimate Guide

directories (continued)

home directory, 62

listing attributes, 94

making, 66–67

modifying entries, 554–556

navigation, 550–552

permissions, 100–102

reading, 552–554

removing, 67–68

directory file, 57, 58

directory stack manipulation, 

235–237

dirs command, 236

disk fragmentation, 625

disk space management, 628–630

DISPLAY variable, 319–320

DNS (Domain Name System), 

299–301, 316

documentation, 22, 34–37

Domain Name System (DNS), 

299–301, 316

domains, 299

dos2unix command, 83–84

doscat command, 632

doscp command, 632

. (dot), 147–148, 274

double precision floating-point 

numbers, 449

do-while, 410–412, 463–464

down command, 531

dtfile, 50

dtterm, 50

du command, 629–630

dup, 587–588

dup2, 587–588

E
echo command, 11–12, 38–39, 165

editing text

emacs editor, 661, 668–672

vi/vim editor, 126–130, 138–144

effective GID, 195

effective UID, 195, 575

egrep command, 276–277

emacs editor, 657–685

buffers, 680–681

command entry, 659

control and meta keys, 658–659

copying text, 671–672

customization of, 683–685

deleting text, 668–671

help, 682–683

inserting text, 661

moving text, 671–672

navigation, 665–667

pattern searches, 674–677

quitting, 662–664

regions, 668

replacing text, 661

saving text, 662–664

substitution, 677–678

undo, 674

windows, 678–680

email, 315–317. See also mailx 

command

encryption, 308

end-of-file (eof) key, 48, 248–249

END sections, 342–343

env command, 215

environment arrays, 345–346

environment variables, 215–220, 

231–233

Epoch, 46

erase character, 48

ERE. See extended regular expressions

errno command, 537–539

error handling, 537–539

escape sequences, 38, 163–164, 

180, 695

eval command, 312, 398

evaluation order, 460–462

event number, 222

exec function, 399, 577–580

execle function, 577, 580

execlp function, 579

exec phase of process creation, 194

execve function, 577, 580

execvp function, 579

exit command, 9

exit status, 364–365, 580–582

ex mode, 124, 131–134

explicit conversion, 457–458

export, 196, 216

expr command, 376–377, 378–379

expressions

awk command, 337–338

C, 455–458

.exrc file, 124–125

extended regular expressions (ERE), 

271, 276–277, 694

ext2 and ext3 file systems, 625

F
fchdir system call, 550–551

fchmod command, 563–564

fcntl system call, 585, 590

Fedora, 17

file attributes, 92–121

access times, 112–113

directory, 100–102

file system and, 103–105

hard links, 105–107

intruders, handling, 112

listing, 92–94

locating files, 113–117

modifications, 112–113

ownership of files, 109–112

permissions, 94–100, 

102–103

symbolic links, 107–109

file attribute tests, 370–371

file descriptor, 169

file descriptor manipulation, 

587–590

file descriptor table, 584–585

filehandle, 430

FILENAME variable, 347

file offset pointer, 540

files

attributes, modifying, 563–566

backup, 633–636

closing, 541–542

creating, 539–541

file transfer protocol, 305

handling, 11–12

naming, 58–59

opening, 539–541

perl’s handling of, 430–431

reading, 541–542

renaming, 73

sharing, 584–587

size of, 93–94

systems programming, 535–569

transferring, 305–306, 314–315

truncating, 548–549

in UNIX architecture, 19

writing, 543

X Windows, 51–52

file system, 56–91, 624–628

absolute pathnames with commands, 

61–62

archiving files, 84–85, 87–88

checking, 627–628

components, 624–625

compressing files, 85–88

concatenating files, 76

copying files, 71–72

counting lines, words, and characters, 

80–81

deleting files, 73–75

device file, 58

directory file, 58

DOS and UNIX, converting be-

tween, 83–84

file attributes and, 103–105

hierarchy, 59–60

home directory, 62

listing files, 68–71

making directories, 66–67

mounting and unmounting, 

626–627

navigating, 62–63

nonprintable characters, viewing, 

82–83

ordinary file, 57

das76205_ndx_752-760.indd   754das76205_ndx_752-760.indd   754 12/13/11   10:52 AM12/13/11   10:52 AM



Index 755

paging within, 76–78

printing a file, 81–82

relative pathnames, 64–65

removing directories, 67–68

renaming files, 73

system administration, 624–628

text editing, 78–80

file table, 585

file tests, 431–432

file transfer protocol, 304–307

filters, 171, 241–295

application of, 259–262

basic regular expressions (BRE), 

271–275, 287–289

beginning of file, displaying, 247

byte-by-byte file comparison, 

244–245

commonality file comparison, 

245–246

comparing files, 243–244

context addressing, 281–282

converting one file to another, 

246–247

end of file, displaying, 248–249

extended regular expressions (ERE), 

276–277

line addressing, 279–280

ordering files, 251–255

paginating files, 242–243

pasting files, 250–251

pattern searching, 266–270

repeated and nonrepeated lines, 

locating, 255–256

slicing file vertically, 249–250

stream editor, 277–279, 280–281

substitutions, 284–286

text editing, 283–284

translating characters, 257–259

writing selected lines to file, 282

find command, 113–117, 161, 630

floating-point data, 377–378, 449

foreach, 420–421, 647–648

fork, 575–577, 600

fork phase of process creation, 194

format command, 631

format specifiers, 39

for statements, 351–353, 410–412

FQDN (fully qualified domain 

name), 297

frame command, 531

fread function, 543

Free Software Foundation, 17

fromdos command, 84

fsck command, 627–628

fstat system call, 556

FS variable, 346

ftp command, 302, 304–307

ftruncate command, 548–549

fully qualified domain name (FQDN), 297

function prototype, 465

functions. See also specific functions
awk command, 348–350

C, 465–472, 477–478

G
gdb, 522–531

breakpoints, 526–528

starting, 525–526

watchpoints, 529–531

generic domains, 299

GET, 434–435

get command, 306, 501–502

getenv function, 573

getpid system call, 574

getppid system call, 574

GID. See group-id

glossary, 705–727

GNU, 17. See also emacs editor

graphical user interface (GUI), 16

grep command, 247, 266–270

groupadd command, 612–613

group-id (GID), 110

real vs. effective, 195

group ownership, 93

GUI (graphical user interface), 16

gunzip command, 85–87

gzip command, 85–87

H
hard links, 105–107, 554–555

hash arrays, 345, 352–353, 424–426

hash-bang line, 361

head command, 247

header file, 443

heap, 571

--help, 36

helper application, 318, 325

here document, 394–395

hidden files, 70

hierarchy of file system, 59–60

home directory, 62

HOME variable, 62–63, 217

host authentication, 309–310

host key, 309

hostname command, 297

hostnames, 297–301

hosts file, 298–299

HP, 15

hsfs file system, 625

HTML (Hyper Text Markup 

Language), 323

HTTP (Hyper Text Transfer Protocol), 

320–324

Hyper Text Markup Language 

(HTML), 323

Hyper Text Transfer Protocol (HTTP), 

320–324

I
IBM, 15

ident command, 516

identification keywords, 509–510

IEEE (Institution of Electrical and 

Electronics Engineers), 16–17

if statements, 350–351, 

366–367, 410

IFS variable, 392

ignoreeof, 228

ignoring case, 268–269

IMAP (Internet Message Access 

Protocol), 316

incremental backups, 633–634

index function, 349, 416

indirection, 472

inetd daemon, 192

info, 36

inherited attributes, 195–197

initialization scripts, 229–231, 235

init process, 189–192

in-line command editing, 

225–226

inode, 92–94, 556–560

inode blocks, 625

inode number, 104, 114

input buffers, 548–549, 577

input mode, 124, 126–130

inserting text

emacs editor, 661

vi/vim editor, 127–128

Institution of Electrical and Electronics 

Engineers (IEEE), 16–17

instructions, 278

integer data, 448

interactive shell, 213

internal commands, 33

Internet, 16

Internet mail, 315–317. See also 

mailx command

Internet Message Access Protocol 

(IMAP), 316

interpreter line, 361

interrupt a command, 48

interval regular expression (IRE), 288, 

427–428, 694

intruders, handling, 112

Invert Selection, 183

IP addresses, 297–301

IRE. See interval regular expression

ISO9660 file system, 625

J
java, 492

job control, 202–205

join function, 415, 422–423

joining lines, 139

das76205_ndx_752-760.indd   755das76205_ndx_752-760.indd   755 12/13/11   10:52 AM12/13/11   10:52 AM



