
Instructor: Dr. Swarup Bhunia
Co-Instructors/TAs: Reiner Dizon-Paradis and Shuo Yang

Experiment 4
Hardware Trojan Attack I
on HaHa Board v3.0

We describe an experiment on hardware Trojan attacks, in the form of

malicious modifications of electronic hardware, that pose major security

concerns in the electronics industry.

1 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

Case Study
We describe an experiment on hardware Trojan attacks, in the form of malicious modifications of electronic hardware, that pose major
security concerns in the electronics industry.

In this chapter, we describe an experiment on hardware Trojan attacks and countermeasures. Emerging trend of outsourcing the design and

fabrication services to external facilities as well as increasing reliance on third-party Intellectual Property (IP) cores and electronic design

automation (EDA) tools makes integrated circuits (ICs) increasingly vulnerable to

hardware Trojan attacks at different stages of its life-cycle. The modern IC design,

fabrication, test and deployment stages highlight the level of trust at each stage. This

scenario raises a new set of challenges for trust validation against malicious design

modification at various stages of an IC life-cycle, where untrusted

components/personnel are involved. In particular, it emphasizes the requirement of

reliable detection of malicious design modification made in an untrusted fabrication

facility, during the post-manufacturing test. It also imposes a requirement for trust

validation in IP cores obtained from untrusted third-party vendors.

Figure 1 illustrates different steps of a typical IC life cycle and the possibility of Trojan

attacks in these steps. Each party associated with the design and fabrication of an IC

can be a potential adversary who can tamper it. Such tampering can be accomplished

through add/delete/alteration of circuit structure or through modification of

manufacturing process steps that cause reliability issues in ICs. From an attacker’s

perspective, the objective of such attacks can be manifold, e.g., to malign the image of

a company to gain competitive edge in the market; disrupt major national

infrastructure by causing malfunction in electronics used in mission-critical systems; or

leak secret information from inside a chip to illegally access a secure system.

Figure 1 Hardware Trojan attacks by different parties at different
stages of IC cycle.

2 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

Theory Background

Recently Intel announced a flaw in the implementation of the “TSX” instruction for its Haswell series of Central Processing Unit (CPU). This

announcement came almost a year into the product’s lifecycle and almost three years since the beginnings of Haswell’s architecture was laid

out. This is a legitimate mistake on Intel’s part – there is no foul play or trickery here.

However, researchers at the University of Massachusetts were able to modify an Intel Ivy Bridge

processor – the series that Haswell replaced – and significantly impair the Random Number Generator

(RNG) of the processor. They did this by modifying the silicon that made up actual transistor. Their

modification is completely undetectable without a Scanning Electron Microscope (SEM) and a known

good chip to authenticate against. If the security of the RNG is compromised then everything generated

from it is also compromised, for example, private encryption keys.

An intelligent adversary is expected to hide such tampering with an IC’s behavior in a way that makes it

extremely difficult to detect with conventional post-manufacturing testing. Intuitively, it means that the

adversary would ensure that such tampering is manifested or triggered under very rare conditions at the internal nodes, which are unlikely to

arise during testing but can occur during long hours of field operation.

Figure 2 and Figure 3 show general models of combinational and sequential Trojans, respectively.

These abstract models of Trojans are useful for studying the space of possible Trojans, and, similar to

fault models, help in test vector generation for Trojan detection.

Figure 2 Combinational Trojan model

Figure 3 Sequential Trojan Model

3 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

Experiment Set-up: Configuration

1. The instruments needed for this experiment are the HaHa Board v3.0, a USB A to B cable, and a computer.

2. The software needed is GOWIN FPGA Designer, version 1.98 or higher.

3. Refer to the HaHa User Manual to see the steps of configuring the GOWIN GW1N-9 FPGA.

4 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

 Instructions and Questions
In this experiment, you will need to implement a DES (Data Encryption Standard) into the GOWIN GW1N-9 FPGA, and then hack it by inserting

two kinds of hardware Trojan into it.

Figure 4 DES encryption illustration.

Part I: Implement a DES
The DES is a symmetric-key algorithm for encrypting electronic data. Although it is now

considered insecure, it was highly influential in the advancement of modern cryptography.

It uses 16 round Feistel structure. The block size is 64-bit, of which DES has an effective key

length of 56 bits since 8 of the 64 bits of the key are not used by the encryption algorithm.

The encryption steps are illustrated in Figure 4.

Download the 12 Verilog files from Canvas related to the DES implementation on the FPGA.