756 Your UNIX/Linux: The Ultimate Guide

K
Kahn, Robert, 16

Keep-Alive feature, 322

kernel, 18–19

kernel address space, 572

kernel mode, 536

key–value pairs, 345

kill ring, 670

kill system call, 200–201, 390, 

597–599

konsole, 50

Korn, David, 214

Korn shell, 158, 178, 203

programming constructs, 650–656

L
last line mode, 124

lcfirst function, 416

lc function, 416

length function, 349

less command, 33, 76–78

libraries, 495–498

line addressing, 278, 279–280

line counting, 80–81

link command, 106, 554–555

links

applications, 486, 489–490

hard, 105–107, 554–555

in listing of file attributes, 93

removing, 555

symbolic, 107–109, 554–555

Linux, 15, 17

list functions, 416–423

listing file attributes, 92–94

listing files, 68–71

ln command, 105–109

local variables, 231–233

locating files, 113–117

lock control, 516

logging in, 7–8

logging out, 8–9

logical operators, 340–342, 365, 408–409

login script, 229–230, 303–304

LOGNAME variable, 220

long double floating-point numbers, 449

looping, 351–354

with list, 380–382, 420–421

perl, 410–412, 420–421

shell programming, 380–387

with while, 382–387

lp command, 81–82

lpq command, 82

lpr command, 82

lprm command, 82

lpsched daemon, 192

lpstat command, 81

ls command, 12, 68–71, 92–94, 104

lseek command, 545–548

lstat system call, 556

M
macros, 494–495

mailboxes, 41

MAILCHECK variable, 217–218, 232

mail delivery agent (MDA), 316

MAILPATH variable, 217–218, 232

mail transport agent (MTA), 316

mail user agent (MUA), 316

MAIL variable, 217–218, 232

mailx command, 40–43, 315–317

deleting mail, 43

internal commands, 42–43

receiving mail, 41–42

replying to mail, 43

sending mail, 41

main, 444

major device numbers, 623–624

make function, 490–495

making directories, 66–67, 554

man command, 22, 31–34, 76–78

documentation, 34–37

Mandriva, 17

map command, 151–152

mapping keyboard, 151–152

mbox, 41

MDA (mail delivery agent), 316

memcpy, 290

Memory Management Unit (MMU), 572

merge-sort, 254

metacharacters, 157, 275

meta keys, 658–659

mget command, 306

Microsoft Windows, 16

MIME (Multipurpose Internet Mail 

Extensions), 317–318, 324–325

minibuffer, 657

minor device numbers, 623–624

mkdir command, 66–67, 554

MMU (Memory Management Unit), 572

mode of opening, 539

modifications to files, 112–113

Moolenaar, Bram, 122

more command, 33, 76–78

mount command, 626–627

mount point, 626

moving text

emacs editor, 671–672

vi/vim editor, 139, 142–143

mput command, 305

msdos file system, 625

MTA (mail transport agent), 316

MUA (mail user agent), 316

MULTICS project, 15

Multimedia on Internet, 324–325

multiple pattern matching, 277

multiprogramming environment, 4, 20

Multipurpose Internet Mail Extensions 

(MIME), 317–318, 324–325

multisource applications, 485–490

multitasking system, 20, 571

multiuser system, 20

mv command, 12, 73

N
name servers, 301

naming files, 58–59

navigation

emacs editor, 665–667

file system, 62–63

vi/vim editor, 126, 134–138

negating actions, 280

negating character class, 272

networking tools, 296–328

checking network, 303

client-server principle, 301–302

cryptography, 307–309

Domain Name System (DNS), 

299–301

file transfer protocol, 304–307

hostnames, 297–301

HTTP, 320–324

Internet mail, 315–317

IP addresses, 297–301

MIME, 317–318, 324–325

remote login, 303–304

SSH, 309–315

TCP/IP, 297–298

Uniform Resource Locator, 321–322

World Wide Web, 320–324

X Window, 318–320

next function, 528

NF variable, 347

noclobber, 227–228, 234

nohup, 202, 584

noninteractive logins, 312–313

noninteractive shell, 213

nonprintable characters, viewing, 82–83

notify, 228

Novell, 15

NULL pointers, 476, 579

number processing, 335–337

numeric comparison, 338–340, 367–369

O
od command, 82–83

offset pointer positioning, 545–548

OFS variable, 346–347

onintr, 649

open command, 19, 539–541

OpenSSH, 309

das76205_ndx_752-760.indd   756das76205_ndx_752-760.indd   756 12/13/11   10:52 AM12/13/11   10:52 AM



Index 757

operating system, 3–5

operators

associativity, 461–462

C, 455–458, 460–462

perl, 408–410

precedence of, 460–461

ordering files, 251–255

ordinary file, 57

orphans, 198, 583–584

output buffers, 548–549, 577

ownership of files, 93, 109–112, 564

P
packet-switching, 297

paginating files, 242–243

paging within file system, 76–78

parent-PID (PPID), 189

parsing, 182

partitions, 104

passed by value, 468

passphrase, 311

passwd command, 44, 610

paste command, 250–251

pasting files, 250–251

pathnames

absolute, 61–62

relative, 64–65

PATH variable, 216–217, 232

pattern searches

emacs editor, 674–677

filters, 266–270

location of patterns, 274–275

multiple, 277

in shell, 21, 158–162, 183

vi/vim editor, 146–147

wild cards, 158–162, 183, 375–376

pcfs file system, 625

pending signals mask, 591

periodic running of jobs, 207–210

perl, 404–439

arrays, 416–420

associative arrays, 424–426

CGI programming, 434–435

command line arguments, 412–413, 

419–420

comparison operators, 408–409

concatenation operators, 409–410

conditionals, 410–412

constants, 406–408

current line number, 414

default variable, 414–415

file handling, 430–431

file tests, 431–432

lists, 416–423

logical operators, 408–409

loops, 410–412, 420–421

operators, 408–410

preliminaries, 405–406

range operator, 414

reading files, 412–413

regular expressions, 426–428

repetition operators, 409–410

string-handling functions, 415–416

subroutines, 432–433

substitution, 428–430

variables, 406–408

perldoc command, 406

permissions, 94–103

absolute assignment, 98–99

changes to, 96–100

default, 102–103

directories and files, 100–102

execute, 102

in listing of file attributes, 93

read, 100

relative, 96–97

systems programming, 549–550, 

560–564

write, 100–102

perror command, 537–539

persistent connections, 322

PGID (process group-id), 202–203

php, 433

pico command, 78–80

PID (process-id), 189

ping, 303

pipe, 599–602

pipes, 174–176, 375–376

plugins, 325

+ (plus), 276–277

pointers, 472–481

arrays and, 478–479

attributes, 475–477

features of, 474–475

functions and, 477–478

strings and, 479

structures and, 480–481

pointer variable, 472

popd command, 236

pop function, 419

POP4 (Post Office Protocol), 316

Portable Operating System Interface for 

Computer Environments (POSIX), 

16–17, 178

port number, 302

positional parameters, 343–344, 363, 

389–392

POSIX (Portable Operating System 

Interface for Computer Environments), 

16–17, 178

POST, 434–435

Post Office Protocol (POP3), 316

PPID (parent-PID), 189

pragma, 407–408

pr command, 242–243

precedence level, 460–461

preemptive multitasking, 571

premature termination of processes, 

200–201

preprocessor directives, 443

preprocessor section, 443

primary group, 612

primary key sorting, 252–253

print command, 334–335

printf command, 39, 334–335, 

445–446

printing a file, 81–82

process control, 570–605

process environment, 573–575

processes, 188–212

attributes, 190–191

background, jobs running in, 

201–202

basics, 188–189

creation mechanism, 194–195

execution at later point, 206–207

inherited attributes, 195–197

job control, 202–205

periodic running of jobs, 207–210

premature termination of, 200–201

ps command to view, 10–11

shell and, 189–190

signal handling, 199–201

standard input, 205

standard output, 205

states, 198

system, 191–192

zombies, 198

process group-id (PGID), 202–203

process-id (PID), 189

process table, 189, 573

proc file system, 625

producer-consumer problem, 599

program development tools, 485–534

activity status, 504–505

archiving, 495–497

Concurrent Version System (CVS), 

517–522

debugging, 522–531

history information, 505

make command, 490–495

multisource C applications, 485–490

Revision Control System (RCS), 

511–517

Source Code Control System 

(SCCS), 498–511

version control, 498–499

program installation, 636–639

programming. See C; perl; shell pro-

gramming; systems programming

prompt strings, 218

prs command, 505

PS1 and PS2, 218

das76205_ndx_752-760.indd   757das76205_ndx_752-760.indd   757 12/13/11   10:52 AM12/13/11   10:52 AM



758 Your UNIX/Linux: The Ultimate Guide

ps command, 10–11, 190–191, 198

public/private key algorithms, 

308–309

pushd command, 236

push function, 419

put command, 305

pwd command, 62–63

python, 433

Q
quad precision floating-point 

numbers, 449

query strings, 434

? (question mark), 158–160, 276–277

quit function, 487

quitting

emacs editor, 662–664

vi/vim editor, 131–134

quoting, 164–165, 180, 267

qw function, 417

R
race condition, 594

range operator, 414

raw devices, 623

rc file, 230–231

rcp command, 302, 310

RCS (Revision Control System), 498, 

511–517

rcs command, 514–517

rc scripts, 621–622

read command, 542–543

reading files, 412–413

readonly command, 179

read statements, 361–362

real GID, 195

real UID, 195, 575

recovering from crash, 134

Red Hat Package Manager (RPM), 

636–639

redirection, 165–171, 182

redundancy removal, 493

reget command, 307

regular expression operators

awk command, 340

C, 455–458

defined, 21

perl, 426–428

relative addressing, 42

relative pathnames, 64–65

remembered pattern, 286

remote login, 303–304, 314

removing directories, 67–68, 554

rename command, 555–556

renaming files, 73

repeat, 648

repeated and nonrepeated lines, locating, 

255–256

repeated pattern, 287

repeat factor, 77, 125, 409–410

repeating last command, 147–148

replacing text

emacs editor, 661

vi/vim editor, 129–130

replicating current process, 575–577

replicating descriptors, 172

replying to mail, 43

reset command, 48

resolver, hostnames, 298

reverse function, 416

Revision Control System (RCS), 498, 

511–517

rindex function, 416

Ritchie, Dennis, 15, 16, 447, 617

rlog command, 514–517

rlogin, 302, 310

rm command, 12, 73–75

rmdel command, 509

rmdir command, 67–68, 554

root, 59

root file system, 104, 624

routers, 297

RPM (Red Hat Package Manager), 

636–639

rsh command, 302, 310

RS variable, 347

run level, 618

S
sact command, 504–505

sane, 48

saved text bit, 105, 617

saving text

emacs editor, 662–664

vi/vim editor, 131–134

scanf command, 446

SCCS. See Source Code Control System

scp command, 314–315

script command, 40

scripts, 181–182, 360–361, 621–622

search and replace, 148–149, 677–678

secondary key sorting, 253

sed command, 246, 271, 277–279

options, 280–281

sending mail, 41

sendmail daemon, 192

session key, 310

set command, 149–151, 215, 227–228, 

389–392

setenv function, 179, 231–232, 

573–574

set-group-id (SGID), 105, 616–617

set-user-id (SUID), 105, 616–617

s5 file system, 625

sftp command, 314–315

s function, 428–430

SGID (set-group-id), 105, 616–617

shared libraries, 497–498

shared objects, 497–498

she-bang line, 361

shell, 18–19, 156–187. See also C shell

aliases, 220–221

character class, 160–161

collective manipulation, 172–173

command grouping, 172–173

command history, 222–225

command line treatment, 182, 

183–184

as command processor, 157

command substitution, 177–178

creating a tee, 176–177

customization of, 213–240

/dev/null and /dev/tty, 173–174

directory stack manipulation, 

235–237

environment variables, 215–220

escaping, 163–164, 180

file descriptor, 169

filters, 171

function of, 5

init creation of, 620–621

initialization scripts, 229–231

in-line command editing, 225–226

login script, 229–230

pattern matching, 158–162, 183

pipes, 174–176

quoting, 164–165, 180

rc file, 230–231

redirection, 165–171

replicating descriptors, 172

security, 615–616

setting, 214, 227–228

standard error, 170–171

standard input, 166–168

standard output, 168–169

string handling, 378–379

tilde substitution, 226–227

variables, 178–181

wild cards, 158–162, 183

shell functions, 395–397

shell programming, 359–403

case statements, 374–376

command line arguments, 362–364

compound conditions, 371

computation, 376–377

conditional execution, 365

evaluations, 398

exit status of command, 364–365

file attribute tests, 370–371

das76205_ndx_752-760.indd   758das76205_ndx_752-760.indd   758 12/13/11   10:52 AM12/13/11   10:52 AM