If you prefer VHDL, you can use any open-source module online. Create a new GOWIN

project called expt4_1 with top module called top, that instantiates des module from

des.v file. Refer to Figure 5. There are two modules inside this file: des and des_o.

des_o contains the DES implementation, and des is the wrapper top module that

instantiates des_o. Plaintext and key are given in des. There is a RAM module called ram1

instantiated, which is a 64-bit wide, 32-word deep RAM. It will store all the encryption

results of the 16 rounds. Refer to the appendix for starting this project.

5 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 Part II: Insert a combinational Trojan

Insert a combinational Trojan into the DES circuit you implemented in Part I. The trigger
condition of the Trojan is when the output of the F function (Figure 6) satisfies for some
value of the least significant 4 bits (see next section). When the Trojan is triggered, the LSB of
the input key (NOT round keys) for the DES is inverted. When the trigger condition is not
true, the key becomes the original input key.

Part III Insert a sequential Trojan
Insert a sequential Trojan into the DES circuit you implemented in Part I. Use the same clock
as the DES circuit. The trigger condition of the Trojan is when the least significant 2 bits of
the F function output in order go through some order of three values at the negative edge of
the clock (see next section). After the Trojan is triggered, the LSB of the input key (NOT
round keys) for the DES will always be inverted.

Figure 5 Feistel function (F function) of DES

6 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

Measurement, Calculation, and Question

Answer the following questions.

Part I: Implement a DES
1) Use the plaintext and key provided and add them in the des.v Verilog file:

desIn = 64'hA42F891BD376CE05

key64 = 64'h0123456789ABCDEF

Store all the encryption results for the 16 rounds in an implemented RAM and show the first and last round using Gowin Analyzer

Oscilloscope (GAO). Turn in a screenshot.

2) Which module is creating the key for each round? By how?

3) Which module is doing Feistel function?

4) How many Logic Elements are used?

Part II: Insert a combinational Trojan
1) Turn in your code when the trigger condition is 4’b0110. Only turn in the Verilog files that have been changed and Verilog files (if there

are) that are created by you.

a. When the trigger condition is 4’b0110, will the Trojan be triggered? How many times is it triggered in the 16 rounds? Turn in a

screenshot of the GAO window.

2) When the condition is 4’b1001, repeat answering question 1) again.

3) When the condition is 4’b1010, repeat answering question 1) again.

Part III: Insert a sequential Trojan
1) Turn in your code when the trigger condition is 2’b01→2’b10→2’b11. Only turn in the Verilog files that have been changed and Verilog

files (if there are) that are created by you.

a. How many states are needed in total? How many additional registers have you implemented?

b. When the trigger condition is 2’b01→2’b10→2’b11, will the Trojan be triggered? How many times is it triggered in the 16

rounds? Turn in a screenshot of the GAO window.

2) When the condition is 2’b01→2’b10→2’b11, repeat answering question 1) again.

3) When the condition is 2’b11→2’b01→2’b00, repeat answering question 1) again.

7 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

Optional Follow-up

Part IV: Change the trigger condition
Change the trigger condition of the Trojan you inserted in Part II to be acceleration value from the accelerometer.

Use the hex file you downloaded for Experiment 3 (Bus Snooping Attack), make the Atmel XMega microcontroller run the code when the FPGA is

running DES. The microcontroller will keep sending acceleration data to the FPGA through the 8 interconnections along with the interconnection

clock signal.

1) If the longitudinal direction of header P3 is x and the longitudinal direction of header P4 is y, in which direction is the sensor sensing the

acceleration?

2) Add an 8-bit input for the DES to accept the acceleration data. When the board is more than 45-degree up tilted (in the right direction),

the Trojan will be triggered, and the payload is the same as the Trojan in Part II. Turn in your Verilog description (or VHDL code). No

screenshot is needed.

8 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

 Lab Report Guidelines and Demonstration

Deliverables:
1. In your report, give answers to ALL the questions.

2. In part I, give a screenshot after compiling the DES code.

3. Give a photo, or a screenshot to prove your DES works well.

4. Give all the code that is required.

5. Attach screenshots as required.

Demonstration:
Please take videos of the demonstration and include them in your submission.

1. For part I, show your encryption result.

2. For part II, show the result when the combinational Trojan is triggered.

3. For part III, show the result when the sequential Trojan is triggered.

9 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

References and Further Reading

[1] http://securityaffairs.co/wordpress/17875/hacking/undetectable-hardware-trojan-reality.html

[2] Bhunia, Swarup, et al. "Hardware Trojan attacks: threat analysis and countermeasures." Proceedings of the IEEE 102.8 (2014): 1229-1247.