Index 759

functions, 395–397

here document, 394–395

if statements, 366–367

IFS variable, 392

logical operators, 365

looping, 380–387

numeric comparison, 367–369

positional parameters, 389–392

read statements, 361–362

scripts, 360–361

she-bang line, 361

signals, 397

string comparison, 369–370

testing expressions, 367–371

wild cards, 375–376

shell scripts, 22, 181–182

shift function, 389–392, 419

shutdown, 619

SID (SCCS ID), 499

side effects, 466

sigaction, 592–597

SIGKILL, 591

signal disposition table, 591

signal handling, 199–201, 397, 

590–597

SIGSTOP, 591

Simple Mail Transfer Protocol 

(SMTP), 316

Single UNIX Specification, Version 3 

(SUSV3), 17

size of files, 93–94

slicing file vertically, 249–250

slogin, 314

SMTP (Simple Mail Transfer 

Protocol), 316

soft links. See symbolic links

Solaris, 49

sort command, 251–255

Source Code Control System (SCCS), 

498–511

access control, 510–511

history file, 499

identification keywords, 509–510

splice function, 419

split function, 349, 415, 421–422

SSH, 309–315

host authentication, 309–310

noninteractive logins, 312–313

remote login, 314

tools, 313–315

transferring files, 314–315

user authentication, 310–312

stack, 571

Stallman, Richard, 17, 657

standard error, 166, 170–171

standard input, 165, 166–168

processes, 205

standard library functions, 537

standard output, 165, 168–169, 205, 335

static libraries, 497–498

stat system call, 556

status flags, 540

step function, 528

sticky bit, 105, 617

stop character, 48

stream editor, 277–279, 280–281

streams of characters, 165

strict locking, 516

strings

comparison, 338–340, 369–370

perl’s handling of, 415–416

pointers and, 479

struct stat system call, 556

structures

C, 454–455, 471–472

pointers and, 480–481

stty command, 47–48

subroutines, 432–433

substitution of text

emacs editor, 677–678

filters, 284–286

perl, 428–430

vi/vim editor, 148–149

substr function, 349, 416

su command, 610–611

SUID (set-user-id), 105, 616–617

superblock, 624

superuser status, 111, 610–611

supplementary groups, 612

SuSE, 17

SUSV3 (Single UNIX Specification, 

Version 3), 17

SVID (System V Interface Definition), 16

swap function, 469–470, 477

switch statement, 462–463, 647

symbolic constants, 443, 451–452

symbolic links, 107–109, 554–555

symlink command, 554–555

symmetric key algorithms, 308, 

310–312

syntax of awk command, 332–334

system administration, 609–642

administrator privileges, 611–612

administrator’s login, 610–611

booting, 618

device files, 622–624

disk space management, 628–630

file systems, 624–628

init control of system, 619–622

program installation, 636–639

security, 615–617

shutdown, 619

superuser status, 610–611

user management, 612–615

system administrator. See also system 

administration

defined, 7

login, 610–611

privileges, 611–612

system calls, 19–20, 441, 536–537, 592. 

See also specific system calls
system date, 46–47

system function, 350

system information, 10

system processes, 191–192

systems programming, 535–605

closing files, 541–542

creating files, 539–541

directory navigation, 550–552

error handling, 537–539

exit status, 580–582

file attributes, modifying, 563–566

file descriptor manipulation, 

587–590

files, 535–569

file sharing, 584–587

Inode reading, 556–560

IPC with unnamed pipes, 599–602

modifying directory entries, 554–556

offset pointer positioning, 545–548

opening files, 539–541

permissions, 549–550, 560–564

process control, 570–605

process environment, 573–575

process table, 573

reading directories, 552–554

reading files, 541–542

replicating current process, 575–577

signal handling, 590–597

system calls, 536–537

truncating files, 548–549

virtual address space, 571–572

writing files, 543

System V Interface Definition 

(SVID), 16

T
tab stops, 151

tagged regular expression (TRE), 

288–289, 427–428, 694

tail command, 248–249

tar command, 84–85, 633–636

TCP/IP, 16, 297–298, 318–320

Tcsh shell, 158, 214

tee command, 176–177

telnet, 7, 302, 303–304

terminal emulator, 6, 49, 50–51

terminal-generated signals, 595–597

terminal settings, 47–48

TERM variable, 126, 219–220

das76205_ndx_752-760.indd   759das76205_ndx_752-760.indd   759 12/13/11   10:52 AM12/13/11   10:52 AM



760 Your UNIX/Linux: The Ultimate Guide

test, 369–371

testing expressions, 367–371

text editing, 78–80

deleting lines, 284

double-spacing text, 283

emacs editor, 661, 668–672

filters, 283–284

inserting and changing lines, 283

navigation, 79

rudimentary, 78–80

vi/vim editor, 126–130, 138–144

text file, 57

text segment, 571

Thompson, Ken, 15

tilde substitution, 226–227

time-sharing, 20

time stamps, 564–565

todos command, 84

top-level domains (TLDs), 299

Torvalds, Linus, 17

translating characters, 257–259

trap command, 199, 397

tr command, 257–259

TRE. See tagged regular expression

tr function, 428–430

truncate command, 548–549

truncating files, 548–549

type command, 28

U
Ubuntu, 17

ucfirst function, 416

uc function, 416

ufs file system, 625

UID. See user-id

umask command, 95, 102–103

umount command, 627

unalias, 221, 233

uname command, 44–45

undo

emacs editor, 674

vi/vim editor, 126, 145–146

unget command, 504

Uniform Resource Identifier 

(URI), 321

Uniform Resource Locator (URL), 291, 

321–322

uniq command, 255–256

University of California, Berkeley, 15, 

302, 511

unix2dos command, 83–84

unlink command, 106, 555

unmask command, 549–550

unset command, 179, 234

unshift function, 419

unzip command, 87–88

up command, 531

update daemon, 627

URI (Uniform Resource Identifier), 321

URL (Uniform Resource Locator), 291, 

321–322

useradd command, 613–615

user address space, 571–572

user authentication, 310–312

userdel command, 614–615

user-id (UID), 110

real vs. effective, 195, 575

user management, 10, 45–46, 

612–615

user mask, 102–103

usermod command, 614–615

user mode, 536

USER variable, 220

utime command, 564–565

V
validate function, 471

variables

awk command, 337–338

C, 446–447

perl, 406–408

in shell, 178–181

shell’s evaluation of, 182

version control, 498–499

virtual address space, 571–572

vi/vim editor, 122–155

abbreviating text input, 152

basics, 123–125

changing text, 144

clearing screen, 126

command reference, 686–692

copying and moving text, 144–145

C programs, 140

customization of, 149–151

deleting text, 138–139, 142–143

editing text, 138–144

.exrc file, 124–125

input mode, 126–130

joining lines, 139

mapping keyboard, 151–152

moving text, 139, 142–143

navigation, 126, 134–138

pattern searches, 146–147

quitting, 131–134

recovering from crash, 134

repeat factor, 125

repeating last command, 147–148

saving text, 131–134

substitution of text, 148–149

undo, 126, 145–146

yanking text, 143–144

vnode table, 585

void, 476

W
wait, 580–581

wait phase of process creation, 194

waitpid, 581–582

watch command, 529–531

w command, 282

wc command, 80–81, 166–167

Web browser, 323–324

whereis command, 27–28

which command, 27–28

while, 353–354, 382–387, 410–412, 

647–648

whitespace, 29, 426–427

who command, 10, 45–46

wild cards, 158–162, 183, 375–376

Windows, 16

words

counting, 80–81

identification of, 426–427

World Wide Web, 320–324

write command, 543

X
xargs command, 117, 183–184

xhost command, 319

X/OPEN, 15, 16

X/Open Portability Guide (XPG), 16

xterm, 50

X Window system, 49–52

file manager, 51–52

on TCP/IP network, 318–320

terminal emulator, 50–51

Y
yanking text, 143–144

Z
zip command, 87–88

zombies, 198, 580

das76205_ndx_752-760.indd   760das76205_ndx_752-760.indd   760 12/13/11   10:52 AM12/13/11   10:52 AM


	Cover Page
	Title Page
	Copyright Page
	Dedication
	Contents in Brief
	Contents
	List of Tables
	Preface
	PART I UNIX for the User
	Chapter 1 Introducing UNIX
	1.1 The Operating System
	1.2 The UNIX Operating System
	1.3 Knowing Your Machine
	1.4 The System Administrator
	1.5 Logging In and Out
	1.5.1 Logging In
	1.5.2 Logging Out

	1.6 A Hands-On Session
	1.6.1 System Information with date and who
	1.6.2 Viewing Processes with ps
	1.6.3 Handling Files
	1.6.4 Handling Directories

	1.7 How It All Clicked
	1.7.1 Berkeley: The Second School
	1.7.2 UNIX Gets Fragmented
	1.7.3 The Internet
	1.7.4 The Windows Threat

	1.8 POSIX and the Single UNIX Specification
	1.9 Linux and GNU
	1.10 The UNIX Architecture
	1.10.1 Division of Labor: Kernel and Shell
	1.10.2 The File and Process
	1.10.3 The System Calls

	1.11 Features of UNIX
	1.11.1 A Multiuser System
	1.11.2 A Multitasking System Too
	1.11.3 A Repository of Applications
	1.11.4 The Building-Block Approach
	1.11.5 Pattern Matching
	1.11.6 Programming Facility
	1.11.7 Documentation

	Summary
	Self-Test
	Exercises

	Chapter 2 Becoming Familiar with UNIX Commands
	2.1 Command Basics
	2.1.1 The PATH: Locating Commands
	2.1.2 Where Is the Command?

	2.2 Command Structure
	2.3 Flexibility of Command Usage
	2.4 man: On-Line Help
	2.4.1 Navigation and Search
	2.4.2 Further Help with man -k and man -f

	2.5 The man Documentation
	2.5.1 Understanding a man Page
	2.5.2 Using man to Understand man

	2.6 echo: Displaying Messages
	2.7 printf: Alternative to echo
	2.8 script: Recording Your Session
	2.9 Using Email with mailx
	2.9.1 Sending Mail
	2.9.2 Receiving Mail
	2.9.3 mailx Internal Commands

	2.10 passwd: Changing Your Password
	2.11 uname: Your Machine’s Name and Operating System
	2.12 who: Know the Users
	2.13 date: Displaying the System Date
	2.14 stty: When Things Go Wrong
	2.14.1 Changing the Settings

	2.15 The X Window System
	2.15.1 The Terminal Emulator
	2.15.2 The File Manager

	Summary
	Self-Test
	Exercises

	Chapter 3 The File System
	3.1 The File
	3.1.1 Ordinary (Regular) File
	3.1.2 Directory File
	3.1.3 Device File

	3.2 What’s in a (File)name?
	3.3 The File System Hierarchy
	3.4 The UNIX File System
	3.5 Using Absolute Pathnames with Commands
	3.6 The HOME Variable and ~: The Home Directory
	3.7 pwd and cd: Navigating the File System
	3.8 Relative Pathnames (. and ..)
	3.9 mkdir: Making Directories
	3.10 rmdir: Removing Directories
	3.11 ls: Listing Files
	3.11.1 ls Options

	3.12 cp: Copying Files
	3.12.1 cp Options

	3.13 mv: Renaming Files
	3.14 rm: Deleting Files
	3.14.1 rm Options

	3.15 cat: Displaying and Concatenating Files
	3.16 more: The UNIX Pager
	3.17 pico: Rudimentary Text Editing
	3.17.1 Navigation
	3.17.2 Text Editing

	3.18 wc: Counting Lines, Words and Characters
	3.19 lp: Printing a File
	3.19.1 Other Commands in the lp Subsystem

	3.20 od: Viewing Nonprintable Characters
	3.21 dos2unix, unix2dos, and Tofrodos: Converting Between DOS and UNIX
	3.22 tar: The Archival Program
	3.23 gzip: The Compression Program
	3.24 zip: The Compression and Archival Program
	3.25 Other Ways of Using These Commands
	Summary
	Self-Test
	Exercises

	Chapter 4 File Attributes
	4.1 ls Revisited (-l): Listing File Attributes
	4.1.1 Listing Directory Attributes (-ld)

	4.2 File Permissions
	4.3 chmod: Changing File Permissions
	4.3.1 Relative Permissions
	4.3.2 Absolute Assignment
	4.3.3 Recursive Operation (-R)

	4.4 The Directory
	4.4.1 Read Permission
	4.4.2 Write Permission
	4.4.3 Execute Permission

	4.5 umask: Default File and Directory Permissions
	4.6 File Systems and Inodes
	4.7 ln: Creating Hard Links
	4.7.1 Where to Use Hard Links

	4.8 ln Again: Creating Symbolic Links
	4.9 File Ownership
	4.9.1 chown: Changing File Ownership
	4.9.2 chgrp: Changing Group Owner
	4.9.3 How to Handle Intruders

	4.10 Modification and Access Times
	4.11 find: Locating Files
	4.11.1 Selection Criteria
	4.11.2 The find Operators (!, -o, and -a)
	4.11.3 Operators of the Action Component

	Summary
	Self-Test
	Exercises

	Chapter 5 The vi/vim Editor
	5.1 vi Basics
	5.1.1 The File exrc

	5.2 A Few Tips First
	5.3 Input Mode—Entering and Replacing Text
	5.3.1 Inserting and Appending Text (i and a)
	5.3.2 Inserting and Appending Text at Line Extremes (I and A)
	5.3.3 Opening a New Line (o and O)
	5.3.4 Replacing Text (r, s, R, and S)
	5.3.5 Entering Control Characters ([Ctrl-v])

	5.4 Saving Text and Quitting—The ex Mode
	5.4.1 Saving Your Work (:w)
	5.4.2 Saving and Quitting (:x and :wq)
	5.4.3 Aborting Editing (:q)
	5.4.4 Writing Selected Lines
	5.4.5 Escape to the Shell (:sh and [Ctrl-z])

	5.5 Recovering from a Crash (:recover and -r)
	5.6 Navigation
	5.6.1 Relative Movement in the Four Directions (h, j, k, and l)
	5.6.2 Scrolling ([Ctrl-f], [Ctrl-b], [Ctrl-d] and [Ctrl-u])
	5.6.3 Word Navigation (b, e, and w)
	5.6.4 Moving to Line Extremes (0, |, and $)
	5.6.5 Absolute Movement (G)

	5.7 Editing Text without Operators
	5.7.1 Deleting Text (x, X, and dd)
	5.7.2 Moving Text (p)
	5.7.3 Joining Lines (J)
	5.7.4 Changing Case (~)

	5.8 Correcting a C Program
	5.9 Editing Text with Operators
	5.9.1 Deleting and Moving Text (d, p, and P)
	5.9.2 Yanking Text (y, p and P)
	5.9.3 Changing Text (c)

	5.10 Copying and Moving Text from One File to Another
	5.11 Undoing Last Editing Instructions (u and U)
	5.12 Searching for a Pattern (/ and ?)
	5.12.1 Repeating the Last Pattern Search (n and N)

	5.13 Repeating the Last Command (.)
	5.14 Substitution—Search and Replace (:s)
	5.15 set: Customizing vi
	Going Further

	5.16 map: Mapping Keys of Keyboard
	5.17 abbr: Abbreviating Text Input
	Summary
	Self-Test
	Exercises

	Chapter 6 The Shell
	6.1 The Shell as Command Processor
	6.2 Shell Offerings
	6.3 Pattern Matching—The Wild Cards
	6.3.1 The * and ?
	6.3.2 The Character Class
	6.3.3 Matching the Dot
	6.3.4 Rounding Up