[3] http://www.emvlab.org/descalc/

[4] https://www.pantechsolutions.net/matlab-code-for-des-algorithm

[5] http://www.tutorialspoint.com/cryptography/data_encryption_standard.htm

[6] https://en.wikipedia.org/wiki/Data_Encryption_Standard

[7] https://en.wikipedia.org/wiki/Feistel_cipher

http://securityaffairs.co/wordpress/17875/hacking/undetectable-hardware-trojan-reality.html
http://www.emvlab.org/descalc/
https://www.pantechsolutions.net/matlab-code-for-des-algorithm
http://www.tutorialspoint.com/cryptography/data_encryption_standard.htm
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Feistel_cipher

10 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 Appendix A: Starting a GOWIN FPGA Designer Project

The following are the steps to start a project on the GOWIN FPGA Designer software for part I of this experiment:

1. Go to File > New.

11 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 2. Select FPGA Design Project. Click OK.

3. Type the name of the project and its location. Click Next.

12 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 4. Select the device according to the screenshot below. Click Next and then Finish.

5. Copy the experiment codes from Canvas to expt4_1\src directory.

13 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 6. Copy GOWIN pin assignment file (gowin_pin_assignments.cst) to the root expt4_1\ directory.

7. In the GOWIN FPGA Designer window, add existing files by right clicking on expt4_1 on the left sidebar. Click Add Files… button. Select all

the files inside expt4_1\src directory. Click Open.

14 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 8. Create a new file by right clicking on the left sidebar and clicking New File… button. Select Verilog File and Click OK.

9. Name the module top (no extensions). Click OK.

15 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 10. Create your own top module or use the below code as reference. Make sure to change CLK to CLK_50 to match pin assignments.

Appendix B: Synthesizing a circuit and assigning pins
1. Run the synthesis tool by changing the left sidebar to Process. Right click on Synthesize and Click Run.

16 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 2. Change the left sidebar to Hierarchy tab. Right click on top and select Set As Top Module.

3. Switch back to Process tab on the left sidebar. Right click on FloorPlanner and select Run. Click Yes when it prompts to create a CST file.

17 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 4. In the FloorPlanner window, go to File > Open.

5. In the Open Physical Constraints window, click Browse next to Constraint File. Open the expt4_1\gowin_pin_assignments.cst file.

18 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 6. Click Browse next to Netlist File. Open the expt4_1/impl/gwsynthsis/expt4_1.vg file.

7. Click Browse next to Part Number. Configure the device as follows and click OK. Click OK again.

19 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 8. On the FloorPlanner window, click File > Save As… button. Navigate to expt4_1\src\expt4_1.cst file. Allow the overwrite prompt.

9. Change the bottom tab to I/O constraints. Review the pin assignments below. The next section is optional. If you want to program the FPGA,

go to Appendix D.

20 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 Appendix C: Setup GOWIN Analyzer Oscilloscope file (Optional)

1. Create a new file with type GAO Config File. Click OK.

2. Change the mode to Lite. Click Next.

21 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 3. Enter a name or leave it as it is. Click Next and then Finish.

4. In the Design tab, open the src\expt4_1.rao file. Click on … button next to Clock.

22 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 5. Search for CLK or whatever clock signal you used. Click OK.

6. Click on Add below Capture Signals.

23 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 7. Search for any signal you want to monitor (you must choose at least one). Click OK.

8. Save the expt4_1.rao file. If you want to run the GAO tool, run Step 1 of Appendix D. Then, go right into Appendix E afterwards.

24 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 Appendix D: Running Place/Route tool & Programming the FPGA

1. Go to Process tab on the left sidebar. Right click on Place & Route and click Clean&Rerun All.

2. Double click on Program Device on the Process tab. Make sure the Port is set to “Gowin USB Cable(FT2CH)/0/…” If this is not the case,

unplug all USBs and plug in the HaHa FPGA again. Then, click Save on the new window.

25 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 3. Click on the play button. The bitstream will then be programmed to the FPGA.

Appendix E: Running the GOWIN Analyzer Oscilloscope tool
1. Go to Tools > Gowin Analyzer Oscilloscope.

26 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4
 2. Click on Enable Programmer.

3. Click on the play button.

4. Click on the Auto button to start capturing signals.

27 | EEE 6744 Hands-On Hardware Security University of Florida

 Ex
p

er
im

en
t

4

5. You will now see the captured signals that you set up in the RAO file.