	6.4 Escaping and Quoting
	6.4.1 Escaping
	6.4.2 Quoting
	6.4.3 Escaping in echo

	6.5 Redirection
	6.5.1 Standard Input
	6.5.2 Standard Output
	6.5.3 The File Descriptor
	6.5.4 Standard Error
	6.5.5 Filters—Using Both Standard Input and Standard Output

	6.6 Collective Manipulation
	6.6.1 Replicating Descriptors
	6.6.2 Command Grouping

	6.7 /dev/null and /dev/tty: Two Special Files
	6.8 Pipes
	6.8.1 When a Command Needs to Be Ignorant of Its Source

	6.9 tee: Creating a Tee
	6.10 Command Substitution
	6.11 Shell Variables
	6.11.1 Effects of Quoting and Escaping
	6.11.2 Where to Use Shell Variables

	6.12 Shell Scripts
	6.13 The Shell’s Treatment of the Command Line
	Going Further

	6.14 More Wild Cards
	6.15 xargs: Building a Dynamic Command Line
	Summary
	Self-Test
	Exercises

	Chapter 7 The Process
	7.1 Process Basics
	7.2 The Shell and init
	7.3 ps: Displaying Process Attributes
	7.4 System Processes and init
	7.5 The Process Creation Mechanism
	7.6 Inherited Process Attributes
	7.6.1 When Variables Are Inherited and When They Are Not

	7.7 When You Can’t Use a Separate Process
	7.8 Process States and Zombies
	7.8.1 ps -l: Detailed Process Listing

	7.9 Signal Handling
	7.10 Running Jobs in Background
	7.10.1 &: No Logging Out
	7.10.2 nohup: Log Out Safely

	7.11 Job Control
	7.11.1 Handling Standard Input and Standard Output

	7.12 at and batch: Execute Later
	7.12.1 at: One-Time Execution
	7.12.2 batch: Execute in Batch Queue
	7.12.3 Restricting Use of at and batch

	7.13 cron and crontab: Running Jobs Periodically
	7.13.1 Controlling Access to cron

	Summary
	Self-Test
	Exercises

	Chapter 8 The Shell—Customizing the Environment
	8.1 The Shells
	8.1.1 Setting Your Shell

	8.2 Environment Variables
	8.2.1 export: Creating Environment Variables

	8.3 The Common Environment Variables
	8.4 Aliases
	8.5 Command History
	8.5.1 Accessing Previous Commands
	8.5.2 Substitution in Previous Commands
	8.5.3 Using Arguments to Previous Command ($_)
	8.5.4 The History Variables

	8.6 In-line Command Editing
	8.7 Tilde Substitution
	8.8 Using set Options
	8.9 The Initialization Scripts
	8.9.1 The Login Script
	8.9.2 The rc File

	8.10 The C Shell
	8.10.1 Local and Environment Variables
	8.10.2 Aliases
	8.10.3 History
	8.10.4 Other Shell Variables
	8.10.5 The Initialization Scripts
	Going Further

	8.11 Directory Stack Manipulation
	Summary
	Self-Test
	Exercises

	Chapter 9 Simple Filters
	9.1 pr: Paginating Files
	9.1.1 pr Options

	9.2 Comparing Files
	9.3 cmp: Byte-by-Byte Comparison
	9.4 comm: What Is Common?
	9.5 diff: Converting One File to Another
	9.6 head: Displaying the Beginning of a File
	9.7 tail: Displaying the End of a File
	9.7.1 tail Options

	9.8 cut: Slitting a File Vertically
	9.9 paste: Pasting Files
	9.10 sort: Ordering a File
	9.10.1 sort Options

	9.11 uniq: Locate Repeated and Nonrepeated Lines
	9.11.1 uniq Options

	9.12 tr: Translating Characters
	9.12.1 tr Options

	9.13 Applying the Filters
	9.13.1 Listing the Five Largest Files in the Current Directory
	9.13.2 Creating a Word-Usage List
	9.13.3 Finding Out the Difference between Two Password Files

	Summary
	Self-Test
	Exercises

	Chapter 10 Filters Using Regular Expressions—grep and sed
	10.1 The Sample Database
	10.2 grep: Searching for a Pattern
	10.2.1 Quoting in grep
	10.2.2 When grep Fails

	10.3 grep Options
	10.4 Basic Regular Expressions (BRE)—An Introduction
	10.4.1 The Character Class
	10.4.2 The *
	10.4.3 The Dot
	10.4.4 Specifying Pattern Locations (^ and $)
	10.4.5 When Metacharacters Lose Their Meaning

	10.5 Extended Regular Expressions (ERE) and egrep
	10.5.1 The + and ?
	10.5.2 Matching Multiple Patterns (|, ( and ))

	10.6 sed:The Stream Editor
	10.7 Line Addressing
	10.8 sed Options
	10.9 Context Addressing
	10.10 Writing Selected Lines to a File (w)
	10.11 Text Editing
	10.11.1 Inserting and Changing Lines (i, a, c)
	10.11.2 Deleting Lines (d)

	10.12 Substitution (s)
	10.12.1 Using Regular Expressions in Substitution
	10.12.2 The Remembered Pattern (//)

	10.13 Basic Regular Expressions Revisited
	10.13.1 The Repeated Pattern (&)
	10.13.2 Interval Regular Expression (IRE)
	10.13.3 The Tagged Regular Expression (TRE)

	10.14 Applying the IRE and TRE
	10.14.1 Handling a Telephone Directory
	10.14.2 Replacing an Obsolescent Function with a POSIX-Compliant One
	10.14.3 Converting Pathnames in URLs

	Summary
	Self-Test
	Exercises

	Chapter 11 Networking Tools
	11.1 TCP/IP Basics
	11.1.1 Hostnames and IP Addresses

	11.2 Resolving Hostnames and IP Addresses
	11.2.1 /etc/hosts: The Hosts File
	11.2.2 The Domain Name System (DNS)

	11.3 Client-Server: How Networked Applications Communicate
	11.4 ping: Checking the Network
	11.5 telnet: Remote Login
	11.6 ftp: File Transfer Protocol
	11.6.1 Basic File and Directory Handling
	11.6.2 Transferring Files
	11.6.3 Anonymous FTP

	11.7 Cryptography Basics
	11.7.1 Symmetric Key Algorithms
	11.7.2 Asymmetric Key Algorithms

	11.8 SSH: The Secure Shell
	11.8.1 Host Authentication
	11.8.2 The rhosts/shosts Authentication Scheme
	11.8.3 User Authentication with Symmetric Algorithms
	11.8.4 Using the SSH Agent for Noninteractive Logins

	11.9 The SSH Tools
	11.9.1 Remote Login and Command Execution (ssh and slogin)
	11.9.2 File Transfer with sftp and scp

	11.10 Internet Mail
	11.10.1 ~/.signature and ~/.forward: Two Important Files

	11.11 MIME: Handling Binary Attachments in Mail
	11.12 Using X Window on a TCP/IP Network
	11.12.1 The Display
	11.12.2 Using the DISPLAY variable
	11.12.3 Using the -display Option

	11.13 HTTP and the World Wide Web
	11.13.1 The Uniform Resource Locator (URL)
	11.13.2 HTTP: The Protocol of the Web
	11.13.3 Running External Programs
	11.13.4 HTML: The Language of Web Pages
	11.13.5 The Web Browser

	11.14 Multimedia on the Web: MIME Revisited
	Summary
	Self-Test
	Exercises


	PART II UNIX for the Programmer
	Chapter 12 Filtering and Programming with awk
	12.1 awk Preliminaries
	12.2 Using print and printf
	12.2.1 Redirecting Standard Output

	12.3 Number Processing
	12.4 Variables and Expressions
	12.5 The Comparison and Logical Operators
	12.5.1 String and Numeric Comparison
	12.5.2 ~ and !~: The Regular Expression Operators
	12.5.3 The Logical Operators

	12.6 The -f Option: Storing awk Programs in a File
	12.7 The BEGIN and END Sections
	12.8 Positional Parameters
	12.9 Arrays
	12.9.1 Associative (Hash) Arrays
	12.9.2 ENVIRON[ ]: The Environment Array

	12.10 Built-In Variables
	12.10.1 Applying the Built-in Variables

	12.11 Functions
	12.12 Control Flow—The if Statement
	12.13 Looping with for
	12.13.1 Using for with an Associative Array

	12.14 Looping with while
	12.15 Conclusion
	Summary
	Self-Test
	Exercises

	Chapter 13 Shell Programming
	13.1 Shell Scripts
	13.1.1 script.sh: A Simple Script
	13.1.2 The She-Bang Line

	13.2 read: Making Scripts Interactive
	13.3 Using Command-Line Arguments
	13.4 exit and $?: Exit Status of a Command
	13.5 The Logical Operators && and ||—Conditional Execution
	13.6 The if Conditional
	13.7 Using test and [ ] to Evaluate Expressions
	13.7.1 Numeric Comparison
	13.7.2 [ ]: Shorthand for test
	13.7.3 String Comparison
	13.7.4 File Attribute Tests
	13.7.5 Using Compound Conditions

	13.8 Two Important Programming Idioms
	13.8.1 Running a Task Both Interactively and Noninteractively
	13.8.2 Calling a Script by Different Names ($0)

	13.9 The case Conditional
	13.9.1 Using Wild Cards and the |

	13.10 expr, bc and basename: Computation and String Handling
	13.10.1 Computation with expr
	13.10.2 Floating-Point Computation with bc
	13.10.3 String Handling with expr
	13.10.4 basename: Changing Filename Extensions

	13.11 Sample Program 1: Automatically Selects Last C Program
	13.12 for: Looping with a List
	13.12.1 Sources of the List
	13.12.2 Important Applications Using for

	13.13 while: Looping
	13.13.1 Handling Redirection in a Loop
	13.13.2 Using while to Wait for a File
	13.13.3 Finding Out Users’ Space Consumption
	13.13.4 break and continue

	13.14 Sample Script 2: Providing Numeric Extensions to Backup Files
	13.15 Manipulating Positional Parameters with set and shift
	13.15.1 Killing a Process by Name
	13.15.2 shift: Shifting Positional Parameters Left
	13.15.3 The IFS Variable: set’s Default Delimiter

	13.16 Sample Script 3: A Table of Contents for Downloaded Files
	Going Further

	13.17 The Here Document (<<)
	13.18 Shell Functions
	13.19 trap: How a Script Handles Signals
	13.20 eval: Evaluating Twice
	13.21 The exec Statement
	Summary
	Self-Test
	Exercises

	Chapter 14 perl—The Master Manipulator
	14.1 perl Preliminaries
	14.2 Variables and Constants
	14.2.1 Using a Pragma

	14.3 Operators
	14.3.1 The Comparison and Logical Operators
	14.3.2 The Concatenation and Repetition Operators (. and x)

	14.4 The Standard Conditionals and Loops
	14.4.1 The if Conditional
	14.4.2 The while, do-while, and for Loops

	14.5 Reading Files from Command-Line Arguments
	14.5.1 Reading Files with One-Liners
	14.5.2 Reading Files in a Script

	14.6 The Current Line Number ($.) and the Range Operator ()
	14.7 $_: The Default Variable
	14.8 String-Handling Functions
	14.9 Lists and Arrays
	14.9.1 Array-Handling Functions

	14.10 foreach: Looping Through a List
	14.11 Two Important List Functions
	14.11.1 split: Splitting into a List or Array
	14.11.2 join: Joining a List

	14.12 dec2bin.pl: Converting a Decimal Number to Binary
	14.13 Associative Arrays
	14.13.1 Counting Number of Occurrences

	14.14 Using Regular Expressions
	14.14.1 Identifying Whitespace, Digits, and Words
	14.14.2 The IRE and TRE Features

	14.15 Substitution with the s and tr Functions
	14.15.1 Editing Files In-Place

	14.16 File Handling
	14.17 File Tests
	14.18 Subroutines
	Going Further

	14.19 CGI Programming with perl—An Overview
	14.19.1 The Query String
	14.19.2 GET and POST: The Request Method

	Summary
	Self-Test
	Exercises

	Chapter 15 Introducing C
	15.1 The C Language
	15.2 first_prog.c: Understanding Our First C Program
	15.2.1 The Preprocessor Section
	15.2.2 The Body
	15.2.3 main: A Unique Function

	15.3 printf and scanf: Two Important Functions
	15.3.1 printf: Printing to the Terminal
	15.3.2 scanf: Input from the Keyboard

	15.4 Variables and Constants
	15.5 The Fundamental Data Types
	15.5.1 The Integer Types
	15.5.2 The Floating-Point Types
	15.5.3 The Character Type

	15.6 sizeof.c: Determining the Size of the Fundamental Data Types
	15.7 Symbolic Constants: Constants with Names
	15.8 Arrays
	15.9 arrays.c: Printing Array Elements
	15.10 Structures
	15.11 Operators and Expressions
	15.11.1 The Bitwise Operators
	15.11.2 Automatic Conversion
	15.11.3 Explicit Conversion

	15.12 type_conversion.c: Demonstrates Type Conversion
	15.13 Order of Evaluation
	15.13.1 Operator Precedence
	15.13.2 Operator Associativity

	15.14 Control Flow Revisited
	15.14.1 Decision Making with switch
	15.14.2 Repetition with do-while
	15.14.3 break and continue

	15.15 Functions
	15.16 first_func.c: Two Arguments and Return Value
	15.17 Function Arguments, Parameters, and Local Variables
	15.17.1 Passing by Value
	15.17.2 swap_failure.c: Visibility of Parameters and Local Variables
	15.17.3 Using Arrays as Function Arguments
	15.17.4 Using Structures as Function Arguments

	15.18 Pointers
	15.19 pointers.c: Basic Features of a Pointer
	15.20 Pointer Attributes
	15.20.1 Pointer Arithmetic
	15.20.2 Other Attributes

	15.21 Pointers and Functions
	15.21.1 Solving the Swapping Problem
	15.21.2 Using Pointers to Return Multiple Values

	15.22 Pointers and Other Data Types
	15.22.1 Pointers and Arrays
	15.22.2 Pointers and Strings
	15.22.3 Array of Strings
	15.22.4 Pointers and Structures

	Summary
	Self-Test
	Exercises

	Chapter 16 Program Development Tools
	16.1 Handling Multisource C Applications
	16.1.1 A Multisource Application
	16.1.2 Compiling and Linking the Application
	16.1.3 Why We Need the o Files

	16.2 make: Keeping Programs Up to Date
	16.2.1 Removing Redundancies
	16.2.2 Other Functions of make: Cleaning Up and Backup
	16.2.3 Macros

	16.3 ar: Building a Library (Archive)
	16.3.1 Using the Library
	16.3.2 Maintaining an Archive with make

	16.4 Static and Shared Libraries
	16.5 Version Control with SCCS, RCS, and CVS
	16.6 An SCCS Session
	16.6.1 admin: Creating an SCCS File
	16.6.2 get: Checking Out
	16.6.3 delta: Checking In
	16.6.4 unget: When You Change Your Mind

	16.7 Activity and History Information
	16.7.1 sact: Displaying Activity Status
	16.7.2 prs: Displaying the SCCS History

	16.8 Continuing Editing with SCCS
	16.8.1 get -r: Changing the Default Numbering Sequence
	16.8.2 Working with Multiple Versions
	16.8.3 rmdel and comb: Removing and Combining Versions
	16.8.4 Using Identification Keywords

	16.9 Controlling Access to SCCS
	16.9.1 Controlling User Access
	16.9.2 Controlling Releases

	16.10 The Revision Control System (RCS)
	16.10.1 Creating an RCS File with ci
	16.10.2 co and ci: Checking Out and In
	16.10.3 Specifying Revisions
	16.10.4 rlog and rcs: Other RCS Functions

	16.11 The Concurrent Version System (CVS)
	16.11.1 Setting Up the Repository
	16.11.2 Importing Files
	16.11.3 Checking Out
	16.11.4 Editing and Checking In
	16.11.5 Merging and Resolving Conflicts
	16.11.6 Setting Tags and Exporting the Repository
	16.11.7 Other Features

	16.12 Debugging Programs with gdb
	16.12.1 Starting gdb
	16.12.2 Using a Breakpoint
	16.12.3 Stepping Through the Program
	16.12.4 Making a Reassignment
	16.12.5 Setting a Watchpoint
	16.12.6 Other Features of gdb

	Summary
	Self-Test
	Exercises

	Chapter 17 Systems Programming I—Files
	17.1 System Call Basics
	17.1.1 Anatomy of a System Call
	17.1.2 System Calls vs. Library Functions

	17.2 errno and perror: Handling Errors
	17.3 open: Opening and Creating a File
	17.4 close: Closing a File
	17.5 read: Reading a File
	17.6 write: Writing a File
	17.7 ccp.c: Copying a File
	17.8 lseek: Positioning the Offset Pointer
	17.8.1 reverse_read.c: Reading a File in Reverse

	17.9 truncate and ftruncate: Truncating a File
	17.10 umask: Modifying File Permissions During Creation
	17.11 Directory Navigation
	17.12 Reading a Directory
	17.12.1 lls.c: Listing Filenames in a Directory

	17.13 Modifying Entries in Directory
	17.13.1 mkdir and rmdir: Creating and Removing Directories
	17.13.2 link and symlink: Creating a Hard and Symbolic Link
	17.13.3 unlink: Removing a Link
	17.13.4 rename: Renaming a File, Directory, or Symbolic Link

	17.14 Reading the Inode: struct stat and stat
	17.14.1 attributes.c: Displaying Some File Attributes
	17.14.2 S_IFMT: Manipulating the st_mode Member
	17.14.3 Using the S_ISxxx Macros to Determine File Type
	17.14.4 Accessing the Permission Bits
	17.14.5 lsdir.c: Listing Only Directories

	17.15 access: Checking the Real User’s Permissions
	17.16 Modifying File Attributes
	17.16.1 chmod and fchmod: Changing File Permissions
	17.16.2 chown: Changing Ownership
	17.16.3 utime: Changing the Time Stamps
	17.16.4 atimemtime.c: Creating a File with Identical Time Stamps

	Summary
	Self-Test
	Exercises

	Chapter 18 Systems Programming II—Process Control
	18.1 The Process Revisited
	18.1.1 The Virtual Address Space
	18.1.2 The Process Table

	18.2 The Process Environment
	18.2.1 process.c: Looking Up Some Process Credentials

	18.3 fork: Replicating the Current Process
	18.3.1 fork.c: A Simple Child Creation Program

	18.4 exec: The Final Step in Process Creation
	18.4.1 execl and execv: The Key Members
	18.4.2 The Other exec Members

	18.5 Gathering the Exit Status
	18.5.1 wait: When the Parent Waits
	18.5.2 waitpid: A More Powerful Waiting Mechanism

	18.6 fork_exec_wait.c: Using All Three Calls
	18.7 File Sharing
	18.7.1 The File Descriptor Table
	18.7.2 The File Table
	18.7.3 The Vnode Table
	18.7.4 When the Linkage Changes

	18.8 File Descriptor Manipulation
	18.8.1 dup and dup2: Duplicating a File Descriptor
	18.8.2 redirection.c: Redirection at Last
	18.8.3 fcntl: Recommended over dup and dup2

	18.9 Signal Handling
	18.9.1 The System Calls

	18.10 sigaction: Installing a Signal Handler
	18.10.1 signal.c: Catching the SIGALRM Signal
	18.10.2 Catching Terminal-Generated Signals

	18.11 killprocess.c: Using fork-exec-wait and SIGCHLD
	18.12 IPC with Unnamed Pipes
	18.12.1 Using pipe with fork
	18.12.2 pipe2.c: Running UNIX Commands in a Pipe

	Summary
	Self-Test
	Exercises


	PART III System Administration
	Chapter 19 System Administration
	19.1 root: The System Administrator’s Login
	19.1.1 su: Acquiring Superuser Status

	19.2 The Administrator’s Privileges
	19.3 User Management
	19.3.1 Understanding /etc/group
	19.3.2 Understanding /etc/passwd
	19.3.3 Adding and Modifying a User Profile

	19.4 Maintaining Security
	19.4.1 Restricted Shell
	19.4.2 Set-User-Id (SUID): Power for a Moment
	19.4.3 The Sticky Bit

	19.5 Booting and Shutdown
	19.5.1 Booting
	19.5.2 Shutdown

	19.6 How init Controls the System
	19.6.1 How init Creates the Shell
	19.6.2 The rc Scripts

	19.7 Device Files
	19.7.1 Block and Character Devices
	19.7.2 Major and Minor Numbers

	19.8 File Systems
	19.8.1 File System Components
	19.8.2 The Standard File Systems and Their Types

	19.9 Mounting and Unmounting File Systems
	19.9.1 mount: Mounting File Systems
	19.9.2 umount: Unmounting File Systems

	19.10 fsck: File System Checking
	19.11 Managing Disk Space
	19.11.1 df: Reporting Free Space
	19.11.2 du: Disk Usage
	19.11.3 find Revisited: The Administrator’s Tool

	19.12 Handling Floppy Diskettes
	19.12.1 format and fdformat: Formatting Diskettes
	19.12.2 dd: Copying Diskettes
	19.12.3 Handling DOS Diskettes

	19.13 tar: Backing Up Files
	19.13.1 Backing Up Files (-c)
	19.13.2 Restoring Files (-x)
	19.13.3 Displaying the Archive (-t)
	19.13.4 Other Options

	19.14 Installing Programs with rpm
	19.14.1 Installing and Upgrading Packages
	19.14.2 Removing Packages
	19.14.3 Querying Packages

	Summary
	Self-Test
	Exercises


	Appendix A The C Shell—Programming Constructs
	Appendix B The Korn and Bash Shells—Exclusive Programming Constructs
	Appendix C The GNU emacs Editor
	Appendix D vi/vim Command Reference
	Appendix E The Regular Expression Superset
	Appendix F The HOWTO
	Appendix G The ASCII Character Set
	Appendix H Glossary
	Appendix I Solutions to Self-Test Questions
	Index



